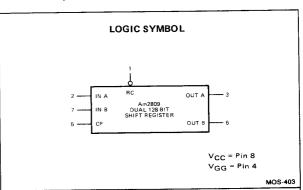
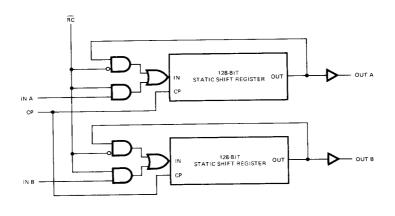
Am2809

Dual 128-Bit Static Shift Register

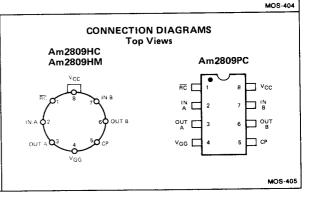

Distinctive Characteristics

- Second source to Signetics 2521.
- TTL compatible on clock and data inputs.
- Operation guaranteed from DC-to-2.5MHz.
- 100% reliability assurance testing in compliance with MIL-STD-883.
- Low capacitance on clock and data inputs.


FUNCTIONAL DESCRIPTION

The Am2809 is a dual 128-bit static shift register built using P-channel silicon gate MOS technology. The two registers have a common clock input which is low-threshold TTL compatible. The registers also have built-in recirculate feedback. When the recirculate control (\overline{RC}) is LOW, the data on the data output of each register is fed back to the corresponding register input. When \overline{RC} is HIGH, each register accepts data from the data input. Each of the register outputs can drive one standard TTL load or three Am93L series low-power unit loads.

Data in the Am2809 is shifted on the LOW-to-HIGH edge of the input clock. Data on the data inputs must remain steady for a set-up time before and a hold time after this clock transition. Since storage in the register is static, the register may be halted indefinitely with the clock in the HIGH state.



ORDERING INFORMATION

Package	Temperature	Order
Type	Range	Number
Molded DIP	0°C to +70°C	AM2809PC
TO-5	0°C to +70°C	AM2809HC
TO-5	–55°C to +125°C	AM2809HM

Am2809

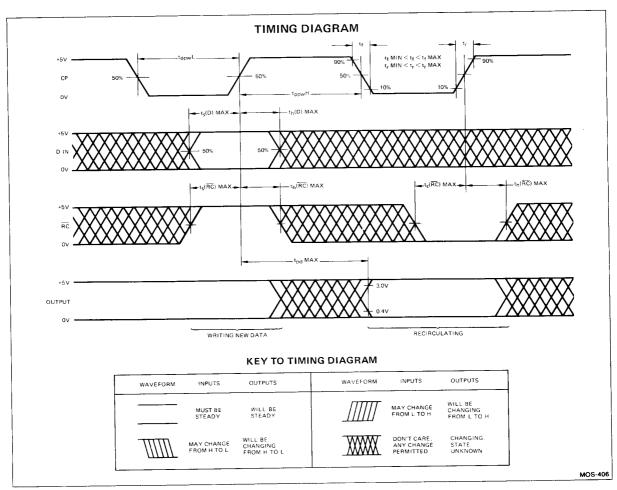
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	−65°C to +150°
Temperature (Ambient) Under Bias	55°C to +125°C
DC Input Voltage with Respect to V _{CC}	-20V to +0.3V

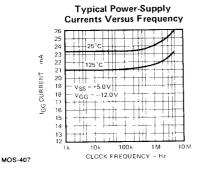
OPERATING RANGE

Part Number	Ambient Temperature	vcc	v_{GG}		
Am2809PC Am2809HC	0°C to +70°C	5.0 V ± 5%	-12 V ± 5%		
Am2809HM	-55°C to +125°C	5.0 V ±5%	-12V ±5%		

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

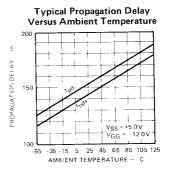

Parameters Description		Test Conditions	Typ. Min. (Note 1)		Max.	Units
v oH	V _{OH} Output HIGH Voltage V _{CC} = MIN., I _{OH} = -0.1 mA		V _{CC} -1.5	,		Volts
V _{OL}	Output LOW Voltage	V _{CC} = MIN., I _{OL} = 1.6mA	- 00	-4	0.4	Volts
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs	V _{CC} -1	Vcc+		Volts
ViL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs			V _{CC} −3.95	Volts
կլ	Input LOW Current	V _{CC} = MAX., V _{IN} = 0 T _A = 25°C		10	500	nA
Чн	Input HIGH Current	V _{CC} = MAX., V _{IN} = 2.4 V, T _A = 25°C		10	500	пA
		f = 2.5MHz T _A = 25°C		24	32	
IGG	Power Supply Current	$V_{CC} = MAX$. $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$			38	mA ;
		$f = 2.0MHz$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$			44	

Note: 1. Typical Limits are at $V_{CC} = 5.0V$, $25^{\circ}C$ ambient and maximum loading.

