

MN200B02

200 mA LOAD SWITCH FEATURING PRE-BIASED PNP TRANSISTOR AND N-MOSFET WITH GATE PULL DOWN RESISTOR

General Description

LMN200B02 is best suited for applications where the load needs to be turned on and off using control circuits like micro-controllers, comparators etc. particularly at a point of load. It features a discrete pass transistor with stable $V_{\text{CE}(\text{SAT})}$ which does not depend on the input voltage and can support continuous maximum current of 200 mA . It also contains a discrete N-MOSFET that can be used as control. This N-MOSFET also has a built-in pull down resistor at its gate. The component can be used as a part of a circuit or as a stand alone discrete device.

Features

- Voltage Controlled Small Signal Switch
- N-MOSFET with Gate Pull-Down Resistor
- Surface Mount Package
- Ideally Suited for Automated Assembly Processes
- Lead Free By Design/RoHS Compliant (Note 1)
- "Green" Device (Note 2)

Mechanical Data

- Case: SOT-363
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminal Connections: See Diagram Terminals: Finish - Matte Tin annealed over Alloy 42
 - leadframe. Solderable per MIL-STD-202, Method 208
- Marking Information: See Page 8
- Ordering Information: See Page 8 Weight: 0.006 grams (approximate)

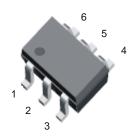


Fig. 1: SOT-363

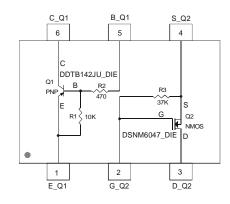


Fig. 2 Schematic and Pin Configuration

Sub-Component P/N	Reference	Device Type	R1 (NOM)	R2 (NOM)	R3 (NOM)	Figure
DDTB142JU_DIE	Q1	PNP Transistor	10K	470	_	2
DSNM6047_DIE (with Gate Pull-Down Resistor)	Q2	N-MOSFET	_	_	37K	2

Maximum Ratings, Total Device @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 3)	P_{D}	200	mW
Power Derating Factor above 125°C	P _{der}	1.6	mW/°C
Output Current	lout	200	mA

Thermal Characteristics @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Operating and Storage Temperature Range	T_{J}, T_{STG}	-55 to +150	°C
Thermal Resistance, Junction to Ambient Air (Equivalent to One Heated Junction of PNP Transistor) (Note 3)	$R_{ hetaJA}$	625	°C/W

Notes:

- 1. No purposefully added lead.
- 2. Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.
- Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch, pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

Maximum Ratings:

Sub-Component Device: Pre-Biased PNP Transistor (Q1) @TA = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	-50	V
Collector-Emitter Voltage	V _{CEO}	-50	V
Supply Voltage	Vcc	-50	V
Input Voltage	V _{in}	+5 to -6	V
Output Current	Ic	-200	mA

Sub-Component Device: N-MOSFET With Gate

Pull-Down Resistor (Q2)

@T_A = 25°C unless otherwise specified

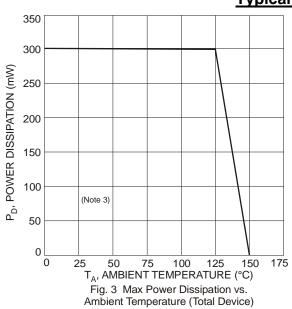
Cha	acteristic	Symbol	Value	Unit
Drain-Source Voltage		V_{DSS}	60	V
Drain Gate Voltage (R _{GS} ≤1M C	hm)	V_{DGR}	60	V
Gate-Source Voltage Continuous		V	+/-20	\/
	Pulsed (tp<50 uS)	V_{GSS}	+/-40	V
Drain Current (Page 1: Note 3) Continuous (V _{gs} = 10V) Pulsed (tp <10 uS, Duty Cycle <1%)		I _D	115	A
			800	mA mA
Continuous Source Current		Is	115	mA

Electrical Characteristics: Pre-Biased PNP Transistor (Q1) @TA = 25°C unless otherwise specified

