

- Function, Pinout, and Drive Compatible With FCT, F Logic, and AM29520
- Reduced V_{OH} (Typically = 3.3 V) Version of Equivalent FCT Functions
- Edge-Rate Control Circuitry for Significantly Improved Noise Characteristics
- I_{off} Supports Partial-Power-Down Mode Operation
- Matched Rise and Fall Times
- Fully Compatible With TTL Input and Output Logic Levels
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
- Single- and Dual-Pipeline Operation Modes
- Multiplexed Data Inputs and Outputs
- CY29FCT520T
 - 64-mA Output Sink Current
 - 32-mA Output Source Current
- CY29FCT520ATDMB, CY29FCT520BTDMB
 - 32-mA Output Sink Current
 - 12-mA Output Source Current
- 3-State Outputs

D, P, OR SO PACKAGE
(TOP VIEW)

description

The CY29FCT520T is a multilevel 8-bit-wide pipeline register. The device consists of four registers, A1, A2, B1, and B2, which are configured by the instruction inputs I_0 , I_1 as a single four-level pipeline or as two two-level pipelines. The contents of any register can be read at the multiplexed output at any time by using the multiplex-selection controls (S_0 and S_1).

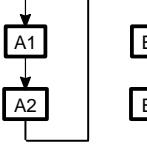
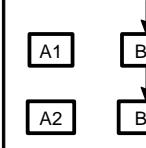
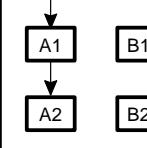
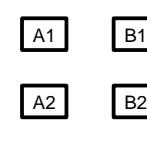
The pipeline registers are positive-edge triggered, and data is shifted by the rising edge of the clock input. Instruction $I = 0$ selects the four-level pipeline mode. Instruction $I = 1$ selects the two-level B pipeline, while $I = 2$ selects the two-level A pipeline. $I = 3$ is the hold instruction; no shifting is performed by the clock in this mode.

In the two-level operation mode, data is shifted from level 1 to level 2 and new data is loaded into level 1.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.





POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 2001, Texas Instruments Incorporated
On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

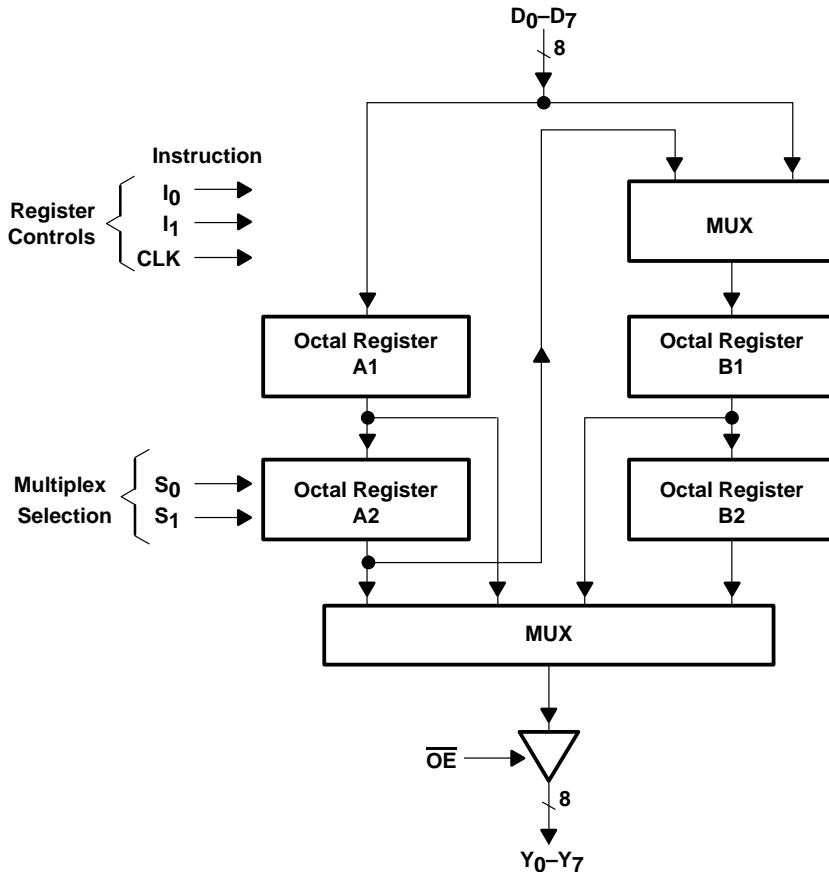
CY29FCT520T
MULTILEVEL PIPELINE REGISTER
WITH 3-STATE OUTPUTS

SCCS011C – MAY 1994 – REVISED NOVEMBER 2001

PIPELINE INSTRUCTION TABLE

$I = 0$	$I = 1$	$I = 2$	$I = 3$
$I_1 = 0$	$I_0 = 0$	$I_1 = 0$	$I_0 = 1$
$I_1 = 1$	$I_0 = 0$	$I_1 = 1$	$I_0 = 1$
Single four-level		Dual two-level	
		Hold	

ORDERING INFORMATION


TA	PACKAGE [†]		SPEED (ns)	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C	SOIC – SO	Tube	6.0	CY29FCT520CTSOC	29FCT520C
		Tape and reel	6.0	CY29FCT520CTSOCT	
	SOIC – SO	Tube	7.5	CY29FCT520BTSOC	29FCT520B
		Tape and reel	7.5	CY29FCT520BTSOCT	
	DIP – P	Tube	14.0	CY29FCT520ATPC	CY29FCT520ATPC
	SOIC – SO	Tube	14.0	CY29FCT520ATSOC	29FCT520A
		Tape and reel	14.0	CY29FCT520ATSOCT	
–55°C to 125°C	CDIP – D	Tube	8.0	5962-9220504MLA (CY29FCT520BTDMB)	
		Tube	16.0	5962-9220502MLA (CY29FCT520ATDMB)	

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE

INPUTS		OUTPUT
S_1	S_0	
1	1	A1
1	0	A2
0	1	B1
0	0	B2

logic diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range to ground potential	–0.5 V to 7 V
DC input voltage range	–0.5 V to 7 V
DC output voltage range	–0.5 V to 7 V
DC output current (maximum sink current/pin)	120 mA
Package thermal impedance, θ_{JA} (see Note 1): P package (see Note 2): SO package	67°C/W 46°C/W
Ambient temperature range with power applied, T_A	–65°C to 135°C
Storage temperature range, T_{STG}	–65°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The package thermal impedance is calculated in accordance with JESD 51-3.
2. The package thermal impedance is calculated in accordance with JESD 51-7.

CY29FCT520T
MULTILEVEL PIPELINE REGISTER
WITH 3-STATE OUTPUTS

SCCS011C – MAY 1994 – REVISED NOVEMBER 2001

recommended operating conditions (see Note 3)

		CY29FCT520ATDMB CY29FCT520BTDMB			CY29FCT520T			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V _{CC}	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High-level input voltage	2			2			V
V _{IL}	Low-level input voltage		0.8			0.8		V
I _{OH}	High-level output current		-12			-32		mA
I _{OL}	Low-level output current		32			64		mA
T _A	Operating free-air temperature	-55	125	-40	-40	85	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	CY29FCT520ATDMB CY29FCT520BTDMB			CY29FCT520T			UNIT
		MIN	TYPT†	MAX	MIN	TYPT†	MAX	
V _{IK}	V _{CC} = 4.5 V, I _{IN} = -18 mA		-0.7	-1.2				V
	V _{CC} = 4.75 V, I _{IN} = -18 mA					-0.7	-1.2	
V _{OH}	V _{CC} = 4.5 V, I _{OH} = -12 mA	2.4	3.3					V
	V _{CC} = 4.75 V V _{CC} = 5.25 V	I _{OH} = -15 mA			2.4	3.3		
		I _{OH} = -32 mA			2			
V _{OL}	V _{CC} = 4.5 V, I _{OL} = 32 mA	0.3	0.55					V
	V _{CC} = 4.75 V, I _{OL} = 64 mA				0.3	0.55		
V _{hys}	All inputs		0.2			0.2		V
I _I	V _{CC} = 5.5 V, V _{IN} = V _{CC}		5					µA
	V _{CC} = 5.25 V, V _{IN} = V _{CC}					5		
I _{IH}	V _{CC} = 5.5 V, V _{IN} = 2.7 V		±1					µA
	V _{CC} = 5.25 V, V _{IN} = 2.7 V					±1		
I _{IL}	V _{CC} = 5.5 V, V _{IN} = 0.5 V		±1					µA
	V _{CC} = 5.25 V, V _{IN} = 0.5 V					±1		
I _{off}	V _{CC} = 0 V, V _{OUT} = 4.5 V		±1			±1		µA
I _{OS} ‡	V _{CC} = 5.5 V, V _{OUT} = 0 V	-60	-120	-225				mA
	V _{CC} = 5.25 V, V _{OUT} = 0 V				-60	-120	-225	
I _{OZH}	V _{CC} = 5.5 V, V _{IN} = 2.7 V		10					µA
	V _{CC} = 5.25 V, V _{IN} = 2.7 V					10		
I _{OZL}	V _{CC} = 5.5 V, V _{IN} = 0.5 V		-10					µA
	V _{CC} = 5.25 V, V _{IN} = 0.5 V					-10		
I _{CC}	V _{CC} = 5.5 V, V _{IN} ≤ 0.2 V, V _{IN} ≥ V _{CC} - 0.2 V	0.1	0.2					mA
	V _{CC} = 5.25 V, V _{IN} ≤ 0.2 V, V _{IN} ≥ V _{CC} - 0.2 V				0.1	0.2		
ΔI _{CC}	V _{CC} = 5.5 V, V _{IN} = 3.4 V\$, f ₁ = 0, Outputs open	0.5	2					mA
	V _{CC} = 5.25 V, V _{IN} = 3.4 V\$, f ₁ = 0, Outputs open				0.5	2		

† Typical values are at V_{CC} = 5 V, T_A = 25°C.

‡ Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample-and-hold techniques are preferable to minimize internal chip heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output can raise the chip temperature well above normal and cause invalid readings in other parametric tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

\$ Per TTL-driven input (V_{IN} = 3.4 V); all other inputs at V_{CC} or GND

CY29FCT520T
MULTILEVEL PIPELINE REGISTER
WITH 3-STATE OUTPUTS

SCCS011C – MAY 1994 – REVISED NOVEMBER 2001

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued)

PARAMETER	TEST CONDITIONS	CY29FCT520ATDMB CY29FCT520BTDMB			CY29FCT520T			UNIT	
		MIN	TYP†	MAX	MIN	TYP†	MAX		
I _{CCD} ¶	V _{CC} = 5.5 V, Outputs open, One bit switching at 50% duty cycle, \overline{OE} = GND, V _{IN} \leq 0.2 V or V _{IN} \geq V _{CC} – 0.2 V				0.06	0.12			
	V _{CC} = 5.25 V, Outputs open, One bit switching at 50% duty cycle, \overline{OE} = GND, V _{IN} \leq 0.2 V or V _{IN} \geq V _{CC} – 0.2 V							mA/ MHz	
I _C ‡	V _{CC} = 5.5 V, Outputs open, f ₀ = 10 MHz, \overline{OE} = GND	One bit switching at f ₁ = 5 MHz at 50% duty cycle	V _{IN} \leq 0.2 V or V _{IN} \geq V _{CC} – 0.2 V	0.7	1.4			mA	
			V _{IN} = 3.4 V or GND	1.2	3.4				
	V _{CC} = 5.25 V, Outputs open, f ₀ = 10 MHz, \overline{OE} = GND	Eight bits switching at f ₁ = 5 MHz at 50% duty cycle	V _{IN} \leq 0.2 V or V _{IN} \geq V _{CC} – 0.2 V	2.8	5.6				
			V _{IN} = 3.4 V or GND	5.1	14.3				
	V _{CC} = 5.25 V, Outputs open, f ₀ = 10 MHz, \overline{OE} = GND	One bit switching at f ₁ = 5 MHz at 50% duty cycle	V _{IN} \leq 0.2 V or V _{IN} \geq V _{CC} – 0.2 V				0.7	1.4	
			V _{IN} = 3.4 V or GND				1.2	3.4	
		Eight bits switching at f ₁ = 5 MHz at 50% duty cycle	V _{IN} \leq 0.2 V or V _{IN} \geq V _{CC} – 0.2 V				2.8	5.6	
			V _{IN} = 3.4 V or GND				5.1	14.3	
C _i				5	10			pF	
C _o				9	12			pF	

† Typical values are at V_{CC} = 5 V, T_A = 25°C.

¶ This parameter is derived for use in total power-supply calculations.

$I_C = I_{CC} + \Delta I_{CC} \times D_H \times N_T + I_{CCD} (f_0/2 + f_1 \times N_1)$

Where:

I_C = Total supply current

I_{CC} = Power-supply current with CMOS input levels

ΔI_{CC} = Power-supply current for a TTL high input (V_{IN} = 3.4 V)

D_H = Duty cycle for TTL inputs high

N_T = Number of TTL inputs at D_H

I_{CCD} = Dynamic current caused by an input transition pair (HLH or LHL)

f₀ = Clock frequency for registered devices, otherwise zero

f₁ = Input signal frequency

N₁ = Number of inputs changing at f₁

All currents are in milliamperes and all frequencies are in megahertz.

|| Values for these conditions are examples of the I_{CC} formula.

CY29FCT520T
MULTILEVEL PIPELINE REGISTER
WITH 3-STATE OUTPUTS

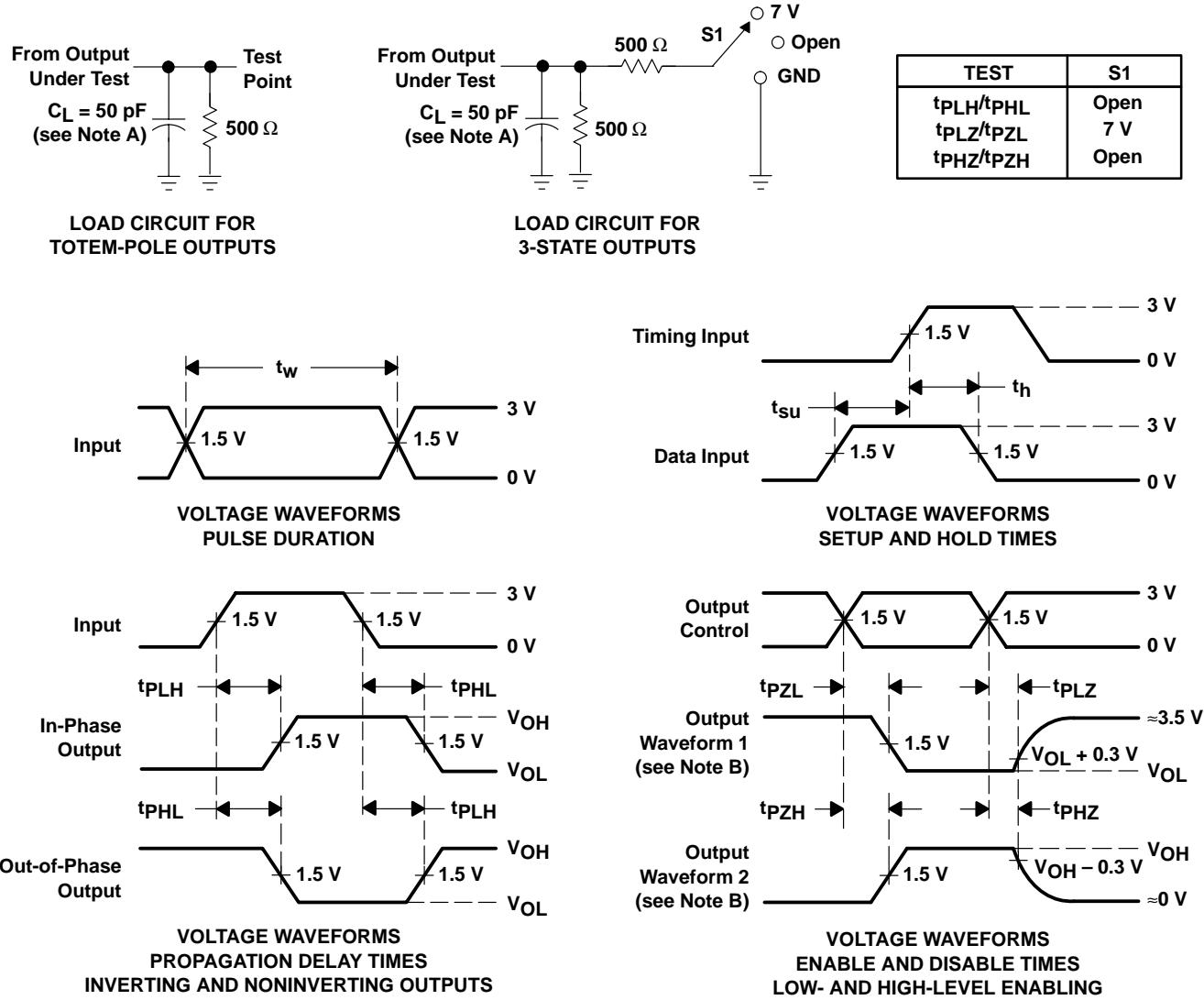
SCCS011C – MAY 1994 – REVISED NOVEMBER 2001

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			CY29FCT520ATDMB		CY29FCT520BTDMB		UNIT
			MIN	MAX	MIN	MAX	
t_W	Pulse duration, CLK high or low			8	6		ns
t_{SU}	Setup time, before CLK↑		Data	6	2.8		ns
	I		6	4.5			
t_H	Hold time, after CLK↑		Data	2	2		ns
	I		2	2			

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			CY29FCT520AT		CY29FCT520BT		CY29FCT520CT		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
t_W	Pulse duration, CLK high or low			7	5.5		5.5		ns
t_{SU}	Setup time, before CLK↑		Data	5	2.5		2.5		ns
	I		5	4		4			
t_H	Hold time, after CLK↑		Data	2	2		2		ns
	I		2	2		2			


switching characteristics over operating free-air temperature range (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	CY29FCT520ATDMB		CY29FCT520BTDMB		UNIT
			MIN	MAX	MIN	MAX	
t_{PLH}	CLK	Y	2	16	2	8	ns
t_{PHL}			2	16	2	8	
t_{PLH}	S ₀ or S ₁	Y	2	15	2	8	ns
t_{PHL}			2	15	2	8	
t_{PHZ}	\overline{OE}	Y	1.5	13	1.5	7.5	ns
t_{PLZ}			1.5	13	1.5	7.5	
t_{PZH}	\overline{OE}	Y	1.5	16	1.5	8	ns
t_{PZL}			1.5	16	1.5	8	

switching characteristics over operating free-air temperature range (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	CY29FCT520AT		CY29FCT520BT		CY29FCT520CT		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
t_{PLH}	CLK	Y	2	14	2	7.5	2	6	ns
t_{PHL}			2	14	2	7.5	2	6	
t_{PLH}	S ₀ or S ₁	Y	2	13	2	7.5	2	6	ns
t_{PHL}			2	13	2	7.5	2	6	
t_{PHZ}	\overline{OE}	Y	1.5	12	1.5	7	1.5	6	ns
t_{PLZ}			1.5	12	1.5	7	1.5	6	
t_{PZH}	\overline{OE}	Y	1.5	15	1.5	7.5	1.5	6	ns
t_{PZL}			1.5	15	1.5	7.5	1.5	6	

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.
 B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265