3-CHANNEL VIDEO PREAMPLIFIER PROVIDED WITH OSD MIX
AND RETRACE LINE BLK FOR HIGH-RESOLUTION

DESCRIPTION

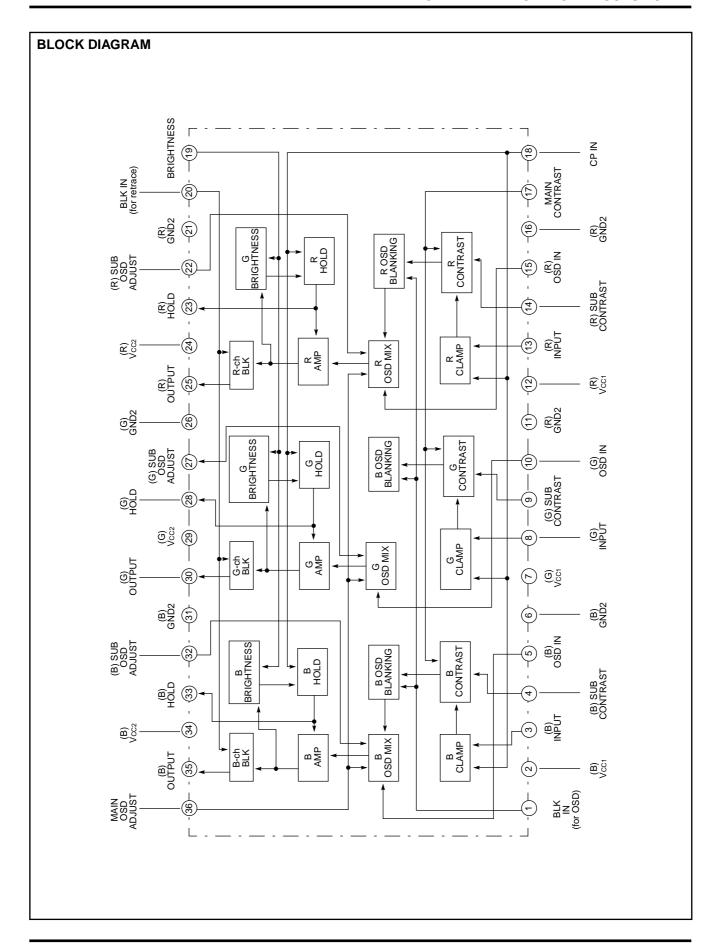
M52722SP is a video amplifier provided with OSD mixing function, and a semiconductor IC having three channels of a built-in wideband 180MHz amplifier.

Each channel has the functions of OSD blanking, OSD mixing, retrace line blanking, wideband amplifier, main and sub contrast control, and main brightness. Accordingly, it is structured to best fit the OSD-provided high resolution display.

FEATURES

•	Frequency band :	RGB	180MHz (at 3VP-P)
		OSD	50MHz
	Input:	RGB	0.7Vp-р (Тур.)
		OSD	more than 3VP-P
			(positive polarity)
		BLK (for OSD)	more than 3VP-P
			(positive polarity)
		Retrace line BLK	more than 3VP-P
			(positive polarity)
	Output:	RGB	4.0VP-P (max.)
	•	OSD	4.0VP-P (max.)

- Each control of contrast and OSD adjustment includes a main which allows 3 channels to be variable simultaneously, and a sub which allows each channel to be variable independently. Each control pin can be controlled within a range of 0 to 5V.
- A built-in feedback circuit inside IC provides a stable DC level at IC output pins.


APPLICATION

CRT display

RECOMMENDED OPERATING CONDITION

Supply voltage range	Vcc=11.5 to 12.5V
Rated supply voltage	Vcc=12.0V

3-CHANNEL VIDEO PREAMPLIFIER PROVIDED WITH OSD MIX AND RETRACE LINE BLK FOR HIGH-RESOLUTION

3-CHANNEL VIDEO PREAMPLIFIER PROVIDED WITH OSD MIX AND RETRACE LINE BLK FOR HIGH-RESOLUTION

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Symbol	Parameter	Ratings	Unit
Vcc	Supply voltage	13.0	V
Pd	Power dissipation	2403	mW
Topr	Operating temperature	-20 to +85	°C
Tstg'	Storage temperature	-40 to +150	°C
Vopr	Recommended operating supply voltage	12.0	V
Vopr'	Recommended operating supply voltage range	11.5 to 12.5	V
Sarge	Surge pressure	±200	V

ELECTRICAL CHARACTERISTICS (Vcc=12V, and Ta=25°C, unless otherwise noted)