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
OFF CHARACTERISTICS	CySci		.,,,,	max	- Cilic	1 oot oonamen
Collector-Base Cut Off Current	I _{CBO}	_	_	-100	nA	$V_{CB} = -50V, I_{E} = 0$
Collector-Emitter Cut Off Current	I _{CEO}	_	_	-500	nA	$V_{CE} = -50V, I_{B} = 0$
Emitter-Base Cut Off Current	I _{EBO}		-0.5	-1	mA	$V_{EB} = -5V, I_{C} = 0$
Collector-Base Breakdown Voltage	V _{(BR)CBO}	-50	_	_	V	$I_C = -10 \text{ uA}, I_E = 0$
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	-50	_	_	V	$I_C = -2 \text{ mA}, I_B = 0$
Input Off Voltage	V _{I(OFF)}	_	-0.55	-0.3	V	$V_{CE} = -5V, I_{C} = -100uA$
Output Voltage	V _{OH}	-4.9	_	_	V	$V_{CC} = -5V, V_B = -0.05V,$ $R_L = 1K$
Ouput Current (leakage current same as I _{CEO})	I _{O(OFF)}	_	_	-500	nA	$V_{CC} = -50V, V_{I} = 0V$
ON CHARACTERISTICS				•	•	
		_	_	-0.15	V	$I_C = -10 \text{ mA}, I_B = -0.5 \text{ mA}$
		_	_	-0.2	V	$I_C = -50 \text{mA}, I_B = -5 \text{mA}$
Collector Emitter Seturation Voltage	V	_	_	-0.2	V	$I_C = -20 \text{mA}, I_B = -1 \text{mA}$
Collector-Emitter Saturation Voltage	$V_{CE(SAT)}$	_	_	-0.25	V	$I_C = -100 \text{mA}, I_B = -10 \text{mA}$
		_	_	-0.25	V	I _C = -200mA, I _B = -10mA
		_	_	-0.3	V	I _C = -200mA, I _B = -20mA
Equivalent On-Resistance*	R _{CE} (SAT)	_	_	1.5	Ω	$I_C = -200 \text{mA}, I_B = -10 \text{mA}$
		60	150	_	_	$V_{CE} = -5V, I_{C} = -20 \text{ mA}$
DC Current Coin		60	215	_	_	$V_{CE} = -5V, I_{C} = -50 \text{ mA}$
DC Current Gain	h _{FE}	60	245	_	_	$V_{CE} = -5V, I_{C} = -100 \text{ mA}$
		60	250	_	_	$V_{CE} = -5V$, $I_{C} = -200 \text{ mA}$
Input On Voltage	V _{I(ON)}	-2.45	-0.7	_	V	$V_O = -0.3V$, $I_C = -2 \text{ mA}$
Output Voltage (equivalent to $V_{CE(SAT)}$ or $V_{O(ON)}$)	V _{OL}	_	-0.065	-0.15	V	$V_{CC} = -5V$, $V_B = -2.5V$, $I_0/I_1 = -50$ mA /-2.5mA
Input Current	li	_	-9	-28	mA	V _I = -5V
Base-Emitter Turn-on Voltage	V _{BE(ON)}	_	-1.13	-1.3	V	$V_{CE} = -5V, I_{C} = 200mA$
Base-Emitter Saturation Voltage	V	_	-3.2	-3.6	V	$I_C = -50 \text{mA}, I_B = -5 \text{mA}$
Base-Efficier Sacuration voitage	V _{BE(SAT)}	_	-4.6	-5.5	V	$I_C = -80 \text{mA}, I_B = -8 \text{mA}$
Input Resistor (Base), +/- 30%	R2	_	0.47	_	ΚΩ	
Pull-up Resistor (Base to Vcc supply), +/- 30%	R1	_	10	_	ΚΩ	_
Resistor Ratio (Input Resistor/Pull-up resistor) +/- 20%	R1/R2	_	21	_	_	_
SMALL SIGNAL CHARACTERISTICS						_
Transition Frequency (Gain Bandwidth Product)	f⊤	_	200	_	MHz	$V_{CE} = -10V, I_{E} = -5mA,$ f = 100MHz
Collector Capacitance, (Ccbo-Output Capacitance)	C _C	_	20	_	pF	$V_{CB} = -10V$, $I_E = 0A$, $f = 1MHz$

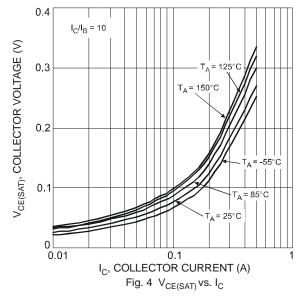
 $^{^{\}star}$ Pulse Test: Pulse width, tp<300 $\mu\text{S},$ Duty Cycle, d<=0.02

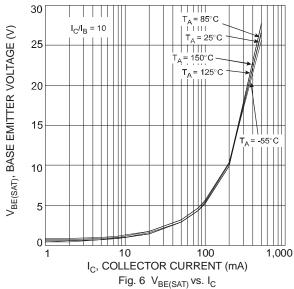
Electrical Characteristics:

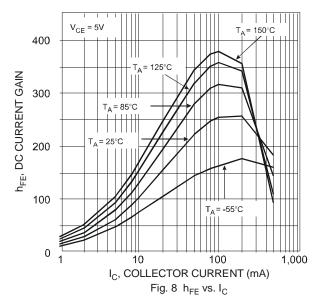

N-MOSFET with Gate Pull-Down Resistor (Q2)

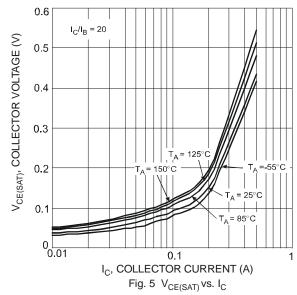
 $@T_A = 25^{\circ}C$ unless otherwise specified

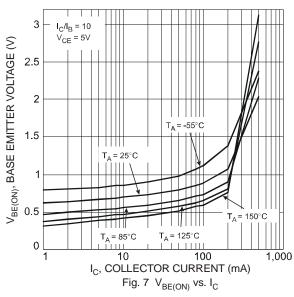
Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 4)			•		•	
Drain-Source Breakdown Voltage, BV _{DSS}	V _{(BR)DSS}	60	_	_	V	$V_{GS} = 0V, I_D = 10\mu A$
Zero Gate Voltage Drain Current (Drain Leakage Current)	I _{DSS}	_	_	1	μА	V _{GS} =0V, V _{DS} = 60V
Gate-Body Leakage Current, Forward	I _{GSSF}	_		0.95	mA	$V_{GS} = 20V, V_{DS} = 0V$
Gate-Body Leakage Current, Reverse	I _{GSSR}	_	_	-0.95	mA	$V_{GS} = -20V, V_{DS} = 0V$
ON CHARACTERISTICS (Note 4)					5	
Gate Source Threshold Voltage (Control Supply Voltage)	V _{GS(th)}	1	1.9	2.2	V	$V_{DS} = V_{GS}, I_D = 0.25 \text{mA}$
Statia Drain Source On State Voltage	V	_	0.10	1.5	V	$V_{GS} = 5V, I_{D} = 50mA$
Static Drain-Source On-State Voltage	V _{DS(on)}	_	0.15	3.75	V	$V_{GS} = 10V, I_D = 115mA$
On-State Drain Current	I _{D(on)}	500	_	_	mA	$V_{GS} = 10V$, $V_{DS} \ge 2xV_{DS(ON)}$
Static Dunin Course On Benintanna	-	_	1.6	3		$V_{GS} = 5V$, $ID = 50mA$
Static Drain-Source On-Resistance	R _{DS(on)}	_	1.4	2	Ω	V _{GS} = 10V, ID = 500mA
Forward Transconductance	a	80	240	_	mS	$V_{DS} \ge 2_X V_{DS(ON)}$, $I_D = 115 \text{ mA}$
Forward Transconductance	g FS	80	350	_	1113	$V_{DS} \ge 2_X V_{DS(ON)}$, $I_D = 200 \text{ mA}$
Gate Pull-Down Resistor, +/- 30%	R3	_	37	_	ΚΩ	_
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{iss}	_	_	50	pF	
Output Capacitance	Coss	_	_	25	pF	$V_{DS} = -25V, V_{GS} = 0V,$ -f = 1MHz
Reverse Transfer Capacitance	C _{rss}	_		5	pF	1 - 11011 12
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{D(on)}	_		20	ns	$V_{DD} = 30V, V_{GS} = 10V,$
Turn-Off Delay Time	t _{D(off)}	_	_	40	ns	$I_D = 200 \text{mA},$ $R_G = 25 \text{ Ohm}, R_L = 150 \text{ Ohm}$
SOURCE-DRAIN (BODY) DIODE CHARACTERISTI	CS AND MAX	(IMUM RAT	INGS			
Drain-Source Diode Forward On-Voltage	V_{SD}	_	0.90	1.5	V	$V_{GS} = 0V, I_{S} = 115 \text{ mA}$
Maximum Continuous Drain-Source Diode Forward Current (Reverse Drain Current)	Is	_	_	115	mA	_
Maximum Pulsed Drain-Source Diode Forward Current	I _{SM}	_	_	800	mA	_

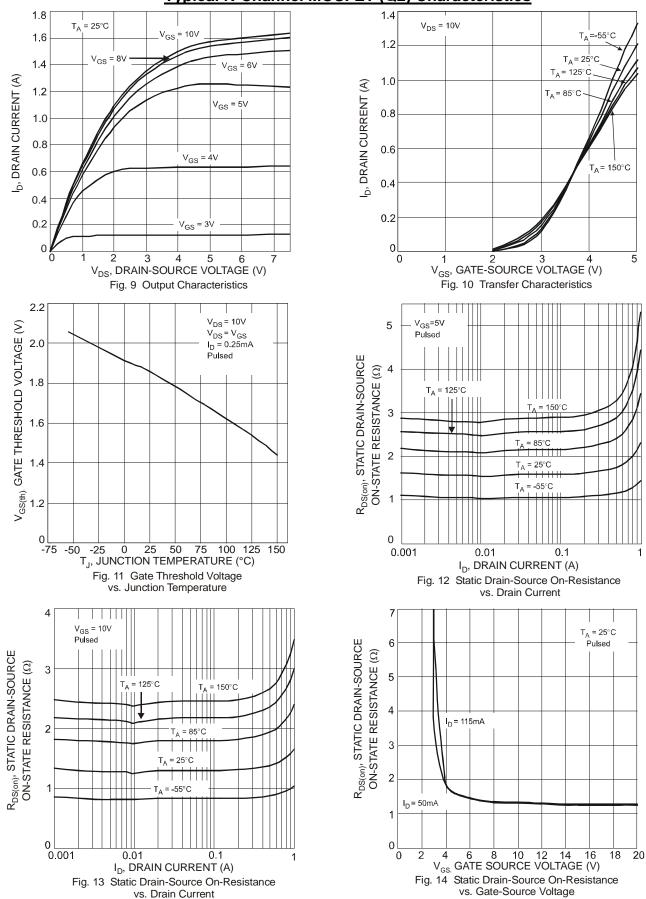

Notes: 4. Short duration pulse test used to minimize self-heating effect.

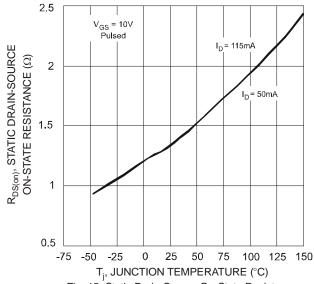

Typical Characteristics

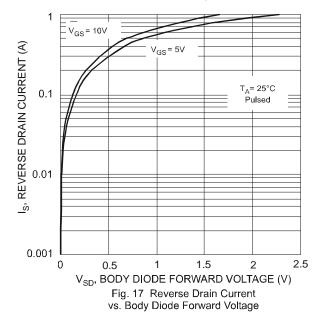





Typical Pre-Biased PNP Transistor (Q1) Characteristics






Typical N-Channel MOSFET (Q2) Characteristics

T_j, JUNCTION TEMPERATURE (°C)
Fig. 15 Static Drain-Source On-State Resistance vs. Junction Temperature

IS, REVERSE DRAIN CURRENT (A) = 125°C T_A = 150°C = 85°C 0.1 = -55°C 0.01 V_{GS} = 5V Pulsed 0.001 2 3 5 0 V_{SD}, SOURCE-DRAIN VOLTAGE (V) Fig. 16 Reverse Drain Current

900 g_{FS}, FORWARD TRANSCONDUCTANCE (mS) 800 T_A = -55°C 700 600 T_A = 85°C 500 400 T_A = 125°C 300

200 100

0

0

vs. Source-Drain Voltage

.2 0.4 0. I_D, DRAIN CURRENT (A) 0.2 0.6 8.0 Fig. 18 Forward Transfer Conductance vs. Drain Current $(V_{DS} > I_D R_{DS(ON)})$

Application Details

PNP Transistor (DDTB142JU) and N-MOSFET (DSNM6047) with gate pull-down resistor integrated as one in LMN200B02 can be used as a discrete entity for general purpose applications or as an integrated circuit to function as a Load Switch. When it is used as the latter as shown in Fig 19, various input voltage sources can be used as long as it does not exceed the maximum ratings of the device. These devices are designed to deliver continuous output load current up to a maximum of 200 mA. The MOSFET Switch draws no current, hence loading of control circuit is prevented. Care must be taken for higher levels of dissipation while designing for higher load conditions. These devices provide high power and also consume less space. The product mainly helps in optimizing power usage, thereby conserving battery life in a controlled load system like portable battery powered applications. (Please see Fig. 20 for one example of a typical application circuit used in conjunction with voltage regulator as a part of a power management system)

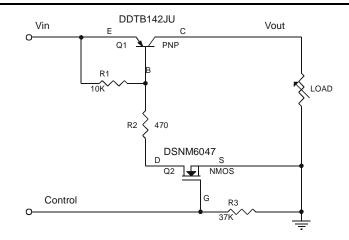
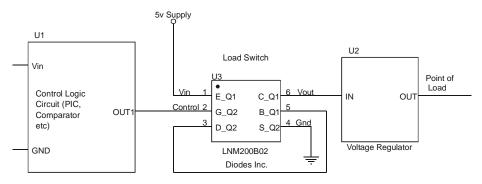
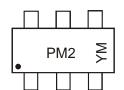


Fig. 19 Circuit Diagram

Typical Application Circuit




Fig. 20

Ordering Information (Note 5)

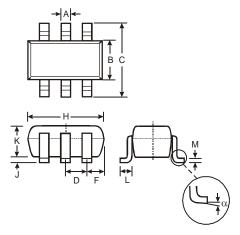
Device	Packaging	Shipping
LMN200B02-7	SOT-363	3000/Tape & Reel

Notes: 5. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

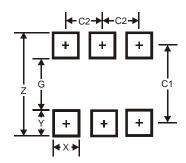
PM2 = Product Type Marking Code, YM = Date Code Marking

Y = Year (ex: T = 2006)


M = Month (ex: 9 = September)

Date Code Key

Year	2006	2007	20	80	2009	2010	2011	2012	20	13	2014	2015
Code	Т	U	\	/	W	Χ	Υ	Z	-	4	В	С
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	N	D



Mechanical Details

	SOT-363					
Dim	Min	Max				
Α	0.10	0.30				
В	1.15	1.35				
С	2.00	2.20				
D	0.65 Typ					
F	0.40	0.45				
Н	1.80	2.20				
J	0	0.10				
K	0.90	1.00				
L	0.25	0.40				
M	0.10	0.22				
α	0°	8°				
All Di	mensions	in mm				

Suggested Pad Layout

Dimensions	Value (in mm)
Z	2.5
G	1.3
Х	0.42
Y	0.6
C1	1.9
C2	0.65

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2009, Diodes Incorporated

www.diodes.com