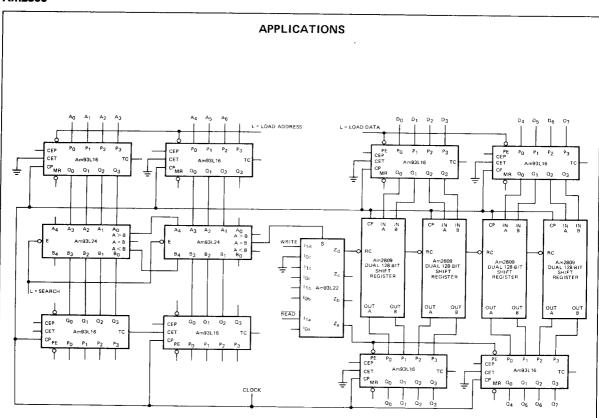

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Parameters	6	.	Am2809PC Am2809HC		Am2809HM				
rarameters	Description	Test Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
f _C	Clock Frequency Range		0		2.5	0		2.0	MHz
$t_{\phi pw}H$	Clock HIGH Time		0.2			0.25	 		μs
t _{opw} L	Clock LOW Time		0.2		100	0.25	 	100	μs
t _r , t _f	Clock Rise and Fall Times	, 10% to 90%			1.0		 	1.0	μs
t _s (D)	Set-up Time, Data Input (see definitions)	$t_r = t_f = 50$ ns	75			100			ns ns
t _h (D)	Hold Time, Data Input (see definitions)	t _r = t _f = 50 ns	50	<u> </u>		65	 		ns
t _s (RC)	Set-up Time, Recirculate Control (see definitions)	t _r = t _f = 50 ns	50			100			ns
t _h (RC)	Hold Time, Recirculate Control (see definitions)	t _r = t _f = 50ns	50			65			ns
t _{pd}	Delay, Clock to Data Out			170	300		170	350	ns
C _{in}	Capacitance, Any Input (Note 2)	f = 1 MHz, V _{IN} = V _{CC}		3	7		3	7	pF

Note: 2. This parameter is periodically sampled but not 100% tested. It is guaranteed by design.



CHARACTERISTIC CURVES


DEFINITION OF TERMS

STATIC SHIFT REGISTER A shift register that is capable of maintaining stored data without being continuously clocked. Most static shift registers are constructed with dynamic master and static slave flip-flops. The data is stored dynamically while the clock is LOW and is transferred to the static slaves while the clock is HIGH. The clock may be stopped indefinitely in the HIGH state, but there are limitations on the time it may reside in the LOW state.

SET-UP and HOLD TIMES The shift register will accept the data that is present on its input around the time the clock goes from LOW-to-HIGH. Because of variations in individual devices, there is some uncertainty as to exactly when, relative to this clock transition, the data will be stored. The set-up and hold times define the limits on this uncertainty. To guarantee storing the correct data, the data inputs should not be changed between the maximum set-up time before the clock transition and the maximum hold time after the clock transition. Data changes within this interval may or may not be detected.

MOS-408

128-Word x 8-Bit Pseudo-Random Access Memory

Data stored in the four dual 128-bit shift registers can be accessed randomly by comparing the desired address with the address currently available at the shift register I/O. A pair of Am93L16 low-power counters keeps track of data addresses as the data circulates around the memory. Other Am93L16 counters are used as 4-bit registers with enables by grounding the count enables. They are used to store the requested address, the new data to be written into the memory, and the data read from the memory. The Am93L24 comparators switch the memories from the recirculate mode to the write mode to enter new data in a write operation. Similarly, the output storage registers are enabled when the Am93L24s indicate comparison in a read operation.

Mos-409

Metallization and Pad Layout

VCC 8

RC 1

OUT 8

OUT 8

OUT A VGG

86 X 95 Mils