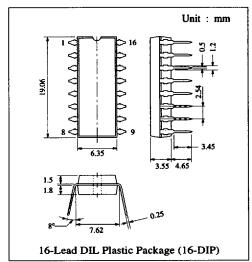
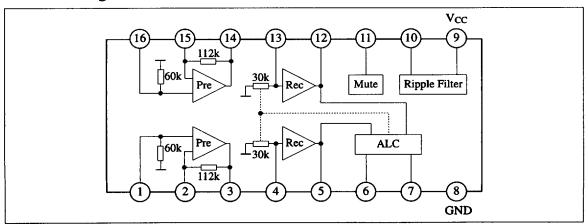
AN7317


Dual Recording and Playback Pre-Amplifier IC for Single/Double Cassette

■ Description

The AN7317 is a monolithic integrated circuit designed for radio cassette recorder and built-in record/playback preamplifier including ALC and mute function.

■ Features


- Built-in ALC low cut function
- Muting circuit built-in
- Wide operating voltage: $V_{CC} = 3.5V \sim 12V$

■ Pin

Pin No.	Pin Name	Pin No.	Pin Name
1	Playback Amplifier Input Ch. 1	9	V _{cc}
2	Playback Amplifier Negative Feedback Ch. 1	10	Ripple Filter
3	Playback Amplifier Output Ch. 1	11	Record Amplifier Mute
4	Record Amplifier Input Ch. 1	12	Record Amplifier Output Ch. 2
5	Record Amplifier Output Ch. 1	13	Record Amplifier Input Ch. 2
6	ALC Low-Cut	14	Playback Amplifier Output Ch. 2
7	ALC Time	15	Playback Amplifier Negative Feedback Ch. 2
8	GND	16	Playback Amplifier Input Ch. 2

■ Block Diagram

■ 6932852 0013952 032 ■ 333 **Panas**onic

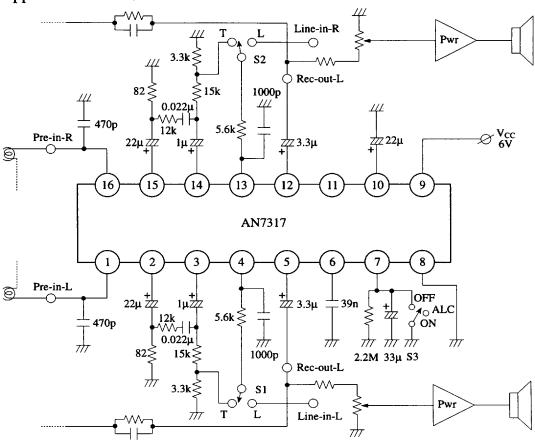
■ Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Rating	Unit
Supply Voltage	v _{cc}	14	V
Supply Current	I _{CC}	30	mA
Power Dissipation	P _D	800	mW
Operating Ambient Temperature	Topr	-20 ~ +75	°C
Storage Temperature	Tstg	-55 ~ +150	°C

Operating Supply Voltage Range: $V_{CC} = 3.5V \sim 12.0V$

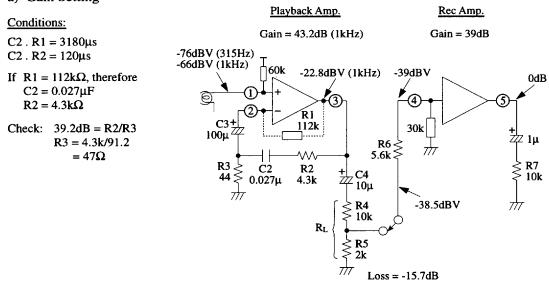
■ Electrical Characteristics (V_{CC}=6V, f=1kHz, V_O=1V, Ta=25°C)

Item	Symbol	Condition		typ.	max.	Unit	
No Signal Supply Current	I _{tot}	No Signal Input		11.1	20.9	mA	
Pre-Amp.							
Open Loop Gain	G _{VO-P}	R _{NF} Short		90		dB	
Close Loop Gain	G _{VC-P}	NAB		43	46	dB	
Maximum Output Voltage	V _{Om-P}	THD = 3%		1.7		v	
Total Harmonic Distortion	THD.P	Filter: 400Hz - 30kHz		0.03	0.1	%	
Input Referred Noise	V _{ni-P}	$R_g = 2.2k\Omega$, DIN/AUDIO		1.4	2.0	μV	
Channel Crosstalk	CT. _P	$R_g = 2.2k\Omega$, DIN/AUDIO	64	74		dB	
Channel Balance	CB. _P		-1.5	0	+1.5	dB	
Rec Amp.							
Fixed Gain	G _{V-R}		37.0	39.0	42.5	dB	
Maximum Output Voltage	V _{Om-R}	THD = 3%	1.0	1.9		V	
Total Harmonic Distortion	THD _{-R}	Filter: 400Hz - 30kHz		0.1	0.17	%	
Output Noise	V _{no-R}	$R_g = 1k\Omega$, DIN/AUDIO		260	550	μV	
Channel Crosstalk	CT _{-R}	$R_g = 1k\Omega$, DIN/AUDIO	50	57		dB	
Channel Balance	CB _{-R}		-1.5	0	+1.5	dB	
ALC							
ALC Start Voltage	Vs	$R_{ext} = 5.6k\Omega$ Dual Channel Input	0.75	0.9	1.37	v	
ALC Range*	WALC	$R_{ext} = 5.6k\Omega$ Dual Channel Input		46		dB	
ALC Channel Balance	CB. _{ALC}	R _{ext} = 5.6kΩ Dual Channel Input	-2	0.1	+2	dB	
Mute							
Rec-Amp. Attenuation Att		$R_{\text{ext}} = 5.6 \text{k}\Omega$, Pin 11 = V_{CC}		49		dB	


^{*} ALC Range is measured as follows:

The input is increased until the output increases by 3dB above that when ALC starts. ALC Range is the difference in input levels between ALC starts and V_0 = +3dB up.

Panasonic


■ 6932852 0013953 T79 ■

■ Application Circuit

■ Application Notes

a) Gain Setting

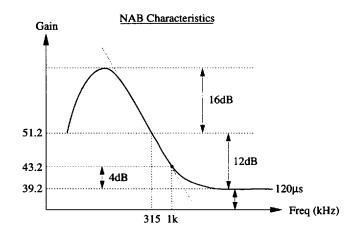
■ 6932852 0013954 905 ■ 335 **Panasonic**

■ Application Notes (Continue)

a) Gain Setting

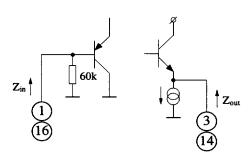
$$51.2dB = \frac{R2 + \frac{1}{j.2.\pi.315.C2}}{R3}$$

$$R3 = 52\Omega \text{ (Use R3 = 47\Omega)}$$


$$\frac{1}{2.\pi.C3.R3} < 20\text{Hz}$$

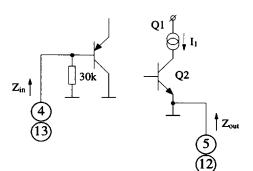
$$C3 = 169\mu\text{F (Use C3 = 100\mu\text{F})}$$

$$\frac{1}{2.\pi.C4.R_L} < 20\text{Hz}$$


$$C4 > \frac{1}{2.\pi.12000.20}$$

$$C4 = 0.66 \mu F \text{ (Use } C4 = 0.47 \mu F)$$

b) Input and Output Impedance of PB & Rec. Amps.



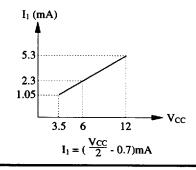
$$Z_{in} = 60k\Omega$$
 (Theoretical)
 $Z_{in} = 53.7k\Omega$ (Measured)

$$\begin{split} Z_{out} &= r_e \qquad \text{(Theoretical)} \\ &= \frac{V_T}{I_E} \\ &= \frac{26mV}{1mA} \\ &= 26\Omega \\ Z_{out} &= 43.3\Omega \quad \text{(Measured)} \end{split}$$

The Rec-Amp. output is a collector to collector connection. Q1 sources current to, while Q2 sinks current from the load. Hence, the current capability of the Rec-Amp. output is important. Concept of low output impedance is relevant only to PB-Amp..

Rec Amp.

$$\begin{split} Z_{in} &= 30 k \Omega \quad \text{(Theoretical)} \\ Z_{in} &= 26.5 k \Omega \quad \text{(Measured)} \end{split}$$

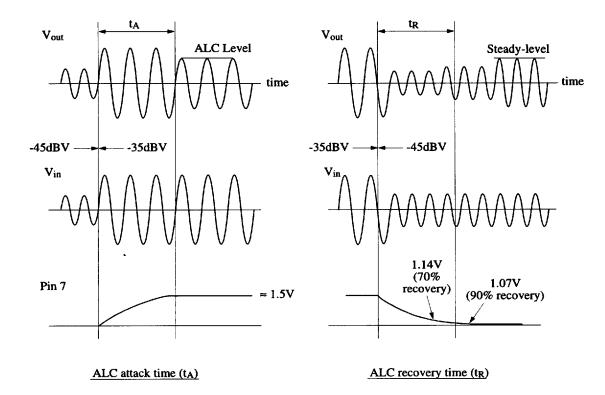

$$Z_{out} = \frac{V_{AP}}{I_C} / / \frac{V_{AN}}{I_C}$$
 (Theoretical)

$$= \frac{48.7}{23m} / / \frac{104}{2.3m}$$

$$= 21k / / 45k$$

$$= 14.3k\Omega$$

$$Z_{out} = 11.9k\Omega$$
 (Measured)


Panasonic

■ 6932852 0013955 841 ■ 336

Application Notes (Continue)

c) ALC Attack & Recovery Time

ALC attack-time (t_A) is the time taken for ALC to become effective. t_A is measured from the onset of a high input signal to the point of time at which output settles to ALC level. On the other hand, ALC recovery-time (t_R) is the time taken for the ALC to become ineffective. t_R is measured from the instant of transition between a high to low level input signal, to the point of time at which the output amplitude becomes steady. For recovery-time, the designations 90% and 70% recovery are used to indicate respective percentage of the steady state output level.

Theoretical estimates:

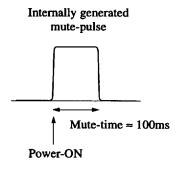
t_A = 5794 x C7 (seconds) t_R = 0.0578 x C7 x R7 (70% recovery) 0.1183 x C7 x R7 (90% recovery) 7 R7\sqrt{C7222

The attack-time is proportional to the value of C7. On the other hand, the recovery time depends proportionally on $R7 \times C7$ constant.

■ 6932852 0013956 788 ■ 337 **Panasonic**

■ Application Notes (Continue)

c) ALC Attack & Recovery Time


The following table shows the experimental results of t_A & t_R obtained from various combinations of R7 & C7:

				_
C7	R 7	t _A	t _R (70%)	
5μ	2.2M	20ms	0.4s	
5μ	3.3M	20ms	1.0s	
5μ	4.7M	20ms	1.1s	
10μ	2.2M	50ms	1.2s	
10μ	3.3M	50ms	2.5s	
10μ	4.7M	50ms	3.0s	→ Recommended values
22μ	2.2M	125ms	2.8s	
22μ	3.3M	125ms	3.6s	
22μ	4.7M	125ms	3.75s	
33μ	2.2M	180ms	3.6s	
33μ	3.3M	225ms	4.0s	
33μ	4.7M	225ms	4.4s	

d) Additional Feature

Pop-noise, during power up is caused by transient noise at the PB amplifier outputs that passes into the REC amp. or power amp. This defect can be solved by a good design involving timing considerations, that basically let the REC amplifier start up slower than the PB amplifier.

AN7317 solves this possible defect by including mute function. Typically, the REC amplifier inputs are muted for about 100ms upon power up, so that any transient noise is muted. Furthermore, the record-mute function can be activated at any time by shorting Pin 11 to V_{CC} .

