

Complementary Silicon Plastic Power Transistors

D²PAK for Surface Mount

MJB41C, NJVMJB41CT4G (NPN), MJB42C, NJVMJB42CT4G (PNP)

Features

- Lead Formed for Surface Mount Applications in Plastic Sleeves (No Suffix)
- Electrically the Same as TIP41 and T1P42 Series
- NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- Pb-Free Packages are Available

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	100	Vdc
Collector-Base Voltage	V _{CB}	100	Vdc
Emitter-Base Voltage	V _{EB}	5.0	Vdc
Collector Current – Continuous – Peak	I _C	6.0 10	Adc
Base Current	Ι _Β	2.0	Adc
Total Power Dissipation @ T _C = 25 °C Derate above 25 °C	P _D	65 0.52	W W/°C
Total Power Dissipation @ T _A = 25 °C Derate above 25 °C	P _D	2.0 0.016	W W/°C
Unclamped Inductive Load Energy (Note 1)	E	62.5	mJ
Operating and Storage Junction Temperature Range	T _J , T _{stg}	−65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.92	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	62.5	°C/W
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	50	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from Case for 10 Seconds	T_L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. I_C = 2.5 A, L = 20 mH, P.R.F. = 10 Hz, V_{CC} = 10 V, R_{BE} = 100 Ω
- When surface mounted to an FR-4 board using the minimum recommended pad size.

1

COMPLEMENTARY SILICON POWER TRANSISTORS 6 AMPERES, 100 VOLTS, 65 WATTS

MARKING DIAGRAM

D²PAK CASE 418B STYLE 1

J4xC = Specific Device Code

x = 1 or 2

A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
MJB41CG	D ² PAK (Pb-Free)	50 Units / Rail
MJB41CT4G	D ² PAK (Pb-Free)	800 / Tape & Reel
NJVMJB41CT4G	D ² PAK (Pb-Free)	800 / Tape & Reel
MJB42CT4G	D ² PAK (Pb-Free)	800 / Tape & Reel
NJVMJB42CT4G	D ² PAK (Pb-Free)	800 / Tape & Reel

DISCONTINUED (Note 1)

	PAK 50 Units / Rail -Free)
--	----------------------------

- † For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
- DISCONTINUED: This device is not available. Please contact your onsemi representative for information. The most current information on this device may be available on www.onsemi.com.

ELECTRICAL CHARACTERISTICS (T_C = 25 °C unless otherwise noted)

Characteristic			Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (Note 3) (I _C = 30 mAdc, I _B = 0)			100	-	Vdc
Collector Cutoff Current (V _{CE} = 60 Vdc, I _B = 0)		I _{CEO}	_	0.7	mAdc
Collector Cutoff Current (V _{CE} = 100 Vdc, V _{EB} = 0)			_	100	μAdc
Emitter Cutoff Current ($V_{BE} = 5.0 \text{ Vdc}$, $I_{C} = 0$)	I _{EBO}	_	50	μAdc	
ON CHARACTERISTICS (Note 3)					
DC Current Gain	$(I_C = 0.3 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc})$ $(I_C = 3.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc})$	h _{FE}	30 15	- 75	-
Collector-Emitter Saturation Voltage (I _C = 6.0 Adc, I _B = 600 mAdc)		V _{CE(sat)}	-	1.5	Vdc
Base-Emitter On Voltage (I _C = 6.0 Adc, V _{CE} = 4.0 Vdc)		V _{BE(on)}	-	2.0	Vdc
DYNAMIC CHARACTERISTICS					•
Current-Gain – Bandwidth Product (I _C = 500 mAdc, V _{CE} = 10 Vdc, f _{test} = 1.0 MHz)		f _T	3.0	_	MHz
Small-Signal Current Gain ($I_C = 0.5$ Adc, $V_{CE} = 1$	0 Vdc, f = 1.0 kHz)	h _{fe}	20	_	_

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{3.} Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%.

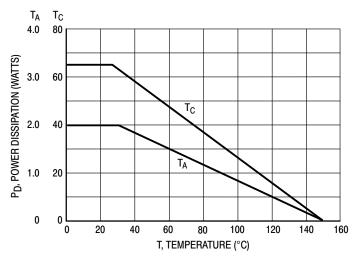
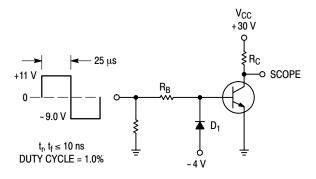



Figure 1. Power Derating

 R_B and R_C varied to obtain desired current levels

D₁ MUST BE FAST RECOVERY TYPE, e.g.: 1N5825 USED ABOVE I_B \approx 100 mA MSD6100 USED BELOW I_B \approx 100 mA

Figure 2. Switching Time Test Circuit

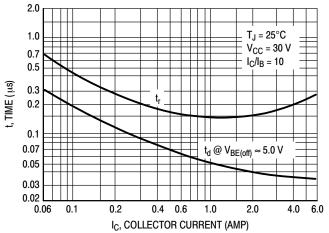


Figure 3. Turn-On Time

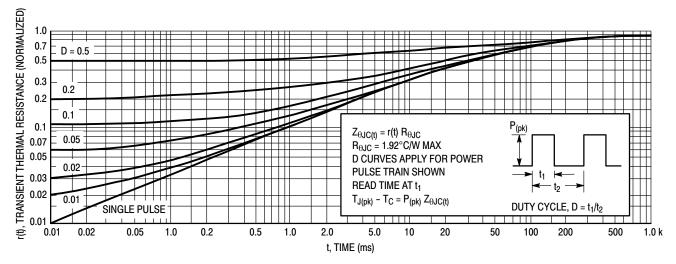


Figure 4. Thermal Response

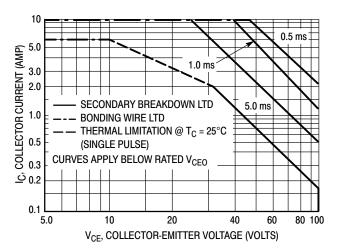


Figure 5. Active-Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 5 is based on $T_{J(pk)} = 150$ °C; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150$ °C. $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

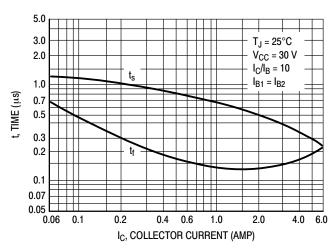


Figure 6. Turn-Off Time

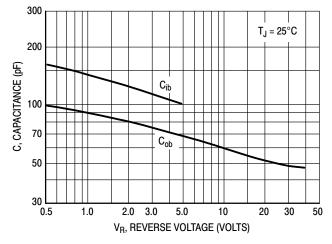


Figure 7. Capacitance

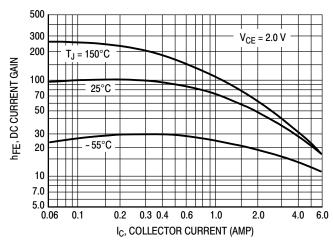


Figure 8. DC Current Gain

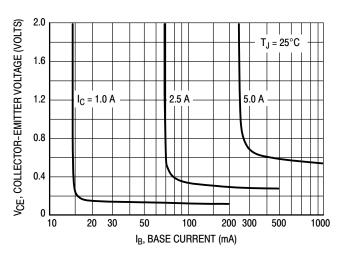


Figure 9. Collector Saturation Region

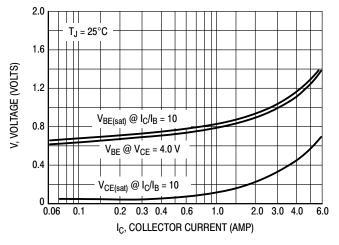


Figure 10. "On" Voltages

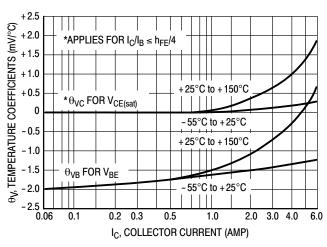


Figure 11. Temperature Coefficients

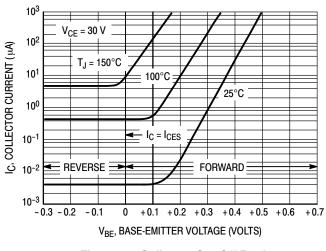


Figure 12. Collector Cut-Off Region

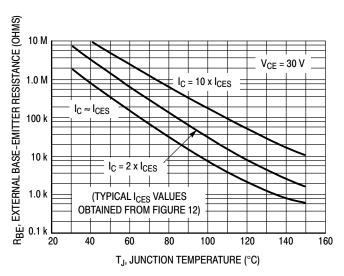
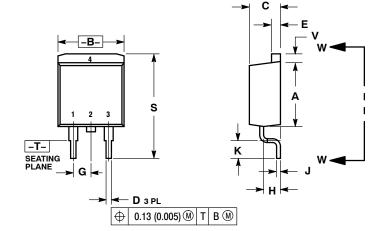


Figure 13. Effects of Base-Emitter Resistance

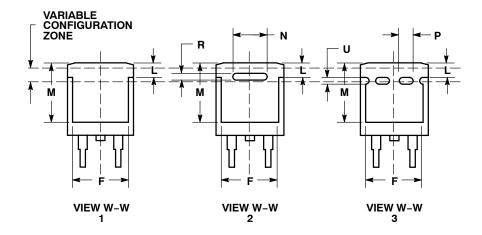
REVISION HISTORY

Revision	Description of Changes	Date
5	Rebranded the Data Sheet to onsemi format. MJB42CG OPN Marked as Discontinued.	10/27/2025

This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.



D²PAK 3 CASE 418B-04 **ISSUE L**


DATE 17 FEB 2015

SCALE 1:1

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.340	0.380	8.64	9.65
В	0.380	0.405	9.65	10.29
С	0.160	0.190	4.06	4.83
D	0.020	0.035	0.51	0.89
E	0.045	0.055	1.14	1.40
F	0.310	0.350	7.87	8.89
G	0.100 BSC		2.54 BSC	
Н	0.080	0.110	2.03	2.79
J	0.018	0.025	0.46	0.64
K	0.090	0.110	2.29	2.79
L	0.052	0.072	1.32	1.83
M	0.280	0.320	7.11	8.13
N	0.197 REF		5.00 REF	
Р	0.079 REF		2.00 REF	
R	0.039	REF	0.99 REF	
S	0.575	0.625	14.60	15.88
٧	0.045	0.055	1.14	1.40

STYLE 1: PIN 1. BASE 2. COLLECTOR
3. EMITTER
4. COLLECTOR

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN STYLE 3: PIN 1. ANODE 2. CATHODE 3. ANODE 4. CATHODE

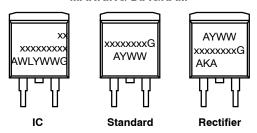
STYLE 4:

PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR

STYLE 5: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. ANODE

STYLE 6:

PIN 1. NO CONNECT 2. CATHODE 3. ANODE 4. CATHODE

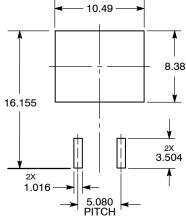

MARKING INFORMATION AND FOOTPRINT ON PAGE 2

DOCUMENT NUMBER:	98ASB42761B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	D ² PAK 3		PAGE 1 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the v special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DATE 17 FEB 2015

GENERIC MARKING DIAGRAM*



xx = Specific Device Code A = Assembly Location

WL = Wafer Lot
Y = Year
WW = Work Week
G = Pb-Free Package
AKA = Polarity Indicator

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42761B	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	D ² PAK 3		PAGE 2 OF 2

onsemi and ONSeMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales