

# Chip resistor networks

## MNR02 (1005 × 2 size)

### ●Features

#### 1) Extremely small and light

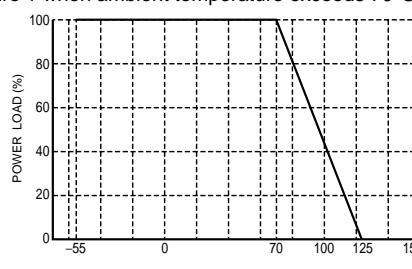
Area ratio is 60% smaller than that of chip 1616 (MNR12), while weight ratio has been cut 75%.

#### 2) High-density mounting

Can be mounted even more densely than two 1005 chips (MCR01). Also, the cost of mounting has been reduced.

#### 3) Compatible with a wide range of mounting equipment.

Squared corners make it excellent for mounting using image recognition devices.


#### 4) Convex electrodes

Easy to check the fillet after soldering is finished.

#### 5) ROHM resistors have obtained ISO-9001 certification.

Design and specifications are subject to change without notice. Carefully check the specification sheet before using or ordering it.

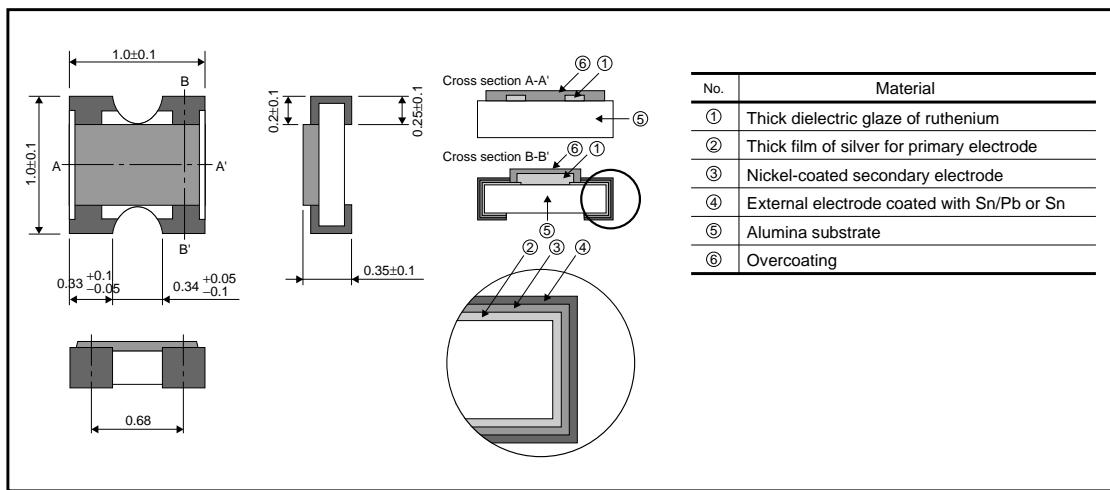
### ●Ratings

| Item                  | Conditions                                                                                                                                                                               | Specifications              |     |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----|
| Rated power           | Power must be derated according to the power derating curve in Figure 1 when ambient temperature exceeds 70°C.                                                                           | 0.063W (1 / 16W)<br>at 70°C |     |
|                       |  <p>Fig.1</p>                                                                                         |                             |     |
| Rated voltage         | The voltage rating is calculated by the following equation.<br>If the value obtained exceeds the limiting element voltage, the voltage rating is equal to the maximum operating voltage. |                             |     |
|                       | $E = \sqrt{P \times R}$ <p>E: Rated voltage (V)<br/>P: Rated power (W)<br/>R: Nominal resistance (<math>\Omega</math>)</p>                                                               | Limiting element voltage    | 25V |
| Nominal resistance    | See <a href="#">Table 1</a> .                                                                                                                                                            |                             |     |
| Operating temperature |                                                                                                                                                                                          | -55°C to +125°C             |     |

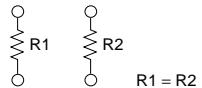
## Resistors

Table 1

| Resistance tolerance | Resistance range<br>( $\Omega$ ) | Resistance temperature coefficient<br>(ppm / °C) |
|----------------------|----------------------------------|--------------------------------------------------|
| J ( $\pm 5\%$ )      | 10≤R≤1M (E24)                    | ±300                                             |

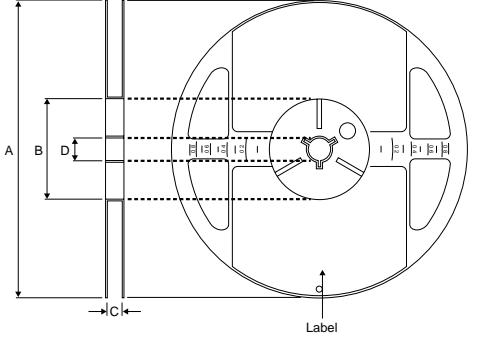
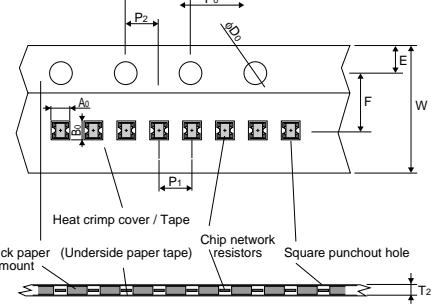

• Before using components in circuits where they will be exposed to transients such as pulse loads (short-duration, high-level loads), be certain to evaluate the component in the mounted state. In addition, the reliability and performance of this component cannot be guaranteed if it is used with a steady state voltage that is greater than its rated voltage.

## ● Characteristics


| Items                                    | Guaranteed value                                                                               | Test conditions (JIS C 5201-1)                                                                                   |
|------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                                          | Resistor type                                                                                  |                                                                                                                  |
| Resistance                               | J : ±5%                                                                                        | JIS C 5201-1 4.5                                                                                                 |
| Variation of resistance with temperature | See Table.1                                                                                    | JIS C 5201-1 4.8<br>Measurement : -55 / +25 / +125°C                                                             |
| Overload                                 | ± (2.0%+0.1Ω)                                                                                  | JIS C 5201-1 4.13<br>Rated voltage (current) ×2.5, 2s.<br>Limiting Element Voltage×2 : 50V                       |
| Solderability                            | A new uniform coating of minimum of 95% of the surface being immersed and no soldering damage. | JIS C 5201-1 4.17<br>Rosin-Ethanol (25%WT)<br>Soldering condition : 235±5°C<br>Duration of immersion : 2.0±0.5s. |
| Resistance to soldering heat             | ± (1.0%+0.05Ω)<br>No remarkable abnormality on the appearance.                                 | JIS C 5201-1 4.18<br>Soldering condition : 260±5°C<br>Duration of immersion : 10±1s.                             |
| Rapid change of temperature              | ± (1.0%+0.05Ω)                                                                                 | JIS C 5201-1 4.19<br>Test temp. : -55°C~+125°C 5cyc                                                              |
| Damp heat, steady state                  | ± (3.0%+0.1Ω)                                                                                  | JIS C 5201-1 4.24<br>40°C, 93%RH<br>Test time : 1,000h~1,048h                                                    |
| Endurance at 70°C                        | ± (3.0%+0.1Ω)                                                                                  | JIS C 5201-1 4.25.1<br>Rated voltage (current), 70°C<br>1.5h : ON – 0.5h : OFF<br>Test time : 1,000h~1,048h      |
| Endurance                                | ± (3.0%+0.1Ω)                                                                                  | JIS C 5201-1 4.25.3<br>125°C<br>Test time : 1,000h~1,048h                                                        |
| Resistance to solvent                    | ± (1.0%+0.05Ω)                                                                                 | JIS C 5201-1 4.29<br>23±5°C, Immersion cleaning, 5±0.5min.<br>Solvent : 2-propanol                               |
| Bend strength of the end face plating    | ± (1.0%+0.05Ω)<br>Without mechanical damage such as breaks.                                    | JIS C 5201-1 4.33                                                                                                |

## Resistors

## ● External dimensions (Units: mm)


## ● Equivalent circuit



## Resistors

## ●Packaging

| Reel                                                                                                                                                                                                                                                                                                                                                                                                  | Taping            |                |                   |                |                    |                   |             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |   |                |                |               |                |                |                |                |                |                |                |                |                |                    |               |               |                |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|-------------------|----------------|--------------------|-------------------|-------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|----------------|----------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------------|---------------|---------------|----------------|----------|
|  <p>EIAJ ET-7200A compliant<br/>(Units: mm)</p> <table border="1" data-bbox="287 819 647 900"> <tr> <th>A</th><th>B</th><th>C</th><th>D</th></tr> <tr> <td><math>\phi 180 \pm 0.3</math></td><td><math>\phi 60 \pm 1.0</math></td><td><math>9 \pm 1.0</math></td><td><math>\phi 13 \pm 0.2</math></td></tr> </table> | A                 | B              | C                 | D              | $\phi 180 \pm 0.3$ | $\phi 60 \pm 1.0$ | $9 \pm 1.0$ | $\phi 13 \pm 0.2$ |  <p>(Units: mm)</p> <table border="1" data-bbox="822 765 1266 923"> <tr> <th>W</th><th>F</th><th>E</th><th>A<sub>0</sub></th><th>B<sub>0</sub></th></tr> <tr> <td><math>8.0 \pm 0.3</math></td><td><math>3.5 \pm 0.05</math></td><td><math>1.75 \pm 0.1</math></td><td><math>1.17 \pm 0.1</math></td><td><math>1.17 \pm 0.1</math></td></tr> <tr> <th>D<sub>0</sub></th><th>P<sub>0</sub></th><th>P<sub>1</sub></th><th>P<sub>2</sub></th><th>T<sub>2</sub></th></tr> <tr> <td><math>\phi 1.5 \pm 0.1</math></td><td><math>4.0 \pm 0.1</math></td><td><math>2.0 \pm 0.1</math></td><td><math>2.0 \pm 0.05</math></td><td>Max. 0.5</td></tr> </table> | W | F | E | A <sub>0</sub> | B <sub>0</sub> | $8.0 \pm 0.3$ | $3.5 \pm 0.05$ | $1.75 \pm 0.1$ | $1.17 \pm 0.1$ | $1.17 \pm 0.1$ | D <sub>0</sub> | P <sub>0</sub> | P <sub>1</sub> | P <sub>2</sub> | T <sub>2</sub> | $\phi 1.5 \pm 0.1$ | $4.0 \pm 0.1$ | $2.0 \pm 0.1$ | $2.0 \pm 0.05$ | Max. 0.5 |
| A                                                                                                                                                                                                                                                                                                                                                                                                     | B                 | C              | D                 |                |                    |                   |             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |   |                |                |               |                |                |                |                |                |                |                |                |                |                    |               |               |                |          |
| $\phi 180 \pm 0.3$                                                                                                                                                                                                                                                                                                                                                                                    | $\phi 60 \pm 1.0$ | $9 \pm 1.0$    | $\phi 13 \pm 0.2$ |                |                    |                   |             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |   |                |                |               |                |                |                |                |                |                |                |                |                |                    |               |               |                |          |
| W                                                                                                                                                                                                                                                                                                                                                                                                     | F                 | E              | A <sub>0</sub>    | B <sub>0</sub> |                    |                   |             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |   |                |                |               |                |                |                |                |                |                |                |                |                |                    |               |               |                |          |
| $8.0 \pm 0.3$                                                                                                                                                                                                                                                                                                                                                                                         | $3.5 \pm 0.05$    | $1.75 \pm 0.1$ | $1.17 \pm 0.1$    | $1.17 \pm 0.1$ |                    |                   |             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |   |                |                |               |                |                |                |                |                |                |                |                |                |                    |               |               |                |          |
| D <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                        | P <sub>0</sub>    | P <sub>1</sub> | P <sub>2</sub>    | T <sub>2</sub> |                    |                   |             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |   |                |                |               |                |                |                |                |                |                |                |                |                |                    |               |               |                |          |
| $\phi 1.5 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                    | $4.0 \pm 0.1$     | $2.0 \pm 0.1$  | $2.0 \pm 0.05$    | Max. 0.5       |                    |                   |             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |   |                |                |               |                |                |                |                |                |                |                |                |                |                    |               |               |                |          |

## ●Product designation

| Part No.                              |          |           |                               |  |                            |       |                      |           |                           |
|---------------------------------------|----------|-----------|-------------------------------|--|----------------------------|-------|----------------------|-----------|---------------------------|
| M N R 0 2 M 0 A                       |          |           |                               |  | J                          |       |                      |           |                           |
| Packaging / Processing specifications |          |           |                               |  | Circuit configuration code |       | Resistance tolerance |           | Nominal resistance        |
| Code                                  | Part No. | Packaging | Package style                 |  | A                          | MNR02 | J                    | $\pm 5\%$ | 3-digit IEC coding system |
| M0                                    | MNR02    | Taping    | Paper tape with reel (10,000) |  |                            |       |                      |           |                           |

## Resistors

## ● Electrical characteristics

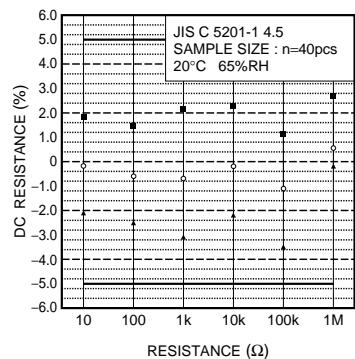



Fig.2 Resistance

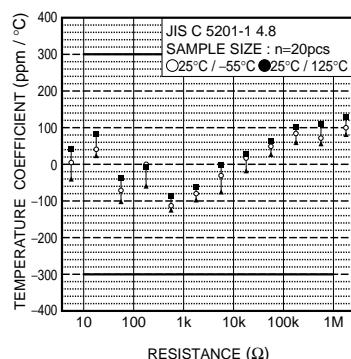



Fig.3 Variation resistance with temperature

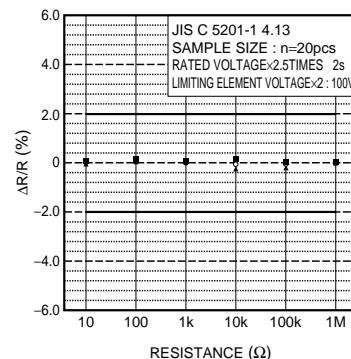



Fig.4 Overload

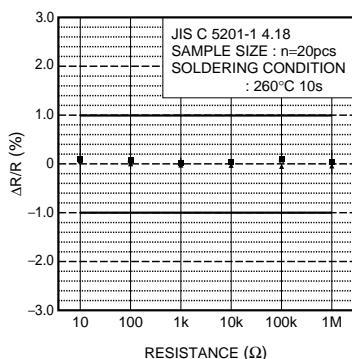



Fig.5 Resistance to soldering heat

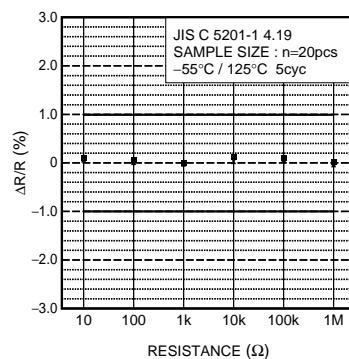



Fig.6 Rapid change of temperature

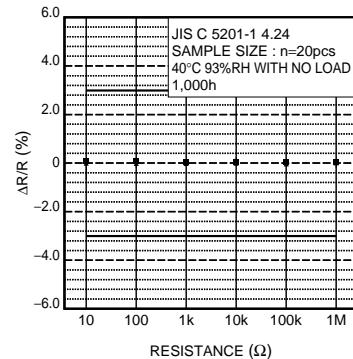



Fig.7 Damp heat, steady state

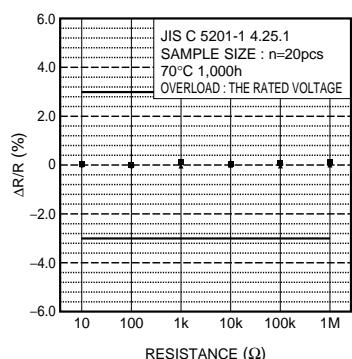



Fig.8 Endurance at 70°C

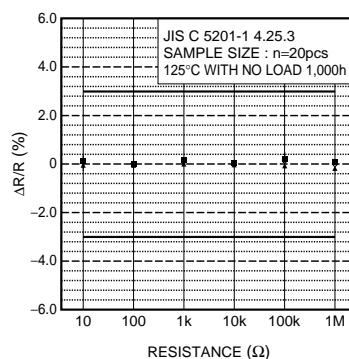



Fig.9 Endurance