Quad D Flip-Flop with Common Clock and Reset

High-Performance Silicon-Gate CMOS

The MC54/74HC175 is identical in pinout to the LS175. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device consists of four D flip-flops with common Reset and Clock inputs, and separate D inputs. Reset (active-low) is asynchronous and occurs when a low level is applied to the Reset input. Information at a D input is transferred to the corresponding Q output on the next positive going edge of the Clock input.

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2 to 6 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity 166 FETs or 41.5 Equivalent Gates

LOGIC DIAGRAM CLOCK -- Q0 Q0 INVERTING Q1 6 - Q1 AND - Q2 **NONINVERTING** DATA · Q2 OUTPUTS **INPUTS** 15 RESET PIN 16 = V_{CC} PIN 8 = GND

ON Semiconductor®

http://onsemi.com

J SUFFIX CERAMIC PACKAGE CASE 620-10

N SUFFIX PLASTIC PACKAGE CASE 648-08

D SUFFIX SOIC PACKAGE CASE 751B-05

ORDERING INFORMATION

MC54HCXXXJ	Ceramic
MC74HCXXXN	Plastic
MC74HCXXXD	SOIC

PIN ASSIGNMENT

_			=
RESET [1 ●	16] V _{CC}
Q0 [2	15] Q3
<u>Q0</u> [3	14] Q 3
D0 [4	13] D3
D1 [5	12] D2
Q1 [6	11] Q2
Q1 [7	10] Q2
GND [8	9	СГОСК
•	· ·		-

FUNCTION TABLE

Inputs			Out	outs
Reset	Clock	D	Q	Q
L	Х	Χ	L	Н
Н	_	Н	Н	L
Н	_	L	L	Н
Н	L	Χ	No Cł	nange

1

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	- 0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	- 1.5 to V _{CC} + 1.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V_{CC} + 0.5	V
I _{in}	DC Input Current, per Pin	±[2 0	mA
I _{out}	DC Output Current, per Pin	±[2 5	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	±[5 0	mA
P _D	Power Dissipation in Still Air,Plastic or Ceramic DIP† SOIC Package†	750 500	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
T _L	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package) (Ceramic DIP)	260 300	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

*Maximum Ratings are those values beyond which damage to the device may occur.

Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — Plastic DIP: - 10 mW/°C from 65° to 125°C

Ceramic DIP: $-10 \text{ mW}/^{\circ}\text{C}$ from 100° to 125°C

RECOMMENDED OPERATING CONDITIONS

J	Ceramic DIP: - 10 mW/°C from 100° to 1 SOIC Package: - 7 mW/°C from 65° to 1 quency or heavy load considerations, see C ENDED OPERATING CONDITIONS	25°C	e Motor	ola High	-Speed	d CMOS Data Book (DL129
Symbol	Parameter		Min	Max	Unit	0/4/0
V _{CC}	DC Supply Voltage (Referenced to GND)		2.0	6.0	V	(C, V)
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referen	ced to GND)	0	V _{CC}	V	
T _A	Operating Temperature, All Package Types		- 55	+ 125	°C	.0
t _r , t _f	Input Rise and Fall Time (Figure 1)	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	0 0 0	1000 500 400	ns	

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Gu	aranteed Li	mit	
Symbol	Parameter	Test Conditions	V _{CC} V	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	V_{out} = 0.1 V or V_{CC} – 0.1 V $ I_{out} \le 20 \mu A$	2.0 4.5 6.0	1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4 2	V
V _{IL}	Maximum Low-Level Input Voltage	V_{out} = 0.1 V or V_{CC} – 0.1 V $ I_{out} \le 20 \mu A$	2.0 4.5 6.0	0.3 0.9 1.2	0.3 0.9 1.2	0.3 0.9 1.2	V
V _{OH}	Minimum High-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$V_{in} = V_{IH} \text{ or } V_{IL} \qquad \begin{vmatrix} I_{out} \end{vmatrix} \le 4.0 \text{ mA} \\ \begin{vmatrix} I_{out} \end{vmatrix} \le 5.2 \text{ mA} \end{vmatrix}$	4.5 6.0	3.98 5.48	3.84 5.34	3.70 5.20	
V _{OL}	Maximum Low-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$V_{in} = V_{IH} \text{ or } V_{IL} \qquad \begin{vmatrix} I_{out} \end{vmatrix} \le 4.0 \text{ mA} \\ \begin{vmatrix} I_{out} \end{vmatrix} \le 5.2 \text{ mA} \end{vmatrix}$	4.5 6.0	0.26 0.26	0.33 0.33	0.40 0.40	
I _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	±[0.1	±]1.0	±[1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$	6.0	8	80	160	μΑ

NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

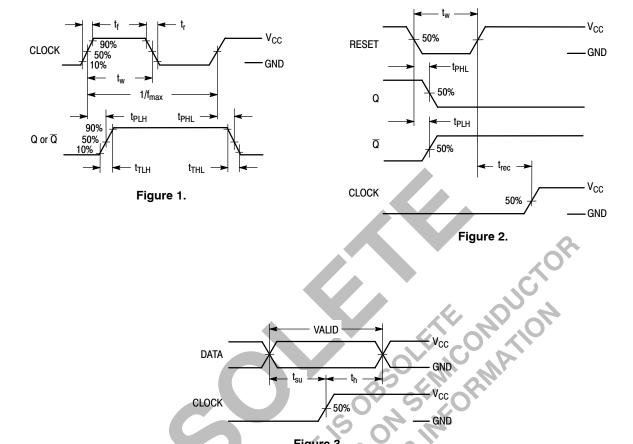
AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

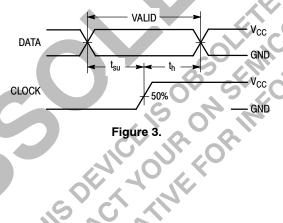
				Guaranteed Limit			
Symbol	Parameter	v _{cc}	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit	
f _{max}	Maximum Clock Frequency (50% Duty Cycle) (Figures 1 and 4)	2.0 4.5 6.0	6.0 30 35	4.8 24 28	4.0 20 24	MHz	
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Clock to Q or Q (Figures 1 and 4)	2.0 4.5 6.0	150 30 26	190 38 33	225 45 38	ns	
t _{PHL}	Maximum Propagation Delay, Reset to Q or Q (Figures 2 and 4)	2.0 4.5 6.0	125 25 21	155 31 26	190 38 32	ns	
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 4)	2.0 4.5 6.0	75 15 13	95 19 16	110 22 19	ns	
C _{in}	Maximum Input Capacitance	_	10	10	10	pF	

NOTES:

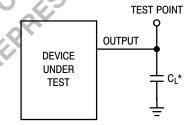
- 1. For propagation delays with loads other than 50 pF, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).
- 2. Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

		Typical @ 25°C, V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance (Per Flip-Flop)*	35 pF

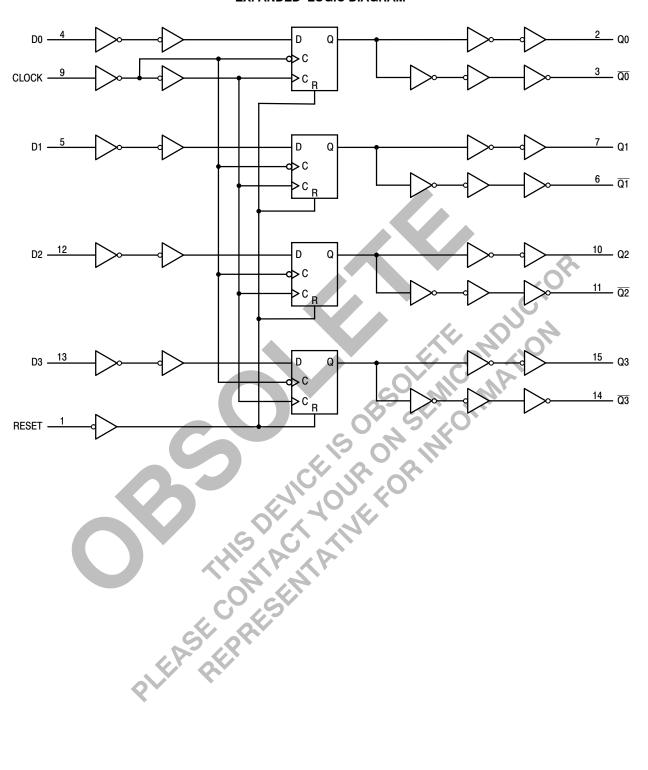

^{*}Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$. For load considerations, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).


