

LM432 Dual Op Amp with On-Chip Fixed 2.5V Reference

Check for Samples: LM432

FEATURES

- Dual Op Amp Circuitry
- (Typical for V_S= 5V)
- Input Offset Voltage 0.6mV
- Input Offset Current 1nA
- Input Bias Current 3nA
- Common-Mode Input Voltage Range 0V to V_S-1V
- Power Supply Current 150µA
- Reference Circuitry
- Reference Voltage 2.5V
- Reference Voltage Deviation (-40°C to 85°C) 4mV
- Sink Current Capability 0.2mA to 10mA

APPLICATIONS

- Low Cost Charging Circuitry
- Power Supplies and Adapters

DESCRIPTION

The LM432 integrates two operational amplifiers and one 2.5V reference. The reference is based on the LMV431 adjustable shunt regulator with the output voltage adjusted to a fixed 2.5V. The Op Amps are similar to the LM358 with a common-mode input range that includes ground. Integrating the reference and Op Amps creates a solution for low cost charging applications.

Connection Diagram

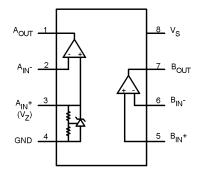


Figure 1. 8-Pin SOIC (Top View) See Package Number D

Application Circuit

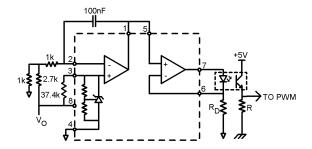


Figure 2. Optocoupler Driver Circuit for Power Supply Isolation

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)(2)(3)

Suppy Voltage (V _S)	20V
Storage Temperature	−65°C to 150°C
Junction Temperature (T _J)	150°C
ESD Human Body Model	2kV
Input Voltage Range	-0.3V to 20V

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.
- All voltages are measured with respect to GND = $0V_{DC}$, unless otherwise specified.
- If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

Operating Ratings⁽¹⁾⁽²⁾

Temperature Range	-40°C to 85°C
Supply Voltage ⁽³⁾	2.5V to 16V
Thermal Resistance(θ_{JA})	162°C/W

- (1) Operating Rating indicate conditions for which the device is functional. These rating do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- All voltages are measured with respect to GND = 0V_{DC}, unless otherwise specified.
- Minimum value of operating voltage is for Amplifier B only.

Electrical Characteristics

The following specifications apply for both amplifiers at $V_S = 5V$, $V_{CM} = 2.5V$, $V_O = 2.5V$, $R_L = \infty$, and $T_J = 25^{\circ}C$, unless otherwise noted.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
OP Amp C	ircuitry					
Vos	Input Offset Voltage	Amplifier B only	-4	0.6	4	mV
los	Input Offset Current	Amplifier B only		1	50	nA
I_{B}	Input Bias Current	Amplifier B only		3	150	nA
V_{CM}	Common-Mode Input Voltage Range	Amplifier B only, CMRR > 50dB	0		V _S -1	V
I _S	Power Supply Current	Total for both amplifiers		150	500	μΑ
A _V	Voltage Gain	$V_S = 16V$, $1V < V_O < 11V$, $R_L = 10k\Omega$ connected to $V_S/2$	65	100		dB
V _{OL}	Output Voltage Low			2	50	mV
V_{OH}	Output Voltage High		V _S – 1.5	V _S – 1.3		V
I _{SOURCE}	Output Current Source		20	30		mA
I _{SINK}	Output Current Sink		5	11		mA
Reference	Circuitry For Op Amp A (The following spe	ecifications apply for $I_Z = 200\mu A$ and	l T _J = 25°C, ι	inless otherw	ise noted.)	
VZ	Reference Voltage at IN ⁺ Terminal		2.450	2.5	2.550	V
V _{ZDEV}	Reference Voltage Deviation at IN ⁺ Terminal Over Temperature (3) (4)	-40°C ≤ T _J ≤ 85°C		4	65	mV
I _{Z (MIN)}	Minimum Cathode Current for Regulation at IN ⁺ (V _Z) Terminal			150	200	μΑ
r _z	Dynamic Output Impedance (5)	200μA < I _Z < 1mA, Freq = 0Hz		0.2		Ω

- Ensured to Average Outgoing Quality Level (AOQL).
- Typicals represent the most likely parametic norm.
- Reference voltage deviation, V_{ZDEV} , is defined as the maximum variation of the reference input voltage over the full temperature range. Typical Temperature drift $\Delta V/\Delta T = 12.8 ppm/^{\circ}C$
- The Dynamic Output Impendance, r_z , is defined as $r_z = \Delta V_z/\Delta I_z$.

Submit Documentation Feedback

Copyright © 2000–2013, Texas Instruments Incorporated

REVISION HISTORY

Cł	hanges from Revision C (March 2013) to Revision D	Pag	je
•	Changed layout of National Data Sheet to TI format		2

PACKAGE OPTION ADDENDUM

18-Oct-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM432MA/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	SN CU SN	Level-1-260C-UNLIM	-40 to 85	LM432 MA	Samples
LM432MAX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	SN CU SN	Level-1-260C-UNLIM	-40 to 85	LM432 MA	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

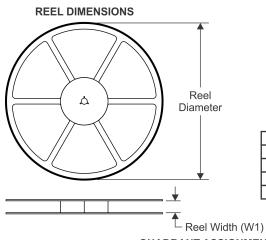
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

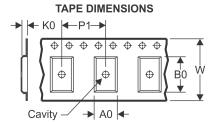
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM


18-Oct-2013

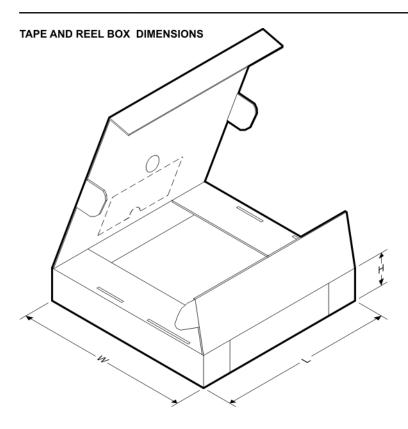

n no event shall TI's liability aris	ing out of such information exceed the total	purchase price of the TI part(s) at	t issue in this document sold by	TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 23-Sep-2013


TAPE AND REEL INFORMATION

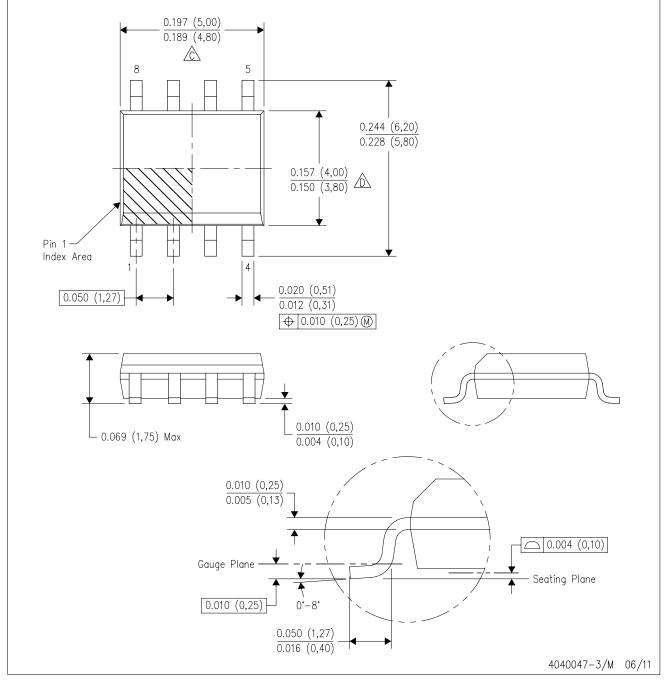
Γ	Α0	Dimension designed to accommodate the component width
		Dimension designed to accommodate the component length
	K0	Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
Г	P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM432MAX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1

www.ti.com 23-Sep-2013



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM432MAX/NOPB	SOIC	D	8	2500	367.0	367.0	35.0

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>