		T		Input		Ext	ernal	powei	supn	lv(v)	P	ulse in	put		Limits	3	
Symbol	Parameter	Test	SW3	SW8	SW13	V4	V17	V19	V32	V36	SW18	SW1	SW20	Min.	Тур.	Max.	Unit
Icc	Circuit current	A	R-ch a	G-ch a	B-ch a	5	5	5	5	2	b	5,10,15 a	a	70	100	140	mA
100	Onoult Guiterit			_	_	J			J		SG4		_	,,,	100	140	111/1
Vomax	Output dynamic range	T.P35 T.P30 T.P25	b SG5	b SG5	b SG5	5	5	Vari- able	-	-	b SG4	а _	а _	6.0	7.5	9.0	VP-P
Vimax	Maximum allowable input	T.P35 T.P30 T.P25	b SG5	b SG5	b SG5	5	2.5	2	-	-	b SG4	а –	a _	1	1.6	-	VP-P
Gv	Maximum gain	T.P35 T.P30 T.P25	b SG5	b SG5	b SG5	5	5	2	-	-	b SG4	а –	a _	15.4	17.4	20	dB
ΔGv	Relative maximum gain			Т	ake the	e ratio	of the	e abo	ve tes	t valu	es			0.8	1	1.2	-
VCR1	Contrast control characteristics (at typ.)	T.P35 T.P30 T.P25	b SG5	b SG5	b SG5	5	4	2	-	-	b SG4	a _	a _	14.3	15.8	17.3	dB
ΔVCR1	Relative contrast control characteristics (at typ.)			Т	ake the	e ratio	of the	e abo	ve tes	t valu	es	•		0.8	1	1.2	-
VCR2	Contrast control characteristics (at min.)	T.P35 T.P30 T.P25	b SG5	b SG5	b SG5	5	1	2	-	-	b SG4	a _	a _	0.4	0.7	1.0	VP-P
ΔVCR2	Relative contrast control characteristics (at min.)			Т	ake the	e ratio	of the	e abo	ve tes	t valu	es			0.8	1	1.2	-
VSCR1	Sub-contrast control characteristics (at typ.)	T.P35 T.P30 T.P25	b SG5	b SG5	b SG5	4	5	2	-	-	b SG4	a _	a _	14.3	15.8	17.3	dB
ΔVscr1	Sub-contrast control characteristics (at typ.)			Т	ake the	e ratio	of the	e abo	ve tes	t valu	es			0.8	1	1.2	-
Vscr2	Sub-contrast control characteristics (at min.)	T.P35 T.P30 T.P25	b SG5	b SG5	b SG5	1	5	2	-	-	b SG4	a _	a _	0.4	0.8	1.2	VP-P
ΔVscr2	Relative sub-contrast control characteristics (at min.)			Т	ake the	e ratio	of the	e abo	ve tes	t valu	es			0.8	1	1.2	-
Vscr3	Contrast and sub-contrast control characteristics (both main and sub at typ.)	T.P35 T.P30 T.P25	b SG5	b SG5	b SG5	3	3	2	-	-	b SG4	a -	a -	1.1	1.8	2.5	VP-P
ΔVscr3	Relative contrast and sub- contrast control characteris- tics (both main and sub at typ.)			Т	ake the	e ratio	of the	e abo	ve tes	t valu	es			0.8	1	1.2	-
V _{B1}	Brightness control characteristics (at max.)	T.P35 T.P30 T.P25	a _	a _	a _	5	5	4	-	-	b SG4	a -	a _	3.0	3.6	4.2	V
ΔVB1	Relative brightness control characteristics (at max.)		Take the ratio of the above test values							-0.3	0	0.3	V				
VB2	Brightness control characteristics (at typ.)	T.P35 T.P30 T.P25	a -	a -	a _	5	5	2	-	-	b SG4	a _	a _	1.1	1.6	2.1	V
ΔVB2	Relative brightness control characteristics (at typ.)	Take the ratio of the above test values							-0.3	0	0.3	V					
Vвз	Brightness control characteristics (at min.)	T.P35 T.P30 T.P25	a -	a -	a _	5	5	1	-	-	b SG4	a _	a _	0.3	0.7	1.1	V
ΔVвз	Relative brightness control characteristics (at min.)			Т	ake the	e ratio	of the	e abo	ve tes	t valu	es	•		-0.3	0	0.3	V

3-CHANNEL VIDEO PREAMPLIFIER PROVIDED WITH OSD MIX AND RETRACE LINE BLK FOR HIGH-RESOLUTION

ELECTRICAL CHARACTERISTICS (cont.)

	Toot		Input		Ext	ernal	power	supp	ly(v)	Pi	ulse in	out		Limits	;	
Parameter	point	SW3 R-ch	SW8 G-ch	SW13 B-ch	V4	V17	V19	V32	V36	SW18	SW1 5,10,15	SW20	Min.	Тур.	Мах.	Unit
Frequency characteristics (f=50MHz at max.)	T.P35 T.P30 T.P25	b SG1	b SG1	b SG1	5	Vari- able	-	-	-	C _	а –	а –	-2	0	2.5	dB
Relative frequency characteristics (f=50MHz at max.)			Т	ake the	e ratio	of the	e abo	ve tes	t valu	es			-1	0	1	-
Frequency characteristics (f=180MHz at max.)	T.P35 T.P30 T.P25	b SG2	b SG2	b SG2	5	Vari- able	-	-	-	c _	a _	a _	-3	-2.3	3	dB
Relative frequency characteristics (f=180MHz at max.)			Т	ake the	e ratio	of the	e abo	ve tes	t valu	es	•		-1	0	1	-
Frequency characteristics (f=180MHz at typ.)	T.P35 T.P30 T.P25	b SG2	b SG2	b SG2	5	Vari- able	-	-	-	c _	a _	a _	-3	0	3	dB
Relative frequency characteristics (f=180MHz at typ.)			Т	ake the	e ratio	of the	e abo	ve tes	t valu	es			-1	0	1	-
Crosstalk1(f=50MHz)	T.P35 T.P30 T.P25	b SG1	a _	a _	5	5	-	-	-	c _	a _	a _	-	-30	-20	dB
Crosstalk1(f=180MHz)	T.P35 T.P30	b SG2	a _	a _	5	5	-	-	-	c _	a _	a _	-	-20	-15	dB
Crosstalk2(f=50MHz)	T.P35 T.P30	a _	b SG1	a _	5	5	-	-	-	c _	a _	a _	-	-30	-20	dB
Crosstalk2(f=180MHz)	T.P35 T.P30	a _	b SG2	a _	5	5	-	-	-	c _	a _	a _	-	-20	-15	dB
Crosstalk3(f=50MHz)	T.P35 T.P30 T.P25	a _	a _	b SG1	5	5	-	-	-	c _	a _	a _	-	-30	-20	dB
Crosstalk3(f=180MHz)	T.P35 T.P30	a _	a _	b SG2	5	5	-	-	-	c _	a _	a _	-	-20	-15	dB
Pulse characteristics 1	T.P35 T.P30	b SG3	b SG3	b SG3	5	Vari- able	Vari- able	-	-	b SG4	a _	a _	-	2	-	nsec
Pulse characteristics 2	T.P35 T.P30 T.P25	b SG3	b SG5	b SG5	5	Vari- able	Vari- able	-	-	b SG4	a _	a _	-	2	-	nsec
Clamping pulse threshold voltage	T.P35 T.P30 T.P25	b SG5	b SG5	b SG5	5	5	2	-	-	b SG4	a _	a _	1.0	1.5	2.5	VDC
Clamping pulse operation min. width	T.P35 T.P30 T.P25	b SG5	b SG5	b SG5	5	5	2	-	-	b SG4	a _	a _	0.2	0.5	-	μsec
Pedestal voltage temperature characteristics1	T.P35 T.P30 T.P25	b SG5	b SG5	b SG5	5	5	2	-	-	b SG4	a _	a _	-0.3	0	0.3	VDC
Pedestal voltage temperature characteristics2	T.P35 T.P30 T.P25	b SG5	b SG5	b SG5	5	5	2	-	-	b SG4	a _	a _	-0.3	0	0.3	VDC
OSD pulse characteristics 1	T.P35 T.P30 T.P25	a -	a -	a -	5	5	Vari- able	5	Vari- able	b SG4	SW1 is a, and others b. SG6	a -	-	3	6	nsec
OSD pulse characteristics 2	T.P35 T.P30 T.P25	a -	a -	a -	5	5	Vari- able	5	Vari- able	b SG4	SW1 is a, and others b. SG6	a -	-	3	6	nsec
Main OSD adjustment control characteristics (at max.)	T.P35 T.P30 T.P25	а _	a _	а _	5	5	2	5	4	b SG4	b SG6	a _	3.7	4.3	5.0	VP-P
Relative main OSD adjust- ment control characteristics (at max.)	Take the ratio of the above test values									0.8	1	1.2	-			
Main OSD adjustment control characteristics (at min.)	T.P35 T.P30 T.P25	a _	a _	a _	5	5	2	5	0	b SG4	b SG6	a _	-	0	0.5	VP-P
Relative main OSD adjust- ment control characteristics (at min.)									0.8	1	1.2	-				
OSD input threshold voltage	T.P35 T.P30 T.P25	a -	a -	a _	5	5	2	5	5	b SG4	SW1 is a, and others b. SG6	a _	1.7	2.5	3.5	VDC
BLK input threshold voltage	T.P35 T.P30 T.P25	b SG5	b SG5	b SG5	5	5	2	5	5	b SG4	SW1 is a, and others b. SG6	a -	1.7	2.5	3.5	VDC
	Frequency characteristics (f=50MHz at max.) Relative frequency characteristics (f=50MHz at max.) Frequency characteristics (f=180MHz at max.) Relative frequency characteristics (f=180MHz at max.) Frequency characteristics (f=180MHz at max.) Frequency characteristics (f=180MHz at typ.) Relative frequency characteristics (f=180MHz at typ.) Crosstalk1(f=50MHz) Crosstalk1(f=50MHz) Crosstalk2(f=50MHz) Crosstalk2(f=180MHz) Crosstalk3(f=180MHz) Crosstalk3(f=180MHz) Pulse characteristics 1 Pulse characteristics 2 Clamping pulse threshold voltage Clamping pulse operation min. width Pedestal voltage temperature characteristics1 Pedestal voltage temperature characteristics2 OSD pulse characteristics 1 OSD pulse characteristics 2 Main OSD adjustment control characteristics (at max.) Relative main OSD adjustment control characteristics (at min.) Relative main OSD adjustment control characteristics (at min.) Relative main OSD adjustment control characteristics (at min.)	Frequency characteristics (f=50MHz at max.) Relative frequency characteristics (f=50MHz at max.) Frequency characteristics (f=180MHz at typ.) Frequency characteristics (f=180MHz at typ.) Frequency characteristics (f=180MHz at typ.) Crosstalk1(f=50MHz) Crosstalk1(f=50MHz) Crosstalk2(f=50MHz) Crosstalk2(f=50MHz) Crosstalk2(f=180MHz) T.P35 T.P35 T.P36 T.P35 T.P35 T.P36 T.P35 T.P36 T.P35 T.P36 T.P35 T.P36 T.P35 T.P36 T.P37 T.P35 T.P36 T.P37 T.P37 T.P38 T.P38 T.P39	Parameter	Parameter	Parameter	Parameter	Parameter	Parameter	Parameter	Parameter	Parameter	Parameter	Parameter	Parameter Post Nova Swite Sw	Parameter Para	Parameter

3-CHANNEL VIDEO PREAMPLIFIER PROVIDED WITH OSD MIX AND RETRACE LINE BLK FOR HIGH-RESOLUTION

ELECTRICAL CHARACTERISTICS (cont.)

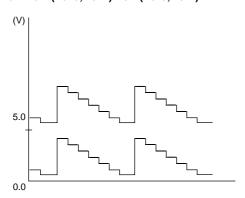
		Test	Input			External power supply(v)					Pulse input			Limits			
Symbol	Parameter	point	SW3 R-ch	SW8 G-ch	SW13 B-ch	V4	V17	V19	V32	V36	SW18	SW1 5,10,15	SW20	Min.	Тур.	Max.	Unit
SOaj1	SUB OSD adjustment control characteristics (at typ.)	T.P35 T.P30 T.P25	a -	а _	a -	5	5	2	2	5	b SG4	b SG6	a -	1.6	2.2	2.6	VP-P
SOaj2	SUB OSD adjustment control characteristics (at min.)	T.P35 T.P30 T.P25	a -	a _	a _	5	5	2	0	5	b SG4	b SG6	a _	-	0	0.5	VP-P
Нвьк	Retrace line BLK characteristics	T.P35 T.P30 T.P25	a _	а -	a _	5	5	2	0	0	a -	a -	b SG7	-	0.2	0.5	VDC
HVth	Retrace line BLK input threshold value	T.P35 T.P30 T.P25	a -	a _	a _	5	5	2	0	0	a _	a _	b SG7	0.5	1.5	2.5	VDC

ELECTRICAL CHARACTERISTICS TEST METHOD

Note: SW/NO of signal input pin and SW/NO of pulse input pin, which have already been described in the electrical characteristics table, are omitted, and SW/NO of external power supply will only be described as follows:

Sub-OSD adjustment voltages, V32, V27 and V22, which are always set to the identical value, are represented by V32 in the electrical characteristics table. In addition, sub-contrast voltages, V4, V9 and V14, which are also set to the identical value, are represented by V4 in the electrical characteristics table.

Icc circuit current


Conditions shall be as specified in the electrical characteristics table, and take measurements with ammeter A when SWA is turned to the b side.

Vomax output dynamic range

Follow the following procedure to set V19.

- 1. Input SG5 to pin ③ (pin ⑧ or pin ③), gradually reduce V19, and read the lower part voltage when the lower part of input waveform of T.P25 (T.P30 or T.P35) is distorted to let the reading be Volr (Volg or Volb).
- 2. Then, gradually raise V19, and read the upper part voltage when the upper part of output waveform of T.P25 (T.P30 or T.P35) is distorted to let the reading be VOHR (VOHG or VOHB).
- 3. Vomax is found by:

Vomax=Vohr(Vohg, Vohb)-Volr(Volg, Volb)

T.P25 output waveform (T.P30 and T.P35 are also the same)

Vimax maximum allowable input

Change V17 to 2.5V, gradually increase input signal amplitude from 700m VP-P, and read input signal amplitude when output signal starts to be distorted.

Gv and Δ Gv maximum gain and relative maximum gain

- 1. Input SG5 to pin ③ (pin ⑧ or pin ③), and read the output amplitude of T.P25 (T.P30 or T.P35) at this time to let the reading be VoR1 (Vog1 or VoB1).
- 2. Maximum gain Gv is found by:

3. Relative maximum gain ΔG is found by $\Delta G \text{V=Vor1/Vog1, Vog1/VoB1, VoB1/Vor1}$

through respective calculation.

VCR1 contrast control characteristics and

ΔVcR1 relative contrast control characteristics (at typ.)

- Follow the electrical characteristics table except changing V17 to 4V
- 2. Read the output amplitude of T.P25 (T.P30 or T.P35) at this time, and let the reading be Vor2 (Vog2 or VoB2).
- Contrast control characteristics VCR1 and relative contrast control characteristics ΔVCR1 is found by

$$VCR1=20LOG \qquad \frac{VOR2(VOG2,VOB2) \quad [VP-P]}{0.7 \quad [VP-P]}$$

ΔVCR1=VOR1/VOG1, VOG1/VOB1, VOB1/VOR1

through respective calculation.

VCR2 contrast control characteristics and

△VCR2 relative contrast control characteristics (at min.)

- Follow the electrical characteristics table except changing V17 to 1.0V.
- Read the output amplitude of T.P25 (T.P30 or T.P35) at this time to let the reading be Vor3 (Vog3 or Vob3). This value represents VCR2
- Relative contrast control characteristics ΔVcR2 is found by: VOR2 = VOR3/ VOG3, VOG3/ VOB3/ ,VOB3/VOR3

3-CHANNEL VIDEO PREAMPLIFIER PROVIDED WITH OSD MIX AND RETRACE LINE BLK FOR HIGH-RESOLUTION

VSCR1 sub-contrast control characteristics and

∆VSCR1 relative sub-contrast control characteristics (at typ.)

- Follow the electrical characteristics table except changing V4,V9 and V14 to 4.0V.
- 2. Read the output amplitude of T.P25 (T.P30 or T.P35) to let the reading be VoR4 (VOG4 or VOB4).
- Sub-contrast control characteristics VscR1 and relative subcontrast control characteristics ΔVscR1 are found by

ΔVSCR1=VOR4/VOG4, VOG4/VOB4, VOB4/VOR4

through respective calculation.

VSCR2 sub-contrast control characteristics and

∆VscR2 relative sub-contrast control characteristics (at min.)

- 1. Follow the electrical characteristics table except changing V4, V9 and V14 to 1.0V.
- Read the output amplitude of T.P25 (T.P30 or T.P35) at this time to let the reading be Vors (Vogs or Vobs). This value represents Vscr2
- Relative sub-contrast control characteristics ΔVscR2 is found by: ΔVscR2=Vors/Vog5, Vog5/Vog5, Vog5/Vog5

VSCR3 contrast and sub-contrast control characteristics and Δ VSCR3 relative contrast and sub-contrast control characteristics (at typ.)

- Follow the electrical characteristics table except changing V17 to 3.0V, and V4, V9 and V14 to 3.0V.
- Read the output amplitude of T.P25 (T.P30 or T.P35) at this time, and let the reading be VOR6 (VOG6 or VOB6). This value represents VSCR3.
- Relative sub-contrast control characteristics ΔVscR3 is found by: ΔVscR3 =VoR6/Vog6, Vog6/Vog6, Vog6/Vog6

V_{B1} brightness control characteristics and

∆V_{B1} relative brightness characteristics (at max.)

- 1. The conditions shall be as specified in the electrical characteristics table.
- Measure the output of T.P25 (T.P30 or T.P35) at this time with an ammeter, and let it be Vor7 (Vog7 or Vog7) to let it be Vg1, respectively.
- 3. For relative control characteristics, further, measure difference between channels from Vorz, Vogz or Vobz.

VB2 brightness control characteristics and

$\Delta \text{V}_{\text{B2}}$ relative brightness control characteristics (at typ.)

- 1. The conditions shall be as specified in the electrical characteristics table.
- Use an ammeter to measure the output of T.P25 (T.P30 or T.P35) at this time to let the value be VOR7 (VOG7 or VOB7). This value represents VB2.

3. For relative brightness control characteristics ΔVB2, further, calculate difference between channels from VoR7, VoG7 or VoB7.

$$\Delta VB2=VOR7'$$
 — $VOB7'$ = $VOB7'$ — $VOR7'$

VB3 brightness control characteristics and

∆VB3 relative brightness control characteristics (at min.):

- 1. The conditions shall be as specified in the electrical characteristics table.
- 2. Use an ammeter to measure the output of T.P25 (T.P30 or T.P35) at this time to let the value be VOR7" (VOG7" or VOB7"). This value represents VB3.
- For relative control characteristics ΔVB3, further, calculate difference between channels from VoR7", Vog7" or VoB7".

Fc1 and Δ Fc1 frequency characteristics 1 and relative frequency characteristics (f=50MHz at max.) and Fc1' and Δ Fc1' frequency characteristics 1 and relative frequency characteristics (f=180MHz at max.)

- The conditions shall be as specified in the electrical charactristics table.
- 2. Whilst SG1 and SG2 are used, input SGA first, apply voltage to the input pin (pin 3, pin 8 or pin 3) through about $2k\Omega$ of resistor so as to provide 2.5V on the lower side of input signal. In addition, apply voltage to the hold pin (pin 3, pin 8 or pin 3) to ensure that the output wave of T.P25 (T.P30 or T.P35) will not be jammed so as to allow the lower side of the sine wave, an output signal to be 2V. Adjust the main contrast voltage (17V) at this time to allow the output amplitude to be 4.0VP-P. Then, change the input signal to SG1 or SG2 to measure each output amplitude.
- 3. Now, when letting this test value be

output amplitude 4.0VP-P when SGA is input, output amplitude VOR 8 (VOG8 or VOB8)

when SG1 is input, and output amplitude Vore (Voge or Voge),

frequency characteristics Fc1 or Fc1' is calculated from:

4. For relative frequency bands $\Delta Fc1$ and $\Delta Fc1$, calculate difference in Fc1 and Fc1 for each channel.

3-CHANNEL VIDEO PREAMPLIFIER PROVIDED WITH OSD MIX AND RETRACE LINE BLK FOR HIGH-RESOLUTION

Fc2 and Δ Fc2 frequency characteristics 2 and relative frequency characteristics 2 (f=180MHz at typ.)

The same as for Fc1, Δ Fc1 and Δ Fc1 applies except adjusting the main contrast voltage (V17) and allowing the amplitude of output signal when SGA is input to be 1.0VP-P.

C.T.1 crosstalk 1 (f=50MHz) and C.T.1' crosstalk 1 (f=180MHz)

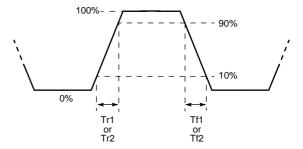
- 1. The conditions shall be as specified in the electrical characteristics. (Set the input pin and hold pin as in the case of Fc1, Δ Fc1, Fc1 and Δ Fc1)
- 2. Input SG1 (or SG2) to pin ⁽³⁾ (R-ch) only, measure the output waveform amplitude of T.P25 (T.P30 or T.P35) to be Vor, Vog or Vob.
- 3. Crosstalk C.T.1 (C.T.1')

C.T.2 crosstalk 2 (f=50MHz) and C.T.2' corsstalk 2 (f=180MHz)

- 1. Change the input pin to pin ® (G-ch), and read the output as in the case of C.T.1 or C.T.1'.
- 2. Crosstalk C.T.2 (C.T.2') is found by:

C.T.3 crosstalk 3(f=50MHz) and C.T.3' crosstalk 3(f=180MHz)

- 1. Change the input pin to pin ③ (B-ch), and read the output as in the case of C.T.1 or C.T.1'.
- 2. Crosstalk C.T.3 (C.T.3') is found by:


C.T.3=20log
$$\frac{\text{Vor or Vog [VP-P]}}{\text{Vob [VP-P]}}$$
 [dB]

Tr, and Tf, Pulse characteristics 1 and pulse characteristics 2

- The conditions shall be as specified in the electrical characteristics table. Adjust the main contrast voltage (V17) and brightness voltage (V19), and allow the output signal amplitude to be 4.0Vp-p, and the black level 2.0V.
- 2. Use an active probe to measure rise Tr1 and fall Tf1 at 10% to 90% of input pulse.
- Then, use an active probe to measure rise Tr2 and fall Tf2 at 10% to 90% of output pulse.

4. Pulse characteristics Tr and Tf:

Tr (nsec) =
$$\sqrt{(Tr2)^2 - (Tr1)^2}$$

Tf (nsec) = $\sqrt{(Tf2)^2 - (Tf1)^2}$

V14th clamping pulse threshold voltage

- The conditions shall be as specified in the electrical characteristic table.
- Gradually reduce SG4 level at this time, while monitoring the output signal (pedestal voltage: about 1.8V), and measure SG4 top level when the pedestal voltage of output signal is not stabilized and starts to fall.

W14 minimum clamping pulse operation width

Gradually reduce SG4 pulse width, and measure SG4 pulse width (1.5V from GND) when the pedestal voltage of output signal is not stabilized and starts to fall.

PDCH and PDCL, pedestal voltage temperature characteristics 1 and pedestal voltage temperature characteristics 2

- The conditions shall be as specified in the electrical characteristics table.
- Measure pedestal voltage at room temperature to let the value be PDC1.
- 3. Then, measure pedestal voltage at -20°C and 85°C to let the value be PDc2 or PDc3.
- 4. PDCH=PDC1-PDC2
 PDCL=PDC1-PDC3

OTr and OTf, OSD pulse characteristics 1 and OSD pulse characteristics 2

- The conditions shall be as specified in the electrical characteristics table. Adjust main OSD adjustment voltage (V36) and brightness voltage (V19) to allow output signal amplitude to become 3.0Vp-p, and black level 2.0.
- 2. Use an active probe to measure rise OTr1 and fall OTf1 at 10% to 90% of input pulse.
- 3. Use an active probe to measure rise OTtr2 and fall OTf2 at 10% to 90% of output pulse.
- 4. OSD pulse characteristics OTr and OTf are found by:

OTr (nsec) =
$$\sqrt{(OTr2)^2 - (OTr1)^2}$$

OTf (nsec) = $\sqrt{(OTf2)^2 - (OTf1)^2}$

3-CHANNEL VIDEO PREAMPLIFIER PROVIDED WITH OSD MIX AND RETRACE LINE BLK FOR HIGH-RESOLUTION

Oaj1 main OSD adjustment control characteristics (at max.) and

$\Delta \textsc{Oaj1}$ relative main OSD adjustment control characteristics (at max.)

- The conditions shall be as specified in the electrical characteristics table.
- Let output signal pedestal voltage of T.P25 (T.P30 or T.P35) be VLRA (VLGA or VLBA) and voltage in the OSD area be VHRA (VHGA or VHBA).
- 3. If letting Oaj1 be VORA (VOGA or VOBA),

Oaj1=Vora (Voga, Voba) = Vhra-Vlra

(VHGA-VLGA, VHBA-VLBA)

4. Relative OSD adjustment control characteristics $\Delta \textsc{Oaj1}\xspace$

ΔOaj1=Vora/Voga, Voga/Voba, Voba/Vora

Oaj2 main OSD adjustment control characteristics (at min.) and

Δ Oaj2 relative main OSD adjustment control characteristics (at min.)

Change V36 to 0V, and obtain Oaj2 or Δ Oaj2 as in the case of Oaj1 or Δ Oaj1.

OSDth OSD input threshold voltage

- 1. The conditions shall be as specified in the electrical characteristics table.
- Gradually reduce SG6 level at this time, while monitoring the output, and measure top SG6 level when output is stopped to let the value be OSDth.

V1th BLK input threshold voltage

- The conditions shall be as specified in the electrical characteristics table.
- 2. Verify at this time that no signal is output with a timing in which output is synchronized with SG6.

(OSD blanking period)

Gradually reduce SG6 level at this time, while monitoring the output, and measure top SG level when OSD blanking period expires to let the value be V1th.

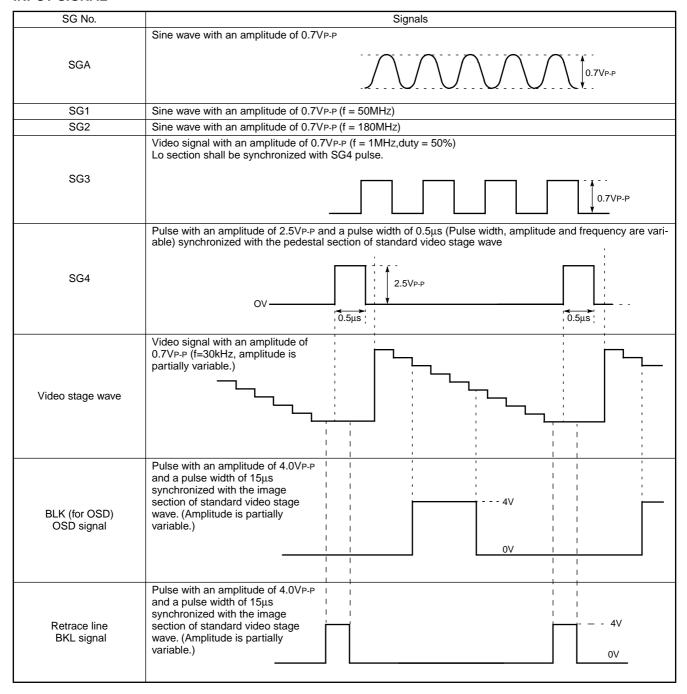
SOaj1 SUB OSD adjustment control characteristics (at typ.) and

SOaj2 SUB OSD adjustment control characteristics (at min.)

- 1. The conditions shall be as specified in the electrical characteristics table.
- Read output amplitude of T.P25 (T.P30 or T.P35) at this time, and let the reading be Vorc (Vosc or Vosc) to let it be Soaj1 or Soaj2.

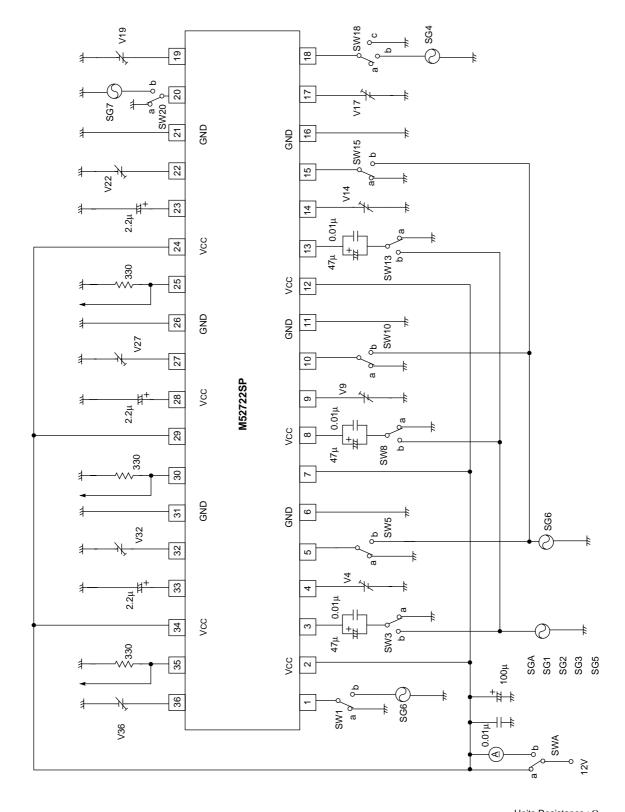
HBLK retrace line BLK characteristics

- The conditions shall be as specified in the electrical characteristics table.
- 2. Monitor output at this time, and read trace line blanking level to let the reading be HBLK.


HVth retrace line BLK input threshold voltage

- The conditions shall be as specified in the electrical characteristics table.
- 2. Verify that blanking is performed with a timing in which output is synchronized with SG7. Gradually reduce SG7 level, while

monitoring the output, and measure top SG7 level when blanking period expires to let the reading be HVth.

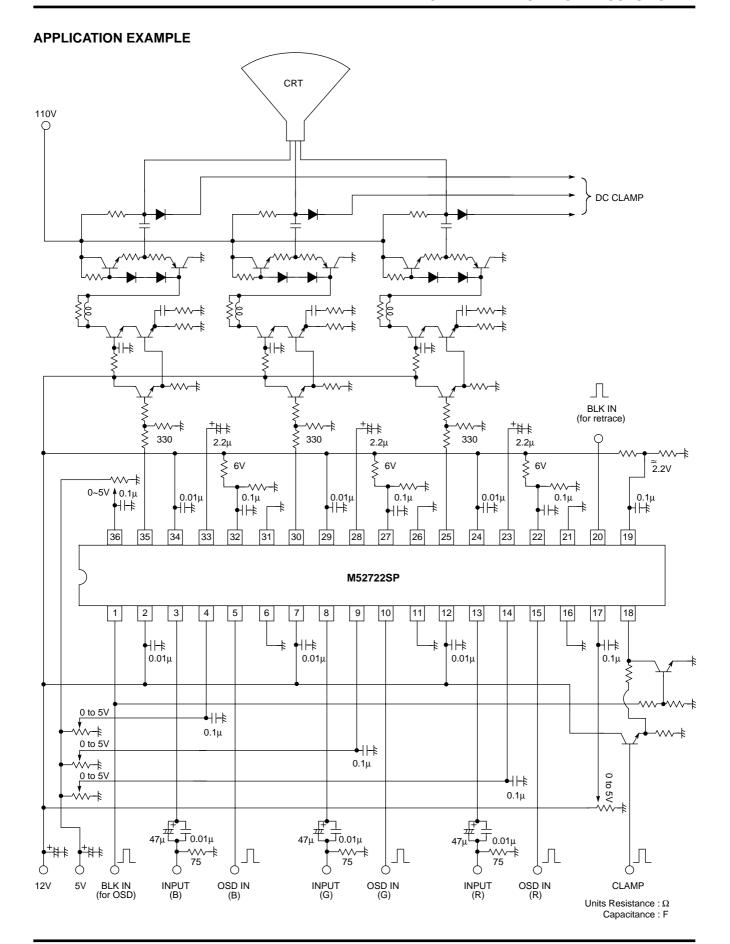

3-CHANNEL VIDEO PREAMPLIFIER PROVIDED WITH OSD MIX AND RETRACE LINE BLK FOR HIGH-RESOLUTION

INPUT SIGNAL

3-CHANNEL VIDEO PREAMPLIFIER PROVIDED WITH OSD MIX AND RETRACE LINE BLK FOR HIGH-RESOLUTION

TEST CIRCUIT

Units Resistance : Ω


Capacitance : F

3-CHANNEL VIDEO PREAMPLIFIER PROVIDED WITH OSD MIX AND RETRACE LINE BLK FOR HIGH-RESOLUTION

TYPICAL CHARACTERISTICS

3-CHANNEL VIDEO PREAMPLIFIER PROVIDED WITH OSD MIX AND RETRACE LINE BLK FOR HIGH-RESOLUTION

3-CHANNEL VIDEO PREAMPLIFIER PROVIDED WITH OSD MIX AND RETRACE LINE BLK FOR HIGH-RESOLUTION

DESCRIPTION OF PIN

Pin No.	Name	Peripheral circuit of pins	DC voltage	Description of function
•	BLK IN(for OSD)	B-ch G-ch J 2.5V GND	-	EInput pulse between 3.5V and 5V. 3.5V to 5V less than 1V Ground to GND when not in use.
2	Vcc (B)			Apply identical voltage to all 3 channels.
7	Vcc (G)		12	nois.
12	Vcc (R)			
3 8	INPUT (B) INPUT (G) INPUT (R)	$2k\Omega$ $2k\Omega$ $2k\Omega$ $2c$ $2c$ $2c$ $2c$ $2c$ $2c$ $2c$ $2c$	2.5	Clamped to about 2.5V by clamping pulse at pin 18. Input at a low impedance.
4 9 4	SUB CONTRAST (B) SUB CONTRAST (G) SUB CONTRAST (R)	7.5kΩ 1.5kΩ 23.5kΩ 2.5V GND	2.5	Use at less than 5V to ensure stable operation.
© @	OSD IN (B) OSD IN (G) OSD IN (R)	7 2.5V GND	-	 Input pulse between 3.5V and 5V. 1V or less Ground to GND when not in use.

3-CHANNEL VIDEO PREAMPLIFIER PROVIDED WITH OSD MIX AND RETRACE LINE BLK FOR HIGH-RESOLUTION

DESCRIPTION OF PIN (cont.)

Pin No.	Name	Peripheral circuit of pins	DC voltage	Description of function
6 31 11 29 16 21	GND (B) GND (G) GND (R)		GND	
179	MAIN CONTRAST	Vcc $11k\Omega$ $41k\Omega$ T $2.5V$ GND	2.5	Use at less than 5V to ensure stable operation.
(18)	CP IN		-	Input more than 2.5V of pulse. more than 2.5V less than 1V Ilnput at a low impedance.
(19)	MAIN BRIGHTNESS	Vcc \geq 20.3k Ω $>$ $>$ $>$ $>$ $>$ $>$ $>$ $>$ $>$ $>$	-	
89	BLK IN (for retrace)	$45k\Omega$ $\overline{)}$	-	Ilnput pulse between 2.5V and 5V. 2.5 to 5V less than 0.5V Ground to GND when not in use.

3-CHANNEL VIDEO PREAMPLIFIER PROVIDED WITH OSD MIX AND RETRACE LINE BLK FOR HIGH-RESOLUTION

DESCRIPTION OF PIN (cont.)

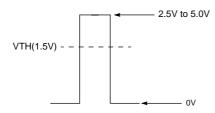
Pin No.	Name	Peripheral circuit of pins	DC voltage	Description of function
@ @ @	SUB OSD ADJUST (R) SUB OSD ADJUST (G) SUB OSD ADJUST (B)	Vcc $65k\Omega$ $50k\Omega$ $65k\Omega$ $55k\Omega$ $55k\Omega$ GND	When open 5.5V	Open or pull up to Vcc when not in use.
@ @ @	HOLD (R) HOLD (G) HOLD (B)	0.2mA 0.2 mA 0.2	Vari- able.	Capacitance is required between GNDs.
@ @ @	Vcc2 (R) Vcc2 (G) Vcc2 (B)	Pin (24) Pin (29) Pin (34)	12 Apply	A power supply dedicated to output emitter follower. Apply identical volt- age to all 3 channels.
(B) (B) (B)	OUTPUT (R) OUTPUT (G) OUTPUT (B)	$\begin{array}{c c} \hline \\ \hline $	Vari- able	Resistor is required on the GND side. Set arbitrarily to provide less than 15mA by drive capability required.
®	MAIN OSD ADJUST	$65k\Omega$ $50k\Omega$ $65k\Omega$ $65k\Omega$ $55k\Omega$ $65k\Omega$ $65k\Omega$ $65k\Omega$ $65k\Omega$	Apply 5.5V	Open or pull up to Vcc when not in use.

3-CHANNEL VIDEO PREAMPLIFIER PROVIDED WITH OSD MIX AND RETRACE LINE BLK FOR HIGH-RESOLUTION

M52722SP - INSTRUCTIONS FOR USE

1) Clamping pulse input

Input positive polarity pulse.

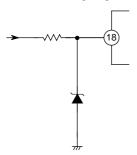

Clamping pulse threshold voltage VTH is calculated by the following equation, and voltages more than 2.2 V is subject toLIM:

VTH = 2.2 V- DiodeX1

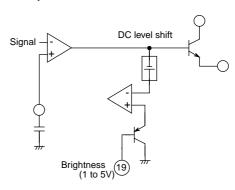
= 1.5 V

Recommended clamping pulse voltage is as given in the following

diagram:


In addition, pulse width is recommended as follows:

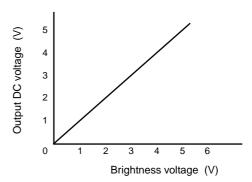
More than 1.0μ sec at 15kHz,


More than 0.5μ sec at 30kHz, and

More than 0.3µ sec at 64kHz.

Clamping pulse wiring generally involves long stretched lines in the set, is made from the high pressure side, and often connected indirectly to external pins, causing strong surge input to tend to come into. Under such circumstances, protective circuit as given in the following diagram is recommended:

2) Brightness operation



The above diagram represents its principle.

2-1) Brightness pins

Use within the range of 1V to 5V.

Control characteristics are as given in the following drawing:

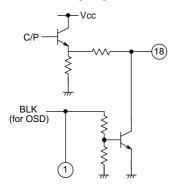
2-2) Sub-brightness

This IC has no sub-brightness function.

2-3) Capacitance value of holding capacitor

Value necessary as IC is more than 0.01É (when fH=15kHz). However, this depends upon hold period (time other than for clamping), and the longer the hold time is, the greater the value is necessary.

In terms of application, the smaller the capacitance value, the quicker the response, and the greater the capacitance value, the more stable the behavior.

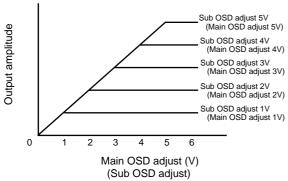

Accordingly, set freely depending upon signals and clamping pulse contents (especially pulse status in a vertically synchronized timing).

3) BLK (for OSD) and OSD input pins

- Input formula is on an open basis.
 (See page 2-1109.)Threshold voltage is 2.5V.
- Inputting OSD mix signal without inputting BLK pulse will cause abnormal operation. Input BLK pulse as well whenever inputting OSD Mix signal.
- Ensure that input pin is grounded when OSD Mix function is not used.

3-CHANNEL VIDEO PREAMPLIFIER PROVIDED WITH OSD MIX AND RETRACE LINE BLK FOR HIGH-RESOLUTION

 OSD display period overlapped with clamping pulse period will cause abnormal operation. As measures against this, external circuit as given in the following diagram is recommended:



4) Retrace line BLK input pins

- Input formula is open. (See page 2-1110.)
- Threshold voltage is 1.5V.
- Ensure that input pin is grounded when no retrace line BLK function is used.

5) Main, Sub OSD adjustment pins

- Use within the range of 0V-5V.
- · Control characteristics are as given in the following drawing:
- Open if main OSD adjustment or sub OSD adjustment is not used.
- If, in application, wiring on the substrate causes interference wave to get into these pins, affecting even IC input, consider addition of such as bus controller.
- Ensure that main, sub OSD adjustment pins are open or grounded when no OSD Mix function is used.

PRECAUTIONS FOR APPLICATION

- Wire output pins to output pulldown resistors at a shortest distance.
- Voltage in the IC output signal pedestal area is recommended for use at about 2V.