TIMING REQUIREMENTS (Input $t_r = t_f = 6 \text{ ns}$)

			Guaranteed Limit			
Symbol	Parameter	V _{CC}	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
t _{su}	Minimum Setup Time, Data to Clock (Figure 3)	2.0 4.5 6.0	100 20 17	125 25 21	150 30 26	ns
t _h	Minimum Hold Time, Clock to Data (Figure 3)	2.0 4.5 6.0	3 3 3	3 3 3	3 3 3	ns
t _{rec}	Minimum Recovery Time, Reset Inactive to Clock (Figure 2)	2.0 4.5 6.0	100 20 17	125 25 21	150 30 26	ns
t _w	Minimum Pulse Width, Clock (Figure 1)	2.0 4.5 6.0	80 16 14	100 20 17	120 24 20	ns
t _w	Minimum Pulse Width, Reset (Figure 2)	2.0 4.5 6.0	80 16 14	100 20 17	120 24 20	ns
t _r , t _f	Maximum Input Rise and Fall Times (Figure 1)	2.0 4.5 6.0	1000 500 400	1000 500 400	1000 500 400	ns


NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

SWITCHING WAVEFORMS


TEST CIRCUIT

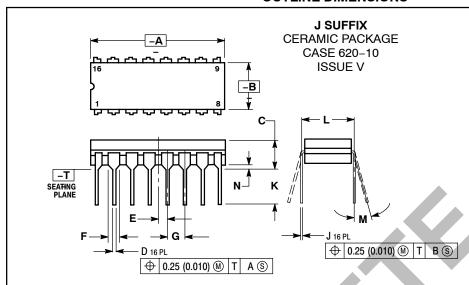
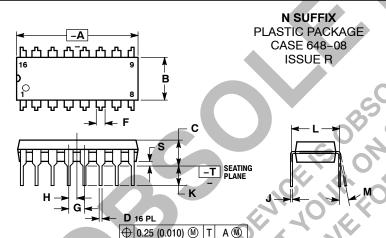

*Includes all probe and jig capacitance

Figure 4.

EXPANDED LOGIC DIAGRAM

OUTLINE DIMENSIONS


NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEAD WHEN
- FORMED PARALLEL.

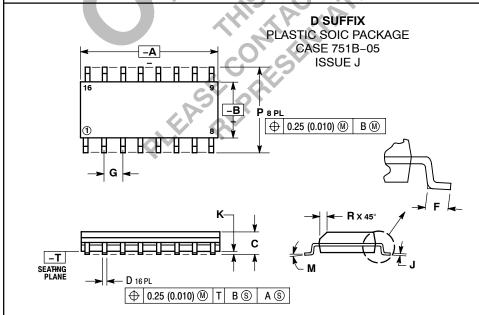
 DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.750	0.785	19.05	19.93
В	0.240	0.295	6.10	7.49
С	_	0.200		5.08
D	0.015	0.020	0.39	0.50
E	0.050	BSC	1.27	BSC
F	0.055	0.065	1.40	1.65
G	0.100 BSC		2.54	BSC
J	0.008	0.015	0.21	0.38
K	0.125	0.170	3.18	4.31
L	0.300	0.300 BSC		BSC
М	0°	15°	0°	15°

N 0.020 0.040 0.51 1.01

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.


 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.

 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.740	0.770	18.80	19.55
В	0.250	0.270	6.35	6.85
С	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.070	1.02	1.77
G	0.	100 BSC	2	.54 BSC
Н	0.	050 BSC	1	.27 BSC
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	0°	10°	0°	10°
S	0.020	0.040	0.51	1.01

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.2	1.27 BSC		BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative