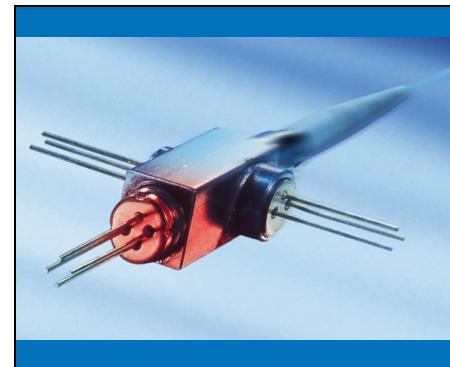


High Power Triport-BIDI®

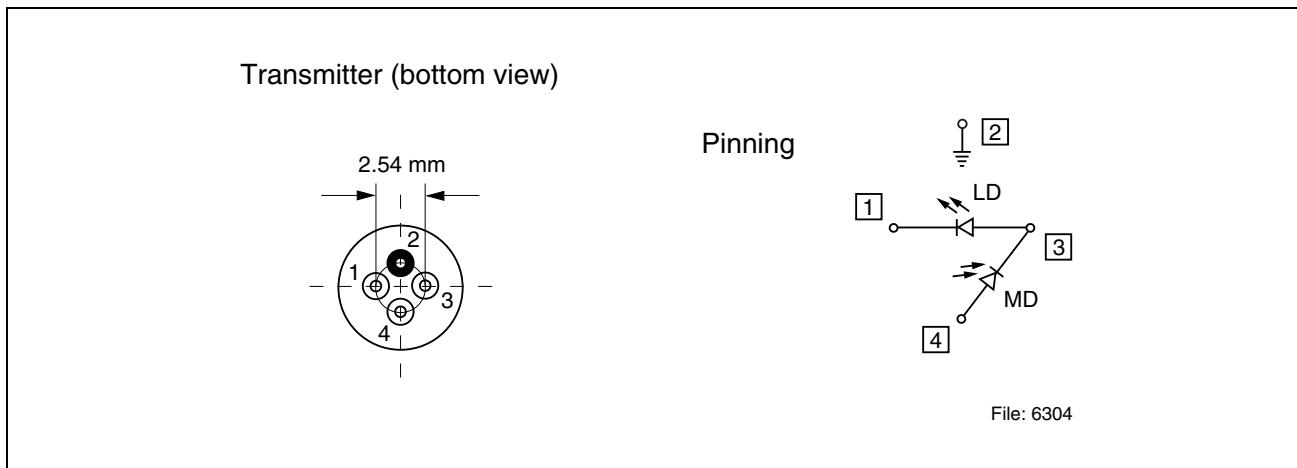
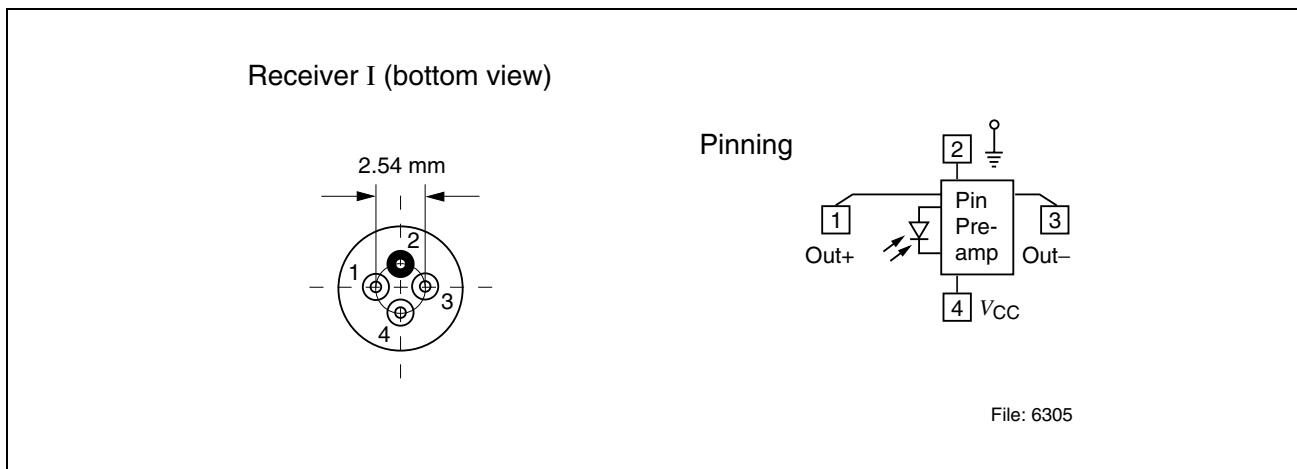
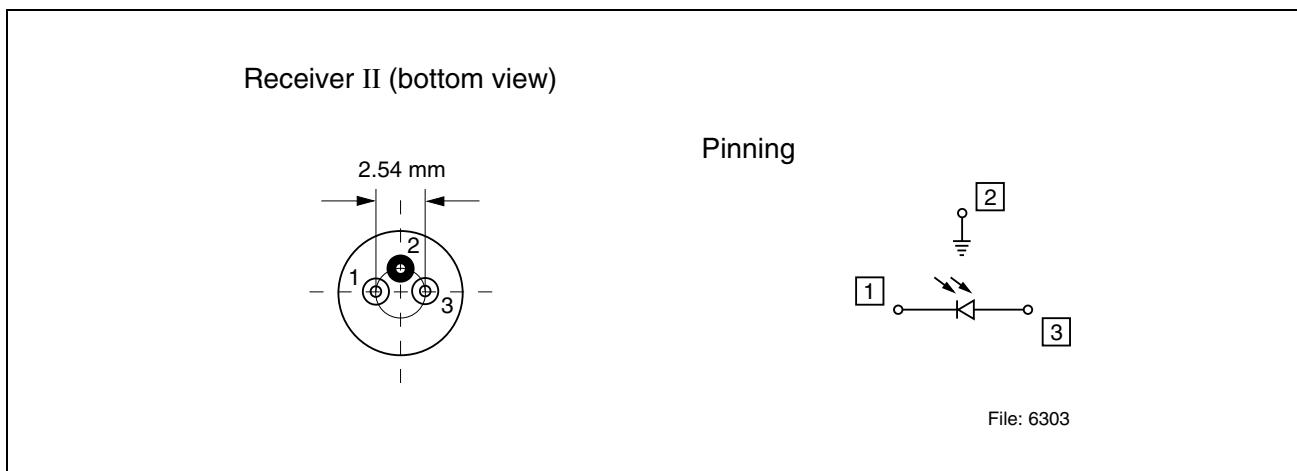

