SWITCHES GAAS

SPDT DC to 4.6 GHz

FREQ. (GHz)	ABSORPTIVE	REFLECTIVE	А	В.) ncy band C ₁	C₂ . Typ. Max.	freq A	OMPF (dBm) Juency B Typ.			UT ISOLA (dB) quency ba B Typ. Min.	nd C	CASE STYLE	CONNECT-ON	PRICE \$ Qty. (1-9)
DC-4.6 DC-4.6		•	0.9 1.1	1.0 1.3	1.3 1.8	2.0 2.8 1.5 2.6	10 10	17	27 27	60 50 60 45	50 40 50 40	40 28 30 25	XX112 XX112	eh eh	36.95 58.95

A = DC to 200MHz

B = 200MHz to 1000MHz

C = 1000MHz to 4600MHz

C₁= 1000MHz to 3000MHz

 $C_2 = 3000MHz \text{ to } 4600MHz$

additional specifications

additional specifi	cation	3								
Model Series	KSW	KSWA	MSW	MSWA	MSWT					
Control Voltage	-8/0 for compression spec, -8 to -5/0 for all other specs									
Control Current, mA	trol Current, mA 2.5 typ. at -8V 0.2 max to -8V, 0.02 max at 0 to -0.2V									
			DC-1GHz	1-2GHz	DC1GHz	.15GHz	.5-1GHz	1-2GHz		
VSWR (:1)	1.3 typ.		1.2 typ.	1.4 typ.	1.2	1.25	1.4	1.4		
				1.45	1.65	1.8	1.9	1.7		
Rise/ Fall time (10% - 90%), ns	2 typ.		2 typ.	3 typ.	2 typ.					
Switching time, 50% of Control t	0									
90% RF (Turn-on), ns			4 typ.	5.5 typ.	4 typ.					
10% RF (Turn-off), ns			4 typ.	3 typ.	4 typ.					
**Video Leakage, mVp-p	30 typ.		15 typ.	8 typ.	15 typ.					
0/-5V Control										
Temperature, °C operating	-55 to 10	00		-40 to 85	•					
storage -55 to 150 -55 to 100										
MTBF, hrs @100°C case	7X10 ⁶	11X106								

NOTES:

- Aqueous washable.
- KSWA model is hermetically sealed.
- Video leakage or break through is defined as leakage of TTL switching signal to RF output ports.
- Environmental specifications and re-flow soldering information available in General Information
- Units are non-hermetic unless otherwise noted. For details on case dimensions & finishes see "Case Styles & Outline Drawings".
- Prices and Specifications subject to change without notice.
- Absolute maximum power, voltage and current ratings for KSW, KSWA models:
 - 1a. RF power input, +30 dBm except below 500 MHz +27 dBm; 1b. Control voltage -10 V maximum.
- Absolute maximum power, voltage & current ratings: MSW, MSWA MSWT models:

۷.	Absolute maxim	um power, voltage & cuire	ntrainig	3. IVISVV, I	VISVVA IVISV	VIIIIOC
2a.	RF power input,	(25°C)	DC-100	100-500	500-2000	MHz
	MSW-2-20:	Steady state 0/-8V control	, +23	+27	+31	dBm
		As modulator	+11	+17	+21	dBm
	MSWA-2-20:	Steady state 0/-8V control	, +24	+27	+33	dBm
		As modulator	+12	+17	+23	dBm
	MSWT-4-20:	Steady state 0/-8V control	+24	+27	+33	dBm
		modulator application	+12	+17	+23	dBm

2b. Control current, 500µA (Occurs at -9V to -12V typical)

For reflective switches, KSW, MSW, RSW models, OFF state of RF output is low impedance.

NSN GUIDE MCL NO. KSW-2-46

5985-01-393-7219 KSWA-2-46 5985-01-369-4224

SPDT DC to 2 GHz

MODELA	FREQ. (GHz)	ORPTIVE	ГЕСПИЕ	IN		1 dB COMPRESSION (dBm) frequency band				IN-OUT ISOLATION (dB) frequency band					CASE STYLE	CONNECT	PRICE \$				
MODEL◆ NO.	f _L - f _U	ABS	REFI	А Тур. Мах.	B Typ. Max.	C Typ. Max.	D Typ. Max.	А Тур.	B Typ.	C Typ.	D Typ.	Typ. I	-	B Typ. Max.	Typ. I	C Max.	Typ. I	Max.	Note B	0 N	Qty. (10)
MSW-2-20 MSWA-2-20	DC-2.0 DC-2.0	•	•	0.30 0.6 0.65 0.9	0.4 0.7 0.9 1.2	0.50 1.0 0.95 1.3	0.75 1.3 1.20 1.5	22 20	23 24	24 27	25 29	55 60	50 50	43 36 45 37	34 40	28 32	24 30	20 25	XX211 XX211	et es	2.45 2.45

Transfer DC to 2 GHz Low Video Leakage

	path INSERTION LOSS (dB)										ISOLATION (dB)														
MSWT-4-20	DC-2.0	Tx-J1/J2	0.9	1.2	1.1	1.5	1.25	1.8	1.45	2.2	18	25	28	29	51	44	34	27	26	21	19	15			
		J1/J2-Rx	1.1	1.4	1.3	1.7	1.5	2.0	1.6	2.2	16	18	20	22	52	46	37	31	29	24	21	17	XX211	eu	3.45
		Tx-Rx									l				60	53	41	36	34	27	28	21			
A=DC to 100MHz B=100MHz to 500MHz								С	=5001	ЛHz t	o 100	омн:	Z			D=	=1000	MHz to 2	1000	ЛHz					

control logic

Model		Contro	ol Ports	;	RF o	utputs	
Series	1	2	3	4	1	2	
KSW, KSWA	-V	0	_	_	On	Off	
MSW, MSWA	0	-V	_	_	Off	On	
MSWT					"On"	Path	
					(other	paths are	e "OFF")
	0	-V	-V	-V	Tx-J2		
	-V	0	-V	-V	Tx-J1		
	-V	-V	0	-V	Rx-J1		
	-V	-V	-V	0	Rx-J2		
	0	-V	0	-V	Tx-J2 8	% Rx-J1	
	-V	0	-V	0	Tx-J1 8	& Rx-J2	

pin connections

see case style o	outline dra	wings				
PORT	eh	ek	es	et	PORT	eu
RF IN	2	1	2	1	Tx	2
RF OUT 1	5	5	8	6	Rx	6
RF OUT 2	8	_	5	3	J1	4
+5V	_	_	_	_		
CONTROL 1	3	2	3	5	J2	8
CONTROL 2	1	3	1	4	CONTROL 1	1
GND EXT.	4,6,7	4,6,7,8	4,6,7	2,7,8	CONTROL 2	3
					CONTROL 3	5
					CONTROL 4	7

Application Note for Model MSWT-4-20 Transmit-Receive Switch:

The functional schematic diagram for a diversity application of the switch is shown in Figure 1, with the required external components including 4 independent drivers at the control ports. When operation as a transfer switch is desired only 2 drivers are needed, one connected to the V1 and V3 ports together, and the other connected to the V2 and V4 ports. In either case, two DC return paths are needed for the control voltages, represented by the ground symbols in the diagram. These returns must be via oppositely situated RF ports (Tx and Rx or J1 and J2), and can be furnished incidentally by the user's RF terminating devices themselves. However, if those devices are AC-coupled (that is, they contain DC blocking capacitors), then the shunt resistors shown in the diagram are needed. The resistors should be installed either at the Tx and Rx ports (connection shown as solid), or at J1 and J2 (shown dotted), with equal effect. If one external RF device has a DC return to ground, for example, then only one resistor is needed; it must be installed at the opposite RF port of the switch. The resistance of each of the external DC returns should be 20K ohms or less, for proper ON/OFF FETs.

At: http://www.minicircuits.com

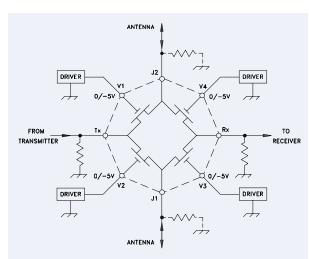


Figure 1. functional schematic diagram (Transmit-Receive application)

