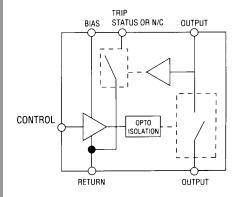
Part Number*	Relay Description
RA00HQ	25 A AC Solid State Relay
RA58HQ	25 A AC Solid State Relay with Thermal Protection and Thermal TRIP Status

* The Y suffix denotes parameters tested to MIL-R-28750 specifications. The W suffix denotes parameters tested to Teledyne specifications.

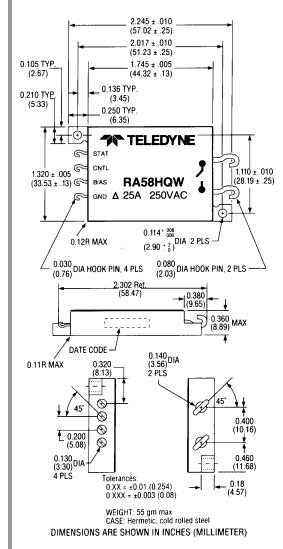
ELECTRICAL SPECIFICATIONS (-55°C TO +110°C)

	NPUT (CONTROL) SPECIFIC			
2 Terminal Configu	ration (See Figure 1)	Min	Max	Units
Input Voltage (See	Note 2)	3.8	32	Vdc
Input Current	(V _{INPUT} = 5 Vdc)		15	mA
	(V _{INPUT} = 32 Vdc)		16	
Turn-On Input Volta	age	3.8		Vdc
Turn-Off Input Volta	age		1.5	Vdc
Reverse Polarity			-32	Vdc
II	NPUT (CONTROL) SPECIFIC	ATION		
3 Terminal Configu	ration (See Figure 1)	Min	Max	Units
Bias Voltage (See	Note 2)	3.8	32	Vdc
Bias Current (V _{INF}	_{PUT} = 32 Vdc)		16	mA
Control Voltage Ra	inge	0	18	Vdc
Control Current at	5 Vdc		250	μAdc
Turn-On Control Vo	oltage		0.3	Vdc
Turn-Off Control Voltage		3.2		Vdc
(OUTPUT (LOAD) SPECIFICA	TIONS		
		Min	Max	Units
Load Voltage		20	250	Vac
Frequency Range		40	440	Hz
Continuous Load Current (See Figure 3)	RA Series without heat sink	0.2	5	Α
	RA Series with heat sink	0.2	25	
Output Voltage Dro	pp		1.5	Vrms
Surge Current, at	25°C		100	Arms

FEATURES/BENEFITS


- Available with thermal protection and thermal TRIP status-Provides self-protection from thermal runaway conditions and indicates protection state for system
- BIT.
 Optical Isolation-Isolates control elements from load transients with reduced EMI.
- Fully Floating Output-Eliminates ground potential loops and allows the output to sink or source current.
- Buffered Control-Relay can be controlled directly from TTL or CMOS logic circuits.
- Integral Snubber Circuit-Enhances dV/dt capability while minimizing EMI.

DESCRIPTION


The RA series of solid state relays (SSRs) is designed for use in AC power switching applications where safety and reliability are primary concerns. These SSRs are rated for load voltages up to 250 Vrms from 40 to 440 Hz and are ideal for resistive and reactive loads with power factors as low as 0.2. Inverse parallel SCRs are configured for zero voltage turn on and can handle current surges up to 100 A. Optical isolation to 1500 Vrms between the control (input) and load (output) allows the load to be safely controlled by logic circuitry. The RA series is available with thermal protection and thermal TRIP status. In case of a thermal runaway condition, the SSR will shut down the output switch and latch off until the input is reset and the junction temperature returns to a safe level. When the output does latch off, the TRIP status line will yield a logic level output indicating the protection state of the SSR. This feature provides the user with failure mode indication while enhancing the system diagnostic capability. These SSRs are packaged in low profile hermetically sealed cases.

©1996 TELEDYNE RELAYS

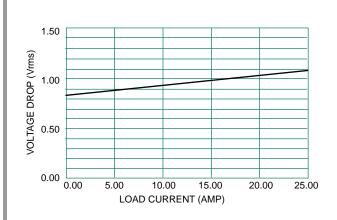
BLOCK DIAGRAM

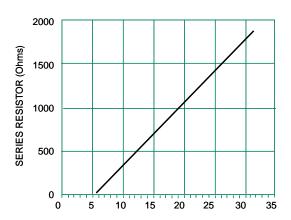
MECHANICAL SPECIFICATIONS

OUTPUT (LOAD) SPECIFICATIONS

	Min	Max	Units
Leakage Current at 250 Vac, 400 Hz		10	mArms
Turn-On Time		1/2	cycle
Turn-Off Time		1	cycle
Zero Voltage Turn-On		±15	V pk
Load Power Factor	0.2		
dV/dt	100		V/µs
Transient Voltage, (t < 5s) (See Note 4)		±500	V pk
Thermal Trip Temperature (Case) (RA58HQ Only)	120	150	°C
Dielectric Strength (60 Hz)	1500		Vac
Insulation Resistance (@ 500 Vdc)	10 ⁹		Ohm
Input to Output Capacitance		20	pF
Junction Temperature at Rated Current		125	°C
Thermal Resistance Junction to Case		0.7	°C/W
Thermal Resistance Junction to Ambient		16	°C/W

STATUS OUTPUT TRUTH TABLE


Status Output State	Control Input	Output (Load) State	
Off (High)	Low	On	
On (Low)	Low	Tripped	
Off (High)	High	Off	
On (Low)	High I	Non-Applicable Condition	


STATUS OUTPUT SPECIFICATIONS

	Min	Max	Units
Status Supply Voltage	3.8	32	Vdc
Status Leakage Current @ 32 Vdc		10	μAdc
Status Sink Current (V _{SO} ≤ 0.4 Vdc)		10	mAdc

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE

ENVIRONMENTAL SPECIFICATIONS VSTATUS Temperature Operating -55°C to +110°C Range -55°C to +125°C I_{S0} Storage V_{SO} o IBIAS OUTPUT LOAD Vibration 30 g, 10 to 2000 Hz STATUS OUTPUT VBIAS O <u>آ</u>-اِ **Constant Acceleration** 5000 g RA58HQ CONTROL LOAD SUPPLY Shock 100 g, 6 ms pulse OUTPUT RETURN LOAD 18 BIAS (INPUT) CURRENT (mA) (A) 3 TERMINAL INPUT WITH STATUS (See Note 5) LOAD $V_{BIAS} = 5.0 \text{ V}$ O BIAS CONTROL RA00HQ RA58HQ LOAD RFTURN LOAD 0-O.C.TTL 0 (B) 2 TERMINAL INPUT (OPEN COLLECTOR TTL DRIVE) 0 10 15 20 25 **V**STATUS BIAS (INPUT) VOLTAGE (Vdc) INPUT CURRENT VS VOLTAGE FIGURE 2 (See Note 2) RSTATUS I_{S0} V_{SO} o I_{IN} LOAD V_{IN} o OUTPUT BIAS 25 R_S ₹ ₹ CONTROL LOAD CURRENT (Arms) 1 ct 00 RA58HQ ₹ RETURN OUTPUT 1 ₹ LOAD 11 (C) 2 TERMINAL INPUT (DIRECT DRIVE) WITH STATUS ->> S_1 5 -7 ₹ BIAS .<u>2</u> 0 RA00HQ RA58HQ -55 115 CONTROL CASE TEMPERATURE (°C) **RA SERIES WITH HEAT SINK** (A) RETURN OUTPUT LOAD 9.0 ~ ? 8.0 7 (D) 2 TERMINAL INPUT (DIRECT DRIVE) V_{BIAS} C OUTPUT BIAS **ICONTROL** RA00H0 LOAD SUPPLY RA58HQ V_{CONTROL} • CONTROL RETURN OUTPUT LOAD 1.0 .2 口 吐 -55 15 25 35 45 55 65 75 85 95 105 115 125 (E) 3 TERMINAL INPUT WITHOUT STATUS AMBIENT TEMPERATURE (°C) **RA SERIES WITHOUT HEATSINK** (B) WIRING CONFIGURATIONS FIGURE 1 (See Notes 1 & 2) THERMAL DERATING CURVES FIGURE 3 12/96 ©1996 TELEDYNE RELAYS

TYPICAL OUTPUT VOLTAGE DROP VS LOAD CURRENT AT 25°C AMBIENT (With 2° C/W Heatsink) FIGURE 4

SERIES LIMIT BIAS RESISTOR VS BIAS VOLTAGE FIGURE 5 (See Note 2)

NOTES:

- 1. Control input is compatible with CMOS or open collector TTL (with pull up resistor).
- 2. For bias voltages above 6 Vdc, a series resistor is recommended. Use a standard resistor value equal to or less than the value found from Figure 5.
- 3. Unless otherwise noted, the input voltage for functional tests shall be 5 Vdc.
- 4. Transient suppression must be used to limit the voltage to < 500 Vpeak when switching inductive loads. Load voltage must be applied before turning ON an inductive load.
- 5. Control input implies presence of bias voltage.