Optical Triplexer Component

**1310 nm Tx / 1490 nm Digital Rx with 622 Mbit/s, 3.3 V TIA /
1555 nm Analog Video Rx**

V23875-T3261-C110

Preliminary Data

The V23875-T3261-C110 is an optical triplexer component designed for full-duplex digital communication over a single fiber with an additional analog video receiver. The single fiber concept saves overall system costs by eliminating one fiber, allowing for doubling of capacity without installing new fibers, and simplifying fiber management.




Features

- Integrated WDM filters for Tx/Rx₁/Rx₂ operation at 1310/1490/1555 nm
- 1310 nm FP laser diode transmitter suitable for data rates up to 1.25 Gbit/s
- 1490 nm PIN diode digital receiver with integrated 622 Mbit/s, 3.3 V TIA
- 1555 nm PIN diode analog video receiver
- –40°C to +85°C operating temperature range
- Single-mode fiber pigtail with different connector options
- Class 3B laser product
- Hermetically sealed Tx and Rx sub-components for high reliability

Applications

- Access Networks, e.g. media converters for Fiber-In-The-Loop (FITL), Point-to-Point (P2P), and Passive Optical Networks (PON)

BIDI® is a registered trademark of Infineon Technologies.
Symbolic picture only – the actual pin layout may be different.

Pin Configuration
Pin Configuration

Figure 1 Transmitter

Figure 2 Receiver I

Figure 3 Receiver II

Technical Data

Technical Data

Absolute Maximum Ratings

Parameter	Symbol	Limit Values		Unit
		min.	max.	

Module

Operating temperature range at case	T_C	-40	85	°C
Storage temperature range	T_{stg}	-40	85	°C
Soldering temperature ($t_{max} = 10$ s, 2 mm distance from bottom edge of case)	T_S		260	°C

Laser Diode

Direct forward current	$I_{F\ max}$		120	mA
Reverse voltage	V_R		2	V

Monitor Diode

Reverse voltage	V_R		10	V
Forward current	I_F		2	mA

Receiver Diode

Reverse voltage	V_R		10	V
Forward current	I_F		2	mA
Optical power into the optical port	P_{port}		3	mW

Technical Data

The electro-optical characteristics described in the following tables are only valid for use within the specified temperature range from -40°C up to 85°C unless otherwise specified.

Transmitter Electro-Optical Characteristics

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Optical output power, assuming 50% duty cycle	P_{\max}	0		dBm
Maximum forward current	I_{\max}		120	mA
Emission wavelength center of range $P_F = 1 \text{ mW}$	λ_{trans}	1260	1360	nm
Spectral width	$\Delta\lambda$		5	nm
Rise time (10% - 90%)	t_r		500	ps
Fall time (10% - 90%)	t_f		500	ps
Threshold current	I_{th}	5	45	mA
Radiant power at I_{th}	P_{th}		50	μW
Slope efficiency (0.1 to 1 mW)	η	35	150	mW/A
Forward voltage $P_F = 1 \text{ mW}$	V_F		1.5	V
Differential series resistance	R_S		8	Ω

Monitor Diode Electro-Optical Characteristics

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Dark current $P_{\text{opt}} = 0 \text{ mW}, UR = -5 \text{ V}$	I_R		500	nA
Photocurrent $P_{\text{opt}} = 1 \text{ mW}, UR = -5 \text{ V}$	I_P	100	1500	μA
Capacitance $V_R = 5 \text{ V}, f = 1 \text{ MHz}$	C_5		15	pF
Tracking error $V_R = 5 \text{ V}$	TE	-1.5	1.5	dB

Technical Data

Receiver I Characteristics with Preamp

Parameter	Symbol	Limit Values			Unit
		min.	typ.	max.	

DC-Characteristics

Supply voltage	V_{CC}	3	3.3	3.6	V
Supply current	I_{CC}		26		mA

AC-Characteristics

Optical sensitivity (BER $\leq 10^{-10}$, PN23, ER ≥ 10 dB) $\lambda = 1480 \dots 1500$ nm	S		-30		dBm
Linear bandwidth (-3 dB)	BW		550		MHz
Optical overload (average)	P_{max}		1		dBm
Transimpedance (differential)	R_T		70		k Ω
Output resistance	R_{out}	48	60	72	Ω

Receiver II Diode Electro-Optical Characteristics

Parameter	Symbol	Limit Values			Unit
		min.	typ.	max.	
Spectral responsivity $V_R = -5$ V, $P_{opt} = 1$ μ W $\lambda = 1550 \dots 1560$ nm	S	0.7			A/W
Dark current $V_R = -5$ V, $P_{opt} = 0$ mW	I_D			50	nA
Total capacitance $V_R = -5$ V, $f = 1$ MHz, $P_{opt} = 0$ mW	C			1	pF
Rise and fall time	$t_r; t_f$			500	ps
Linearity opt. carrier $P_{cf1} = -3$ dBm and $P_{cf2} = -3$ dBm; modulated with $f_1 = 400$ MHz; $f_2 = 450$ MHz with modulation index of min. 0.6	IM			-70	dBc

Technical Data

Module Electro-Optical Characteristics

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Internal optical crosstalk at Rx ₁ $P_{\text{opt}} = 100 \mu\text{W}$	CRT _{I-0}		-47	dB
Internal optical crosstalk at Rx ₂ $P_{\text{opt}} = 100 \mu\text{W}$	CRT _{II-0}		-47	
Optical isolation at Rx ₁ against $P_{\text{opt}} = 100 \mu\text{W}$, $\lambda = 1550\ldots1560 \text{ nm}$	ISO _{I-II}		-30	
Optical isolation at Rx ₂ against $P_{\text{opt}} = 100 \mu\text{W}$, $\lambda = 1480\ldots1500 \text{ nm}$	ISO _{II-I}		-30	
Optical isolation at Rx ₁ against $P_{\text{opt}} = 100 \mu\text{W}$, $\lambda = 1260\ldots1360 \text{ nm}$	ISO _{I-λ}		-30	
Optical isolation at Rx ₂ against $P_{\text{opt}} = 100 \mu\text{W}$, $\lambda = 1260\ldots1360 \text{ nm}$	ISO _{II-λ}		-30	
Return loss $P_{\text{opt}} = 100 \mu\text{W}$, $\lambda = 1480\ldots1500 \text{ nm}$	RL _I		-20	
Return loss $P_{\text{opt}} = 100 \mu\text{W}$, $\lambda = 1550\ldots1560 \text{ nm}$	RL _{II}		-20	

Other specifications on request.

Fiber Data
Fiber Data

The mechanical fiber characteristics are described in the following table.

Fiber Characteristics

Parameter	Limit Values			Unit
	min.	typ.	max.	
Mode field diameter	8	9	10	µm
Cladding diameter	123	125	127	µm
Mode field/cladding concentricity error			1	µm
Cladding non-circularity			2	%
Mode field non-circularity			6	%
Jacket diameter	0.8		1	mm
Bending radius	30			mm
Tensile strength fiber case	5			N
Length	900		1100	mm

Quality / Reliability / Package

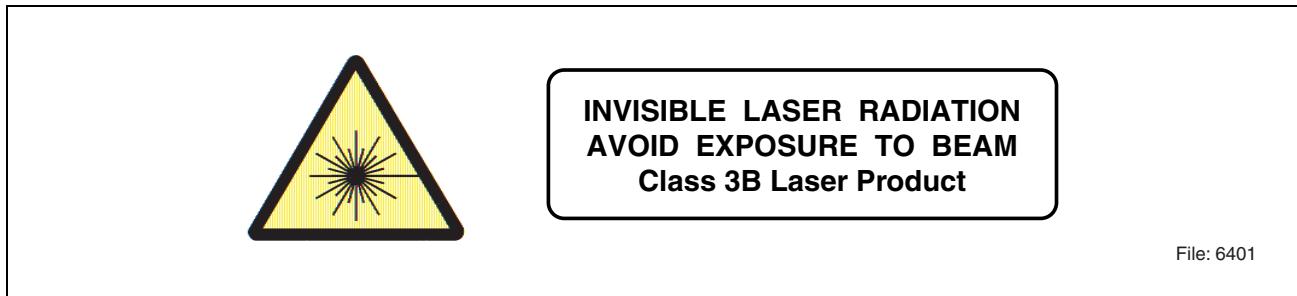
The product fulfills the generic requirements according to Telcordia GR-468-CORE.

Labeling

Infineon Triport BIDI®

V23875-T3261-C110

Serial no.


Date code

Documentation

$I_{F, 25^\circ\text{C}}$, $I_{F, 85^\circ\text{C}}$, $I_{\text{th}, 25^\circ\text{C}}$, $I_{\text{th}, 85^\circ\text{C}}$, $\eta_{25^\circ\text{C}}$, $\eta_{85^\circ\text{C}}$.

Eye Safety
Eye Safety

Ensure to avoid exposure of human eyes to high power laser diode emitted laser beams. Especially do not look directly into the laser diode or the collimated laser beam when the diode is activated.

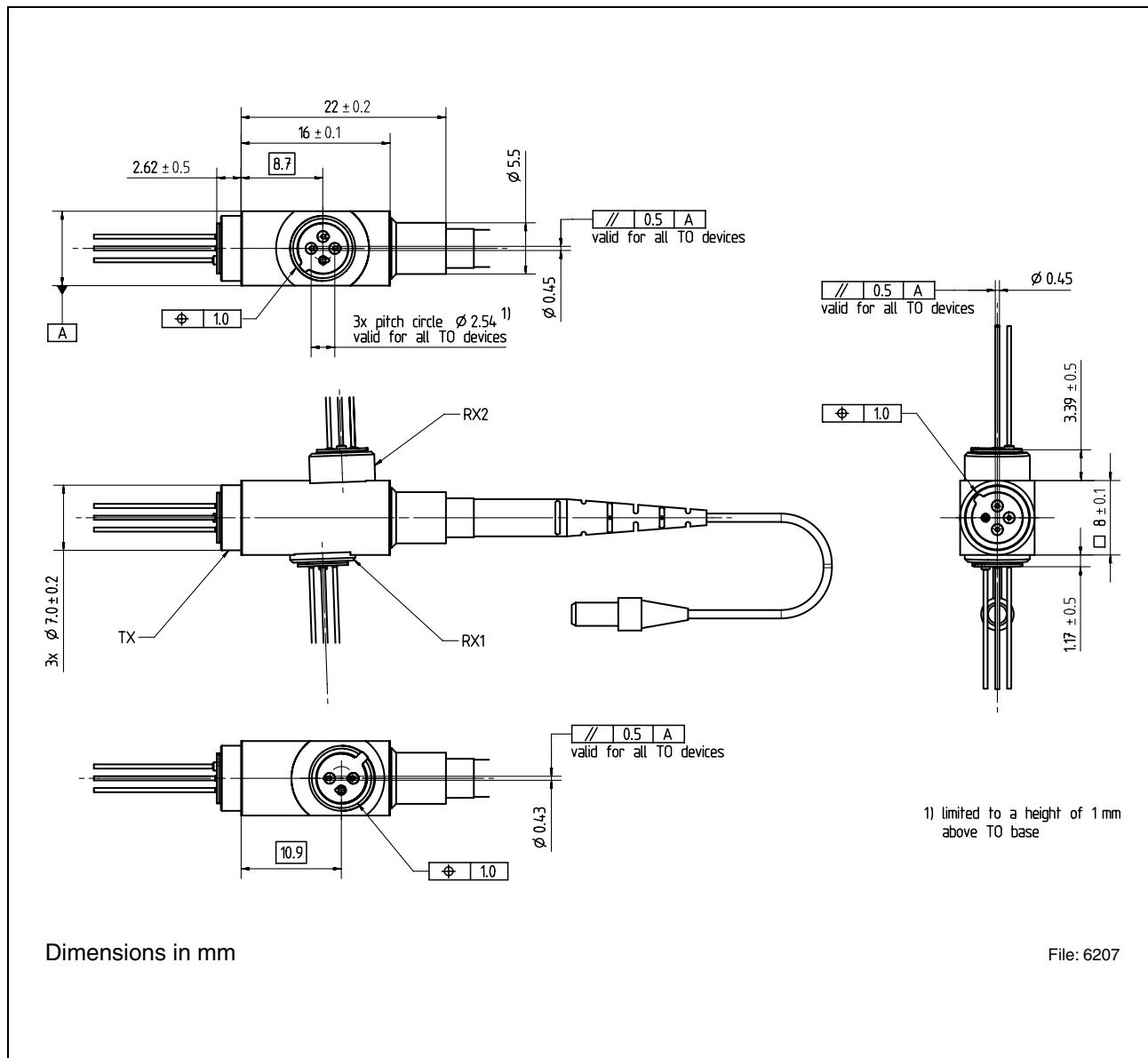

Class 3B Laser Product According to IEC 60825-1

Figure 4 Required Labels
Class IIIb Laser Product According to FDA Regulations Complies with 21 CFR 1040.10 and 1040.11

Figure 5 Required Label
Laser Data

Wavelength (25°C)	1260...1360 nm
Maximum total output power	< 50 mW
Beam divergence (1/e ²)	10°

Package Outlines

Package Outlines

Figure 6

Connector Option

Model	Type
V23875-T3261-C110	SM SC/APC 8°

Revision History: **2003-03-04****DS0****Previous Version:**

Page	Subjects (major changes since last revision)

For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at <http://www.infineon.com>.

Edition 2003-03-04

**Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81541 München, Germany**

**© Infineon Technologies AG 2003.
All Rights Reserved.**

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life-support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.