

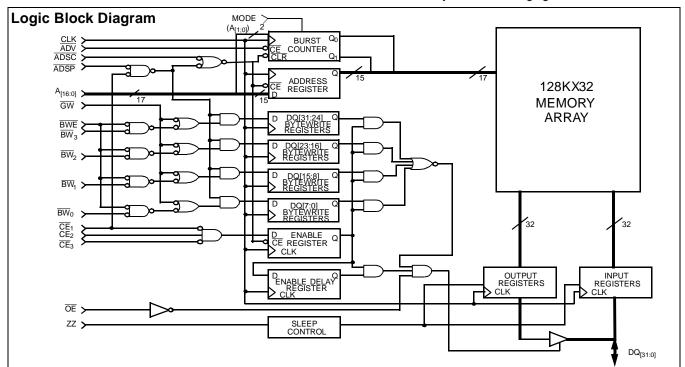
128K x 32 Synchronous-Pipelined Cache RAM

Features

- Supports 100-MHz bus for Pentium® and PowerPC[™] operations with zero wait states
- Fully registered inputs and outputs for pipelined operation
- 128K by 32 common I/O architecture
- 3.3V core power supply
- 2.5V / 3.3V I/O operation
- · Fast clock-to-output times
 - 3.5 ns (for 166-MHz device)
 - -4.0 ns (for 133-MHz device)
 - -5.5 ns (for 100-MHz device)
- User-selectable burst counter supporting Intel® Pentium interleaved or linear burst sequences
- Separate processor and controller address strobes
- · Synchronous self-timed writes
- · Asynchronous output enable
- JEDEC-standard 100 TQFP pinout
- "ZZ" Sleep Mode option and Stop Clock option

Functional Description

The CY7C1339 is a 3.3V, 128K by 32 synchronous-pipelined cache SRAM designed to support zero wait state secondary cache with minimal glue logic.

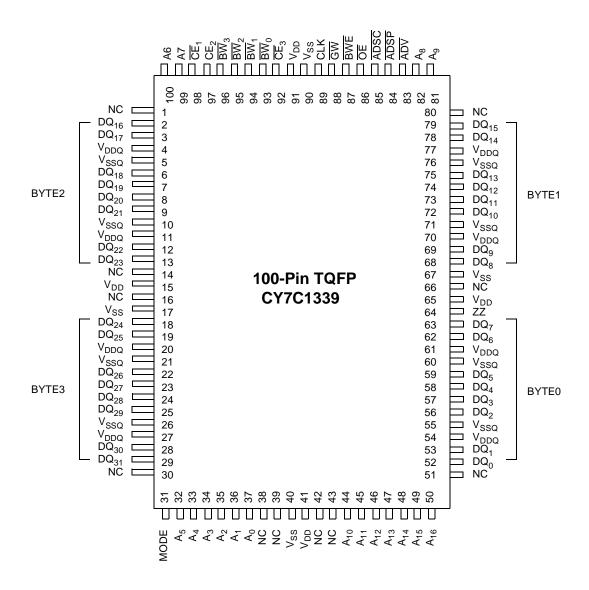

The CY7C1339 I/O pins can operate at either the 2.5V or the 3.3V level; the I/O pins are 3.3V tolerant when V_{DDQ} =2.5V.

All synchronous inputs pass through input registers controlled by the rising edge of the clock. All data outputs pass through output registers controlled by the rising edge of the clock. Maximum access delay from the clock rise is 3.5 ns (166-MHz device).

The CY7C1339 supports either the interleaved burst sequence used by the Intel Pentium processor or a linear burst sequence used by processors such as the PowerPC. The burst sequence is selected through the MODE pin. Accesses can be initiated by asserting either the Processor Address Strobe (ADSP) or the Controller Address Strobe (ADSC) at clock rise. Address advancement through the burst sequence is controlled by the ADV input. A 2-bit on-chip wraparound burst counter captures the first address in a burst sequence and automatically increments the address for the rest of the burst access

Byte write operations are qualified with the four Byte Write Select $(\overline{BW}_{[3:0]})$ inputs. A Global Write Enable (\overline{GW}) overrides all byte write inputs and writes data to all four bytes. All writes are conducted with on-chip synchronous self-timed write circuitry.

Three synchronous Chip Selects (\overline{CE}_1 , \overline{CE}_2 , \overline{CE}_3) and an asynchronous Output Enable (\overline{OE}) provide for easy bank selection and output three-state control. In order to provide proper data during depth expansion, \overline{OE} is masked during the first clock of a read cycle when emerging from a deselected state.



Intel and Pentium are trademarks of Intel Corporation.

PowerPC is a trademark of IBM Corporation.

Pin Configuration

Selection Guide

		7C1339-166	7C1339-133	7C1339-100
Maximum Access Time (ns)		3.5	4.0	5.5
Maximum Operating Current (mA)	Commercial	420	375	325
Maximum CMOS Standby Current (mA)	Commercial	10	10	10

Pin Definitions

Pin Number	Name	I/O	Description
50–44, 81, 82, 99, 100, 32–37	A _[16:0]	Input- Synchronous	Address Inputs used to select one of the 64K address locations. Sampled at the rising edge of the CLK if \overline{ADSP} or \overline{ADSC} is active LOW, and \overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 are sampled active. $A_{[1:0]}$ feed the 2-bit counter.
96–93	BW _[3:0]	Input- Synchronous	Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the SRAM. Sampled on the rising edge of CLK.
88	GW	Input- Synchronous	Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a global write is conducted (ALL bytes are written, regardless of the values on $\overline{BW}_{[3:0]}$ and \overline{BWE}).
87	BWE	Input- Synchronous	Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal must be asserted LOW to conduct a byte write.
89	CLK	Input-Clock	Clock input. Used to capture all synchronous inputs to the device. Also used to increment the burst counter when \overline{ADV} is asserted LOW, during a burst operation.
98	CE ₁	Input- Synchronous	Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE_2 and \overline{CE}_3 to select/deselect the device. \overline{ADSP} is ignored if \overline{CE}_1 is HIGH.
97	CE ₂	Input- Synchronous	Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_3$ to select/deselect the device.
92	CE ₃	Input- Synchronous	Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$ to select/deselect the device.
86	ŌĒ	Input- Asynchronous	Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deserted HIGH, I/O pins are three-stated, and act as input data pins. OE is masked during the first clock of a read cycle when emerging from a deselected state.
83	ADV	Input- Synchronous	Advance Input signal, sampled on the rising edge of CLK. When asserted, it automatically increments the address in a burst cycle.
84	ADSP	Input- Synchronous	Address Strobe from Processor, sampled on the rising edge of CLK. When asserted LOW, $A_{[16:0]}$ is captured in the address registers. $A_{[1:0]}$ are also loaded into the burst counter. When \overline{ADSP} and \overline{ADSC} are both asserted, only \overline{ADSP} is recognized. \overline{ASDP} is ignored when \overline{CE}_1 is deserted HIGH.
85	ADSC	Input- Synchronous	Address Strobe from Controller, sampled on the rising edge of CLK. When asserted LOW, A _[16:0] is captured in the address registers. A _[1:0] are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized.
64	ZZ	Input- Asynchronous	ZZ "sleep" Input. This active HIGH input places the device in a non-time-critical "sleep" condition with data integrity preserved. Leaving ZZ floating or NC will default the device into an active state. ZZ has an internal pull down.
29, 28, 25-22, 19, 18,13,12, 9-6, 3, 2, 79, 78, 75-72, 69, 68, 63, 62 59-56, 53, 52	DQ _[31:0]	I/O- Synchronous	Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered by the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by $A_{[16:0]}$ during the previous clock rise of the read cycle. The direction of the pins is controlled by \overline{OE} . When \overline{OE} is asserted LOW, the pins behave as outputs. When HIGH, $DQ_{[31:0]}$ are placed in a three-state condition.
15, 41, 65, 91	V _{DD}	Power Supply	Power supply inputs to the core of the device. Should be connected to 3.3V power supply.
17, 40, 67, 90	V_{SS}	Ground	Ground for the core of the device. Should be connected to ground of the system.
4, 11, 20, 27, 54, 61, 70, 77	V_{DDQ}	I/O Power Supply	Power supply for the I/O circuitry. Should be connected to a 3.3V or 2.5V power supply.
5, 10, 21, 26, 55, 60, 71, 76	V _{SSQ}	I/O Ground	Ground for the I/O circuitry. Should be connected to ground of the system.
31	MODE	Input- Static	Selects burst order. When tied to GND selects linear burst sequence. When tied to V _{DDQ} or left floating selects interleaved burst sequence. This is a strap pin and should remain static during device operation. When left floating or NC, defaults to interleaved burst order. Mode pin has an internal pull up.
1, 14, 16, 30, 38, 39, 42, 43, 51, 66, 80	NC	-	No Connects.

Introduction

Functional Overview

All synchronous inputs pass through input registers controlled by the rising edge of the clock. All data outputs pass through output registers controlled by the rising edge of the clock. Maximum access delay from the clock rise (t_{CO}) is 3.5 ns (166-MHz device).

The CY7C1339 supports secondary cache in systems utilizing either a linear or interleaved burst sequence. The interleaved burst order supports Pentium and i486 processors. The linear burst sequence is suited for processors that utilize a linear burst sequence. The burst order is user selectable, and is determined by sampling the MODE input. Accesses can be initiated with either the Processor Address Strobe (ADSP) or the Controller Address Strobe (ADSC). Address advancement through the burst sequence is controlled by the ADV input. A two-bit on-chip wraparound burst counter captures the first address in a burst sequence and automatically increments the address for the rest of the burst access.

Byte write operations are qualified with the Byte Write Enable (\overline{BWE}) and Byte Write Select $(\overline{BW}_{[3:0]})$ inputs. A Global Write Enable (\overline{GW}) overrides all byte write inputs and writes data to all four bytes. All writes are simplified with on-chip synchronous self-timed write circuitry.

Three synchronous Chip Selects (\overline{CE}_1 , \overline{CE}_2 , \overline{CE}_3) and an asynchronous Output Enable (\overline{OE}) provide for easy bank selection and output three-state control. \overline{ADSP} is ignored if \overline{CE}_1 is HIGH.

Single Read Accesses

This access is initiated when the following conditions are satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2) \overline{CE}_1 , \overline{CE}_2 , \overline{CE}_3 are all asserted active, and (3) the write signals (GW, BWE) are all deserted HIGH. ADSP is ignored if CE₁ is HIGH. The address presented to the address inputs (A_[16:0]) is stored into the address advancement logic and the Address Register while being presented to the memory core. The corresponding data is allowed to propagate to the input of the Output Registers. At the rising edge of the next clock the data is allowed to propagate through the output register and onto the data bus within 3.5 ns (166-MHz device) if \overline{OE} is active LOW. The only exception occurs when the SRAM is emerging from a deselected state to a selected state, its outputs are always three-stated during the first cycle of the access. After the first cycle of the access, the outputs are controlled by the OE signal. Consecutive single read cycles are supported. Once the SRAM is deselected at clock rise by the chip select and either ADSP or ADSC signals, its output will three-state immediately.

Single Write Accesses Initiated by ADSP

This access is initiated when both of the following conditions are satisfied at clock rise: (1) $\overline{\text{ADSP}}$ is asserted LOW, and (2) $\overline{\text{CE}}_1$, $\overline{\text{CE}}_2$, $\overline{\text{CE}}_3$ are all asserted active. The address presented to $A_{[16:0]}$ is loaded into the address register and the address advancement logic while being delivered to the RAM core. The write signals ($\overline{\text{GW}}$, $\overline{\text{BWE}}$, and $\overline{\text{BW}}_{[3:0]}$) and $\overline{\text{ADV}}$ inputs are ignored during this first cycle.

ADSP-triggered write accesses require two clock cycles to complete. If \overline{GW} is asserted LOW on the second clock rise, the data presented to the DQ_[31:0] inputs is written into the corre-

sponding address location in the RAM core. If \overline{GW} is HIGH, then the write operation is controlled by \overline{BWE} and $\overline{BW}_{[3:0]}$ signals. The CY7C1339 provides byte write capability that is described in the Write Cycle Descriptions table. Asserting the Byte Write Enable input (\overline{BWE}) with the selected Byte Write ($\overline{BW}_{[3:0]}$) input will selectively write to only the desired bytes. Bytes not selected during a byte write operation will remain unaltered. A synchronous self-timed write mechanism has been provided to simplify the write operations.

Because the CY7C1339 is a common I/O device, the Output Enable (\overline{OE}) must be deserted HIGH before presenting data to the $DQ_{[31:0]}$ inputs. Doing so will three-state the output drivers. As a safety precaution, $DQ_{[31:0]}$ are automatically three-stated whenever a write cycle is detected, regardless of the state of \overline{OE} .

Single Write Accesses Initiated by ADSC

ADSC write accesses are initiated when the following conditions are satisfied: (1) $\overline{\text{ADSC}}$ is asserted LOW, (2) $\overline{\text{ADSP}}$ is deserted HIGH, (3) $\overline{\text{CE}_1}$, $\overline{\text{CE}_2}$, $\overline{\text{CE}_3}$ are all asserted active, and (4) the appropriate combination of the write inputs ($\overline{\text{GW}}$, $\overline{\text{BWE}}$, and $\overline{\text{BW}}_{[3:0]}$) are asserted active to conduct a write to the desired byte(s). $\overline{\text{ADSC-}}$ triggered write accesses require a single clock cycle to complete. The address presented to $A_{[16:0]}$ is loaded into the address register and the address advancement logic while being delivered to the RAM core. The $\overline{\text{ADV}}$ input is ignored during this cycle. If a global write is conducted, the data presented to the $\overline{\text{DQ}}_{[31:0]}$ is written into the corresponding address location in the RAM core. If a byte write is conducted, only the selected bytes are written. Bytes not selected during a byte write operation will remain unaltered. A synchronous self-timed write mechanism has been provided to simplify the write operations.

Because the CY7C1339 is a common I/O device, the Output Enable (\overline{OE}) must be deserted HIGH before presenting data to the $DQ_{[31:0]}$ inputs. Doing so will three-state the output drivers. As a safety precaution, $DQ_{[31:0]}$ are automatically three-stated whenever a write cycle is detected, regardless of the state of \overline{OE} .

Burst Sequences

The CY7C1339 provides a two-bit wraparound counter, fed by $A_{[1:0]}$, that implements either an interleaved or linear burst sequence. The interleaved burst sequence is designed specifically to support Intel Pentium applications. The linear burst sequence is designed to support processors that follow a linear burst sequence. The burst sequence is user selectable through the MODE input.

Asserting $\overline{\text{ADV}}$ LOW at clock rise will automatically increment the burst counter to the next address in the burst sequence. Both read and write burst operations are supported.

Interleaved Burst Sequence

First Address	Second Address	Third Address	Fourth Address
A _[1:0]	A _[1:0]	A _[1:0]	A _[1:0]
00	01	10	11
01	00	11	10
10	11	00	01
11	10	01	00

Linear Burst Sequence

First Address	Second Address	Third Address	Fourth Address
A _[1:0]	A _[1:0]	A _[1:0]	A _[1:0]
00	01	10	11
01	10	11	00
10	11	00	01
11	00	01	10

Sleep Mode

The ZZ input pin is an asynchronous input. Asserting ZZ places the SRAM in a power conservation "sleep" mode. Two clock cycles are required to enter into or exit from this "sleep" mode. While in this mode, data integrity is guaranteed. Accesses pending when entering the "sleep" mode are not considered valid nor is the completion of the operation guaranteed. The device must be deselected prior to entering the "sleep" mode. $\overline{\text{CE}}_1$, $\overline{\text{CE}}_2$, $\overline{\text{CE}}_3$, $\overline{\text{ADSP}}$, and $\overline{\text{ADSC}}$ must remain inactive for the duration of t_{ZZREC} after the ZZ input returns LOW.

ZZ Mode Electrical Characteristics

Parameter	Description	Test Conditions	Min.	Max.	Unit
I _{DDZZ}	Snooze mode standby current	ZZ ≥ V _{DD} – 0.2V		3	mA
tzzs	Device operation to ZZ	$ZZ \ge V_{DD} - 0.2V$		2t _{CYC}	ns
t _{ZZREC}	ZZ recovery time	ZZ <u>≤</u> 0.2V	2t _{CYC}		ns

Cycle Descriptions $^{[1, 2, 3]}$

Next Cycle	Add. Used	ZZ	Œ ₃	CE ₂	CE ₁	ADSP	ADSC	ADV	ŌĒ	DQ	Write
Unselected	None	L	Х	Х	1	Х	0	Х	Х	Hi-Z	Х
Unselected	None	L	1	Х	0	0	Х	Х	Х	Hi-Z	Х
Unselected	None	L	Х	0	0	0	Х	Х	Х	Hi-Z	Х
Unselected	None	L	1	Х	0	1	0	Х	Х	Hi-Z	Х
Unselected	None	L	Х	0	0	1	0	Х	Х	Hi-Z	Х
Begin Read	External	L	0	1	0	0	Х	Х	Х	Hi-Z	Х
Begin Read	External	L	0	1	0	1	0	Х	Х	Hi-Z	Read
Continue Read	Next	L	Х	Х	Х	1	1	0	1	Hi-Z	Read
Continue Read	Next	L	Х	Х	Х	1	1	0	0	DQ	Read
Continue Read	Next	L	Х	Х	1	Х	1	0	1	Hi-Z	Read
Continue Read	Next	L	Х	Х	1	Х	1	0	0	DQ	Read
Suspend Read	Current	L	Х	Х	Х	1	1	1	1	Hi-Z	Read
Suspend Read	Current	L	Х	Х	Х	1	1	1	0	DQ	Read
Suspend Read	Current	L	Х	Х	1	Х	1	1	1	Hi-Z	Read
Suspend Read	Current	L	Х	Х	1	Х	1	1	0	DQ	Read
Begin Write	Current	L	Х	Х	Х	1	1	1	Х	Hi-Z	Write
Begin Write	Current	L	Х	Х	1	Х	1	1	Х	Hi-Z	Write
Begin Write	External	L	0	1	0	1	0	Х	Х	Hi-Z	Write
Continue Write	Next	L	Х	Х	Х	1	1	0	Х	Hi-Z	Write
Continue Write	Next	L	Х	Х	1	Х	1	0	Х	Hi-Z	Write
Suspend Write	Current	L	Х	Х	Х	1	1	1	Х	Hi-Z	Write
Suspend Write	Current	L	Х	Х	1	Х	1	1	Х	Hi-Z	Write
ZZ "Sleep"	None	Н	Х	Х	Х	Х	Х	Х	Х	Hi-Z	Х

X="Don't Care," 1=HIGH, 0=LOW.
 Write is defined by BWE, BW[3:0], and GW. See Write Cycle Descriptions table.
 The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.

Write Cycle Descriptions[4, 5, 6]

Function	GW	BWE	BW ₃	BW ₂	BW ₁	BW ₀
Read	1	1	Х	Х	Х	Х
Read	1	0	1	1	1	1
Write Byte 0 - DQ _[7:0]	1	0	1	1	1	0
Write Byte 1 - DQ _[15:8]	1	0	1	1	0	1
Write Bytes 1, 0	1	0	1	1	0	0
Write Byte 2 - DQ _[23:16]	1	0	1	0	1	1
Write Bytes 2, 0	1	0	1	0	1	0
Write Bytes 2, 1	1	0	1	0	0	1
Write Bytes 2, 1, 0	1	0	1	0	0	0
Write Byte 3 - DQ _[31:24]	1	0	0	1	1	1
Write Bytes 3, 0	1	0	0	1	1	0
Write Bytes 3, 1	1	0	0	1	0	1
Write Bytes 3, 1, 0	1	0	0	1	0	0
Write Bytes 3, 2	1	0	0	0	1	1
Write Bytes 3, 2, 0	1	0	0	0	1	0
Write Bytes 3, 2, 1	1	0	0	0	0	1
Write All Bytes	1	0	0	0	0	0
Write All Bytes	0	Х	Х	Х	Х	Х

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied.....-55°C to +125°C Supply Voltage on V_{DD} Relative to GND......-0.5V to +4.6V Current into Outputs (LOW)20 mA

Static Discharge Voltage	>2001V
(per MIL-STD-883, Method 3015)	
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature ^[8]	V _{DD}	V _{DDQ}
Com'l	0°C to +70°C	3.3V -5%/+10%	2.5V -5% 3.3V /+10%
Ind'l	-40°C to +85°C	3.3V -5%/+10%	2.5V -5% 3.3V /+10%

4. X="Don't Care," 1=Logic HIGH, 0=Logic LOW.

The SRAM always initiates a read cycle when ADSP asserted, regardless of the state of \overline{GW} , \overline{BWE} , or $\overline{BW}_{[3:0]}$. Writes may occur only on subsequent clocks after the \overline{ADSP} or with the assertion of \overline{ADSC} . As a result, \overline{OE} must be driven HIGH prior to the start of the write cycle to allow the outputs to three-state. \overline{OE} is

a don't care for the remainder of the write cycle.

OE is a synchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle DQ=High-Z when OE is inactive or when the device is deselected, and DQ=data when OE is active.

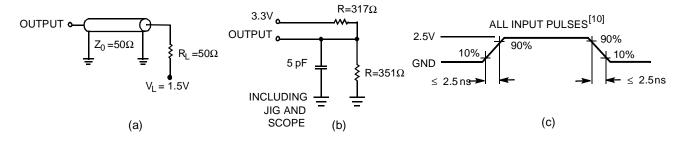
Minimum voltage equals –2.0V for pulse durations of less than 20 ns.

T_A is the case temperature.

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Condition	ons	Min.	Max.	Unit
V _{DD}	Power Supply Voltage	3.3V -5%/+10%			3.6	V
V _{DDQ}	I/O Supply Voltage	2.5V –5% to 3.3V +10%			3.6	V
V _{OH}	Output HIGH Voltage	$V_{DDQ} = 3.3V, V_{DD} = Min., I_{OH} = -4.0 \text{ mA}$				V
		$V_{DDQ} = 2.5V$, $V_{DD} = Min.$, $I_{OH} = -2.0$ I	mA	2.0		V
V _{OL}	Output LOW Voltage	$V_{DDQ} = 3.3V$, $V_{DD} = Min.$, $I_{OL} = 8.0 m$	A		0.4	V
		$V_{DDQ} = 2.5V, V_{DD} = Min., I_{OL} = 2.0 \text{ mA}$			0.7	V
V _{IH}	Input HIGH Voltage	DDQ		2.0	V _{DD} + 0.3V	V
V _{IH}	Input HIGH Voltage	V _{DDQ} = 2.5V			V _{DD} + 0.3V	V
V _{IL}	Input LOW Voltage ^[7]	V _{DDQ} = 3.3\	V	-0.3	0.8	V
V _{IL}	Input LOW Voltage ^[7]	V _{DDQ} = 2.5\	V	-0.3	0.7	V
I _X	Input Load Current except ZZ and MODE	$GND \le V_1 \le V_{DDQ}$		– 5	5	μА
	Input Current of MODE	Input = V _{SS}		-30		μΑ
		Input = V _{DDQ}			5	μА
	Input Current of ZZ	Input = V _{SS}				μА
		Input = V _{DDQ}			30	μА
I _{OZ}	Output Leakage Current	GND ≤ V _I ≤ V _{DDQ} , Output Disabled		- 5	5	μА
I _{DD}	V _{DD} Operating Supply	$V_{DD} = Max., I_{OUT} = 0 mA,$	6-ns cycle, 166 MHz		420	mA
	Current	$f = f_{MAX} = 1/t_{CYC}$	7.5-ns cycle, 133 MHz		375	mA
			10-ns cycle, 100 MHz		325	mA
I _{SB1}	Automatic CS	Max. V _{DD} , Device Deselected,	6-ns cycle, 166 MHz		150	mA
	Power-Down Current—TTL Inputs	$V_{IN} \ge V_{IH} \text{ or } V_{IN} \le V_{IL}$ f = f _{MAX} = 1/t _{CYC}	7.5-ns cycle, 133 MHz		125	mA
			10-ns cycle, 100 MHz		115	mA
I _{SB2}	Automatic CS Power-Down Current—CMOS Inputs	$\begin{aligned} &\text{Max. V}_{\text{DD}}, \text{Device Deselected, V}_{\text{IN}} \\ &\leq 0.3 \text{V or V}_{\text{IN}} \geq \text{V}_{\text{DDQ}} - 0.3 \text{V, f} = 0 \end{aligned}$	All speeds		10	mA
I _{SB3}	Automatic CS	Max. V _{DD} , Device Deselected, or	6-ns cycle, 166 MHz		125	mA
	Power-Down Current—CMOS Inputs	$V_{IN} \le 0.3V$ or $V_{IN} \ge V_{DDQ} - 0.3V$	7.5-ns cycle, 133 MHz		95	mA
	'		10-ns cycle, 100 MHz		85	mA
I _{SB4}	Automatic CS Power-Down Current—TTL Inputs	Max. V_{DD} , Device Deselected, $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, f = 0			18	mA

Capacitance^[9]

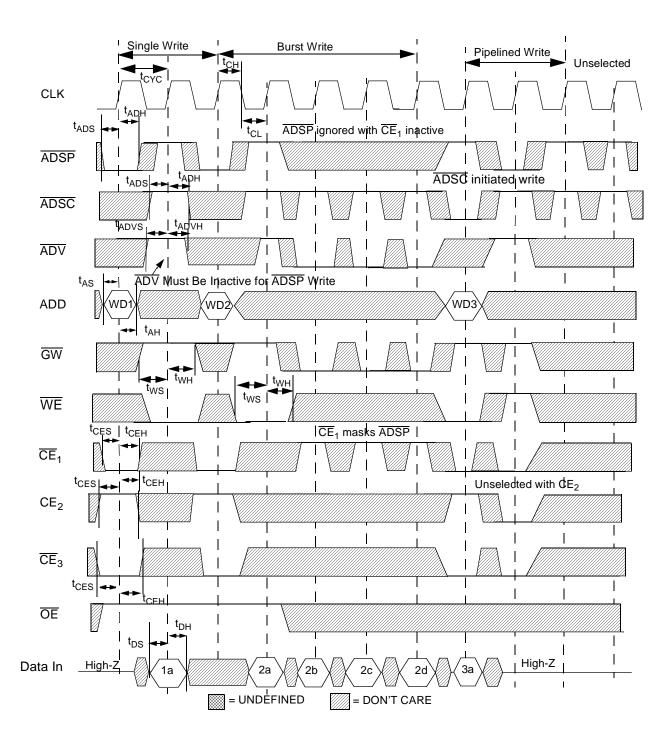

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	4	pF
C _{CLK}	Clock Input Capacitance	$V_{DD} = 3.3V.$ $V_{DDO} = 3.3V$	4	pF
C _{I/O}	Input/Output Capacitance	- DDQ	4	pF

Note:

^{9.} Tested initially and after any design or process changes that may affect these parameters.

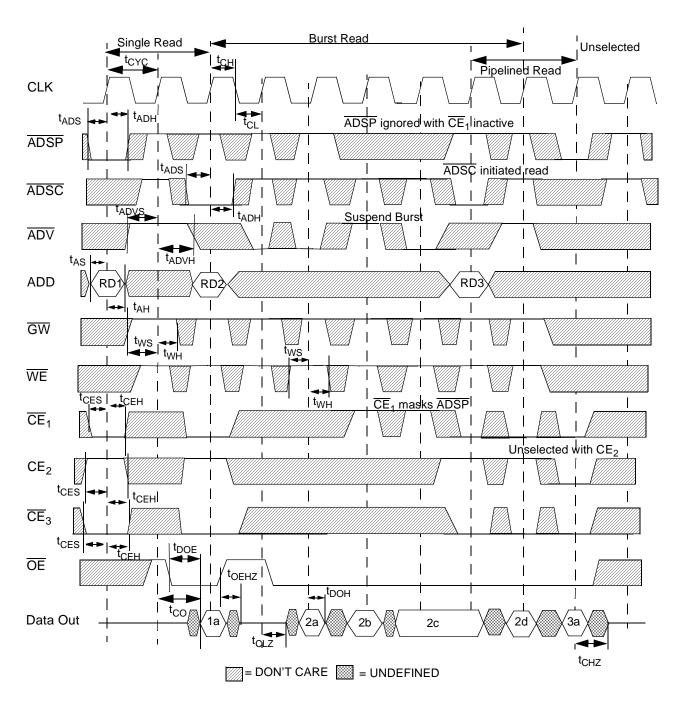
AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range^[11,12,13]


		-166		-133		-100		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{CYC}	Clock Cycle Time	6.0		7.5		10		ns
t _{CH}	Clock HIGH	1.7		1.9		3.5		ns
t _{CL}	Clock LOW	1.7		1.9		3.5		ns
t _{AS}	Address Set-Up Before CLK Rise	2.0		2.5		2.5		ns
t _{AH}	Address Hold After CLK Rise	0.5		0.5		0.5		ns
t _{CO}	Data Output Valid After CLK Rise		3.5		4.0		5.5	ns
t _{DOH}	Data Output Hold After CLK Rise	1.5		2.0		2.0		ns
t _{ADS}	ADSP, ADSC Set-Up Before CLK Rise	2.0		2.5		2.5		ns
t _{ADH}	ADSP, ADSC Hold After CLK Rise	0.5		0.5		0.5		ns
t _{WES}	BWE, GW, BW[3:0] Set-Up Before CLK Rise	2.0		2.5		2.5		ns
t _{WEH}	BWE, GW, BW[3:0] Hold After CLK Rise	0.5		0.5		0.5		ns
t _{ADVS}	ADV Set-Up Before CLK Rise	2.0		2.5		2.5		ns
t _{ADVH}	ADV Hold After CLK Rise	0.5		0.5		0.5		ns
t _{DS}	Data Input Set-Up Before CLK Rise	2.0		2.5		2.5		ns
t _{DH}	Data Input Hold After CLK Rise	0.5		0.5		0.5		ns
t _{CES}	Chip Select Set-Up	2.0		2.5		2.5		ns
t _{CEH}	Chip Select Hold After CLK Rise	0.5		0.5		0.5		ns
t _{CHZ}	Clock to High-Z ^[12]		3.5		3.5		3.5	ns
t _{CLZ}	Clock to Low-Z ^[12]	0		0		0		ns
t _{EOHZ}	OE HIGH to Output High-Z ^[12, 13]		3.5		3.5		5.5	ns
t _{EOLZ}	OE LOW to Output Low-Z ^[12, 13]	0		0		0		ns
t _{EOV}	OE LOW to Output Valid ^[12]		3.5		4.0		5.5	ns

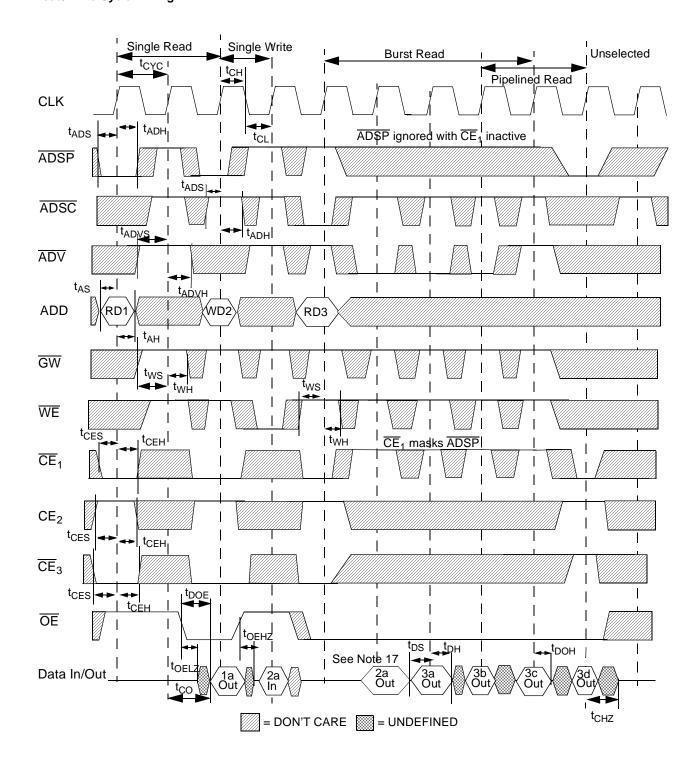
Input waveform should have a slew rate of 1 V/ns.
 Input waveform should have a slew rate of 1 V/ns.
 Unless otherwise noted, test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and load capacitance. Shown in (a) and (b) of AC test loads.
 t_{CHZ}, t_{CLZ}, t_{EOV}, t_{EOLZ}, and t_{EOHZ} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ± 200 mf from steady-state voltage.
 At any given voltage and temperature, t_{EOHZ} is less than t_{EOLZ} and t_{CHZ} is less than t_{CLZ}.

Switching Waveforms


Write Cycle Timing^[14, 15]

^{14.} WE is the combination of BWE, BW_[3:0], and GW to define a write cycle (see Write Cycle Descriptions table).
15. WDx stands for Write Data to Address X.

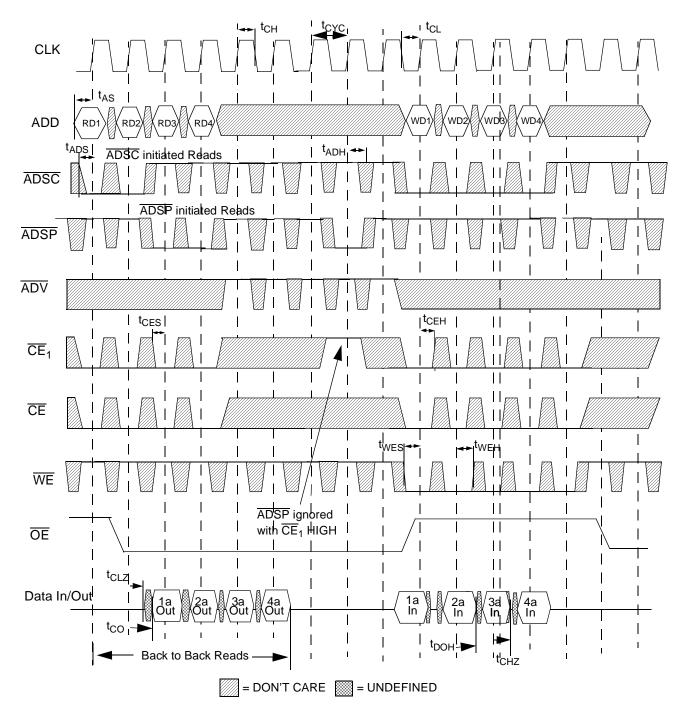
Read Cycle Timing^[14, 16]



Note:

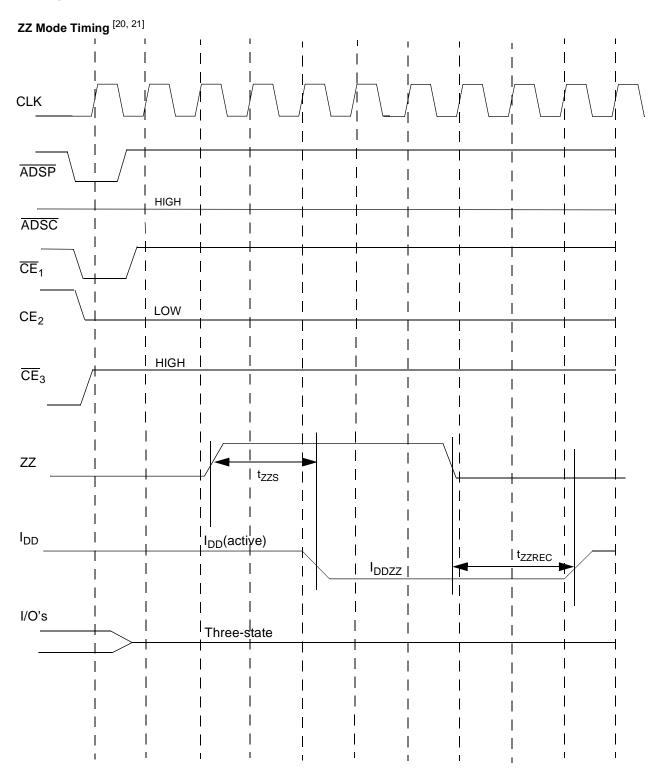
16. RDx stands for Read Data from Address X.

Read/Write Cycle Timing^[14, 15, 16, 17]



Note

17. Data bus is driven by SRAM, but data is not guaranteed.


Pipeline Timing^[18, 19]

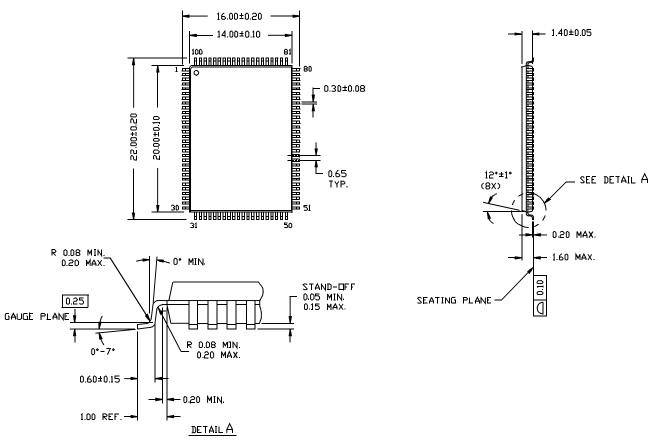
Notes:

Device originally deselected.
 CE is the combination of CE₂ and CE₃. All chip selects need to be active in order to select the device.

Note:

20. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.
 21. I/Os are in three-state when exiting ZZ sleep mode.

Ordering Information


Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
166	CY7C1339-166AC	A101	100-Lead Thin Quad Flat Pack	Commercial
133	CY7C1339-133AC			
100	CY7C1339-100AC			
133	CY7C1339-133AI			Industrial

Document #: 38-00723-C

Package Diagram

100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101

DIMENSIONS ARE IN MILLIMETERS.

51-85050-A

[©] Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, BIPOLAR, ADVANCED LOW-POWER SCHOTTKY TTL, D-TYPE LATCHES, CASCADABLE, MONOLITHIC SILICON

This specification is approved for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

- 1.1 Scope. This specification covers the detail requirements for monolithic silicon, advanced low-power Schottky TTL, D-type latches, bistable logic microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided and are reflected in the complete part number.
- 1.2 Part number. The part number shall be in accordance with MIL-M-38510, and as specified herein.
 - 1.2.1 Device types. The device types shall be as follows:

۲

Device type	<u>Circuit</u>
01	Octal D-type transparent latch with 3-state outputs, cascadable
02	Octal D-type transparent latch with inverted 3-state outputs, cascadable
03	Dual 4-bit D-type transparent latch with 3-state outputs, cascadable
04	Dual 4-bit D-type transparent latch with inverted 3-state outputs, cascadable

- 1.2.2 Device class. The device class shall be the product assurance level as defined in $\overline{\text{MIL-M-38510}}$.
 - 1.2.3 Case outline. The case outline shall be designated as follows:

Letter	Case outline (see MIL-M-38510, appendix C)
K L	F-6 (24-lead, $3/8$ " x $5/8$ "), flat package D-9 (24-lead, $1/4$ " x 1 $1/4$ "), dual-in-line package
R	D-8 (20-lead, 1/4" x 1 1/16"), dual-in-line package
S	F-9 (20-lead, 1/4" x 1/2"), flat package
S 2	C-2 (20 terminal, .350" x .350") square chip carrier
3	package C-4 (28-terminal, .450" x .450") square chip carrier package

1.3 Absolute maximum ratings.

I/ Must withstand the added PD due to short-circuit test (e.g., IO).

| Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be laddressed to: Rome Air Development Center (RBE-2), Griffiss AFB, NY | 13441, by using the self-addressed Standardization Document Improvement | Proposal (DD Form 1426) appearing at the end of this document or by letter.

```
Thermal resistance, junction-to-case (\thetaJC): Cases K, L, R, S- - - - - - - - - - - - - - - - - - 60°C/W 2/Junction temperature (TJ) 3/- - - - - - - - - - +175°C
```

1.4 Recommended operating conditions.

```
4.5 V dc minimum to 5.5 V dc maximum
Supply voltage (V_{CC}) - - -
                                                     2.0 V dc
Minimum high-level input voltage (VIH)--
Maximum low-level input voltage (V_{IL}) - - Case operating temperature range (T_C) - -
                                                     0.8 V dc
                                                     -55°C to +125°C
Input set-up time, t(setup):
Device types 01, 02, 03, and 04 - - - -
                                                     10 ns minimum
Input hold time, t(hold):
Device types 01 and 03-----
                                                      7 ns minimum
  Device types 02 and 04-----
                                                     10 ns minimum
Input pulse width, (t<sub>p</sub>):
Device types 01 and 03 (Enable) - - - -
                                                     10 ns minimum
  Device types 02 and 04 (Enable) - - - -
                                                     15 ns minimum
  Device type 03 (Clear) - - - - - -
                                                     15 ns minimum
  Device type 04 (Preset) - - - - - -
                                                     15 ns minimum
```

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification and standard</u>. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this specification to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510 - Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883 - Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 Order of precedence. In the event of a conflict between the text of this specification and the references cited herein (except for associated detail specifications, specification sheets or MS standards), the text of this specification shall take precedence. Nothing in this specification, however, shall supersede applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 Detail specification. The individual item requirements shall be in accordance with MIL-M-38510, and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
- 3.2.1 Terminal connections and logic diagrams. The terminal connections and logic diagrams shall be as specified on figures 1 and 2 respectively.

 $[\]overline{2}$ / When a thermal resistance value is included in MIL-M-38510, appendix C, it

shall supersede the value stated herein.

3/ Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening methods per method 5004 of MIL-STD-883.

MIL-M-38510/382A

TABLE I. Electrical performance characteristics.

	г	Condi	itions	Device	Lin	nits	
Test	l Symbol	-55°C < T(C <u><</u> +125°C	type	Min	Max	Unit
ligh-level output voltage	 V _{OH} 			All	2.4	1	V
ow-level output voltage	 V _{OL} 			All		0.4	 V
Input clamp voltage	V _{IC}	V _{CC} = 4.5 V I _{IN} = -18 mA T _C = +25 C		A11	 	-1.5	V I
Low-level input current	IIL	V _{CC} = 5.5 V V _{IL} = 0.4 V		All	i 0	 -200 	μ Α
High-level input current $ I_{IH1} V_{CC} = 5.5 \text{ V} $ $ V_{IH} = 2.7 \text{ V} V_{IH} = 2.7 \text{ V}$			All	 	20	μ Α	
	I _{IH2}			All		1110	 μ A
0 to the support 1/	1 I ₀	V _{CC} = 5.5 V V _O = 2.25 V		01	-15	-112	mA
Output current $\underline{1}/$	1 10			02,03,0	4 -15	-110	
Output current, high level, outputs off	IOZH	V _{CC} = 5.5 V V _{OH} = 2.7 V		 All 		20	μ A
Output current, low level, outputs off	IOZL	V _{CC} = 5.5 V V _{OH} = 0.4 V		A11		-20	 μ A
	<u> </u>	V _{CC} :: 5.5 V	5.5 V V _{IN} = 5.0 V			19	i mA
Supply current, outputs high	Іссн	TACC :: 3.3 4	I IN 2 STS 1	03		21	1
				1 02	1	17	<u> </u>
	İ		"	04		21	<u> </u>
Supply current, outputs	I _{CCL}	V _{CC} = 5.5 V	V I N = 0 V	01		24	mA
Tow				1 03	 	29	-
				02	i i	1 24	T
]			 	1 04	1	1 29	1
Is a summant outputs	Iccz	Vcc = 5.5 V		01		27	mA
Supply current, outputs disabled	-662	V _{CC} = 5.5 V V _{OC} = 5.0 V	•"	1 03		31	1
! 	İ	i i	V _{IN} = 5.5 V	02	 	27	<u> </u>
	į	!		7 04	 	31	1

3

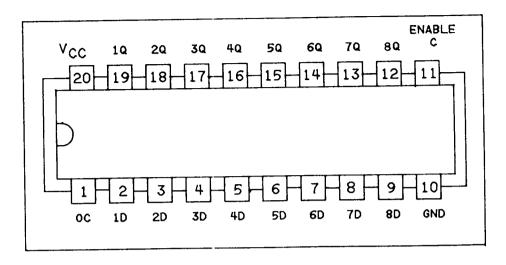
TABLE I. Electrical performance characteristics - Continued.

		Conditions	Device	Lit	nits Max	l Dini+
Test	Symbol	-55°C <u><</u> T _C <u><</u> +125°C	type T	MIN	Max	
Propagation delay time to low level (clear or preset to output)	tPHL1	V _{CC} = 5.0 V C _L = 50 pF ±10% R _L = 500Ω	03,04	6	 24 	ns ns
Propagation delay time	t _{PLH2}	T !	01	8	l 27 	l ns
to high level (enable to output)			02,03	8	<u>29</u> 	† !
			04	8	31 	†
Propagation delay time	tPHL2	†	01	8	20	l ns
to low level (enable to output)			02,03,	8	22 	T
Propagation delay time	t _{PLH3}	Ţ	01,03	2	1 15	ns
to high level (data to output)			02	3	1 21	T I
			04	3	† 23	†
Day and an delay time	1+2	†	01,03	2	15 	l ns
Propagation delay time to low level (data to output)	tpHL3 		02,04	3	15	†
Output control on to high-level output	t _{PZH}		All	4 	 21 	ns
Output control on to low-level output	tpzL	- 	All	4 4	 21 	l ns
 High-level output to	It _{PHZ}	- † 	01	2	12	ns
output control off		1	02,03,04	2	10	
Low-level output to	tpLZ	- 1	01	3	18	ns ns
output control off			02,04	3	15	-+

^{1/} The output conditions have been chosen to produce a current that closely approximates one-half of the true short-circuit output current, $\rm I_{OS}\textsc{-}$

- 3.2.2 Truth tables. The truth tables shall be as specified on figure 3.
- 3.2.3 Schematic circuits. Schematic circuits shall be submitted to the preparing activity prior to inclusion of a manufacturer's device in the specification and shall be submitted to the qualifying activity and agent activity (DESC-ECS) as a prerequisite for qualification. All qualified manufacturers' schematics shall be maintained by the agent activity and will be available upon request.
- 3.2.4 <u>Case outlines.</u> The case outlines shall be as specified in MIL-M-38510 and 1.2.3 herein.
- 3.3 Lead material and finish. The lead material and finish shall be in accordance with MIL-M-38510 (see 6.4).
- 3.4 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range.
- 3.5 Electrical test requirements. The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.

	Subgi (see tab	roups ole III)
MIL-ST)-883	Class S	Class B
test requirements	devices	devices
Interim electrical parameters	1	1
l(method 5004)		
Final electrical tests		1*,2,3,7,
(method 5004)	19,10,11	1 2 2 7
Group A test requirements		11,2,3,7,
(method 5005)	18,9,10,11	
Group B electrical tests	1,2,3,9,	I N/A
1(method 5005) subgroup 5	10,11	1,2,3
Group C end-point electrical	N/A	1 1,2,5
parameters (method 5005)	- I N / N	10,11
Additional electrical subgroups	N/A	1 10,11
for group C periodic inspections	1,2,3	1,2,3
Group D end-point electrical	1 1,2,3	1 1,2,5
lparameters (method 5005)	<u> </u>	<u> </u>


TABLE II. Electrical test requirements.

- 3.6 Marking. Marking shall be in accordance with MIL-M-3851).
- 3.7 Microcircuit group assignment. The devices covered by this specification shall be in microcircuit group number 10 (see MIL-M-38510, appendix E).
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-M-38510 and MIL-STD-883, methods 5005 and 5007, as applicable, except as modified herein.
- 4.2 <u>Screening.</u> Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test (method 1015 of MIL-STD-883.
 - (1) Test condition D or E, using the circuit shown on figure 4, or equivalent.
 - (2) $T_{\Delta} = +125^{\circ}C$ minimum.

^{*}PDA applies to subgroup 1 (see 4.2c).

- b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical test parameters prior to burn-in are optional at the discretion of the manufacturer.
- c. The percent defective allowable (PDA) shall be as specified in MIL-M-38510.
- 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-M-38510. Inspections to be performed shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
- 4.4 Quality conformance inspection. Quality conformance inspection shall be in accordance with MIL-M-38510 and as specified herein. Inspections to be performed shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
- 4.4.1 Group A inspection. Group A inspection shall be in accordance with table I of method 5005 of MIL-STD-883 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6 shall be omitted.
- 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of method 5005 of MIL-STD-883. Electrical parameters shall be as specified in table II herein.
- 4.4.3 Group C inspection. Group C inspection shall be in accordance with table III of method 5005 of MIL-STD-883 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Subgroups 3 and 4 shall be added to the group C inspection requirements for class B devices and shall consist of the tests, conditions, and limits specified for subgroups 10 and 11 of group A.
 - c. Steady-state life test (see method 1005 of MIL-STD-883):
 - (1) Test condition D or E, using the circuit shown on figure 4, or equivalent.
 - (2) $T_A = +125^{\circ}C$ minimum.
 - (3) Test duration: 1,000 hours, except as permitted by appendix B of MIL-M-38510, and method 1005 of MIL-STD-883.
- 4.4.4 Group D inspection. Group D inspection shall be in accordance with table IV of method 5005 of MIL-STD-883. End-point electrical tests shall be as specified in table II herein.
 - 4.5 Methods of inspection. Methods of inspection shall be specified as follows.
- 4.5.1 <u>Voltage and current</u>. All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.
 - 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be as specified in MIL-M-38510.

Device type 01 Cases R and S

Device type 01

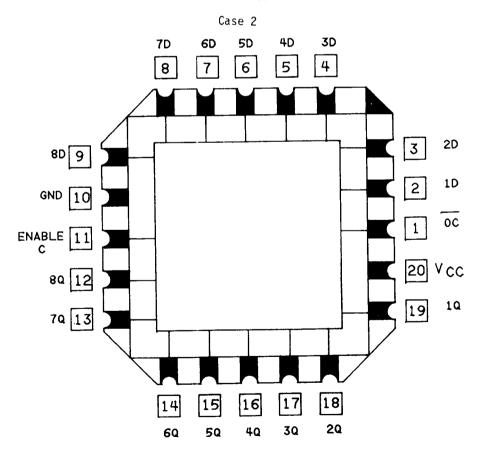
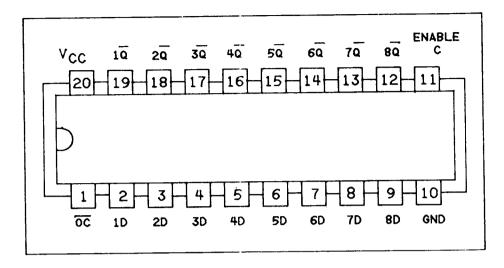



FIGURE 1. Terminal connections.

Device type 02 Cases R and S

Device Type 02

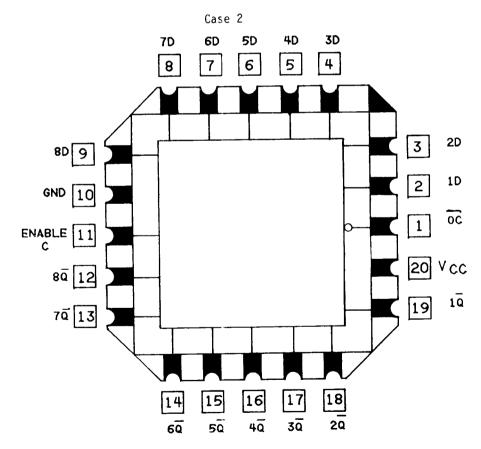



FIGURE 1. Terminal connections - Continued.

Cases K and L

Device type 03

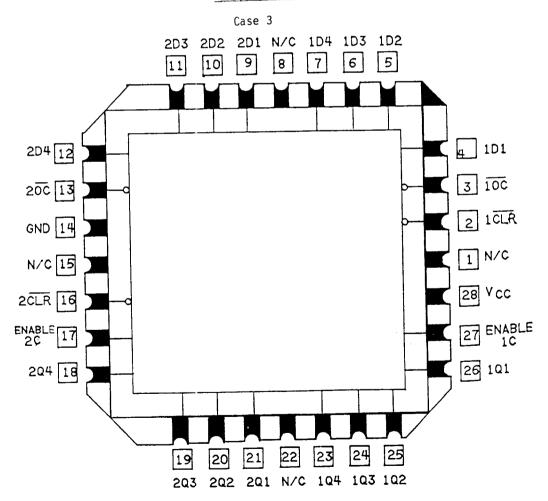
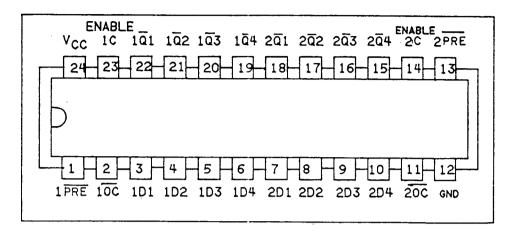



FIGURE 1. Terminal connections - Continued.

Device type 04

Cases K and L

Case 3 2D3 2D2 2D1 N/C 1D4 1D3 1D2 11 5 8 204 12 4 1D1 20C 13 3 10C GND 14 2 1 PRE N/C 15 1 N/C 2 PRE 16 28 V cc ENABLE 17 27 ENABLE 204 18 26 101 23 21 20 203 202 201 N/C 104 103 102

FIGURE 1. Terminal connections - Continued.

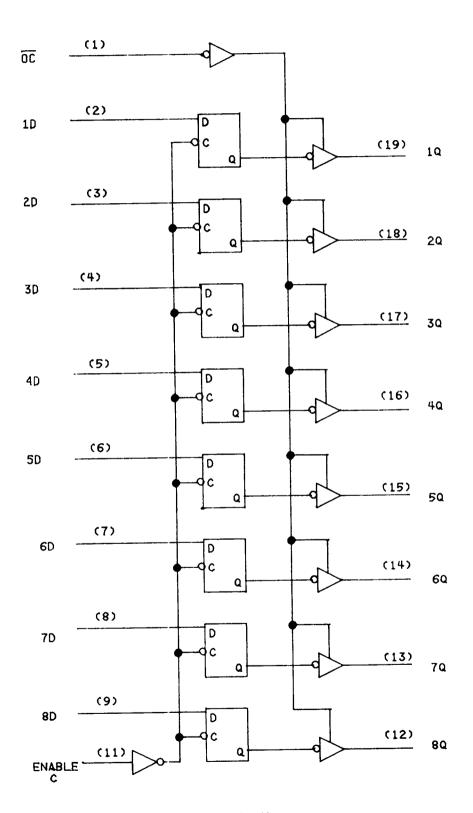


FIGURE 2. Logic diagrams.

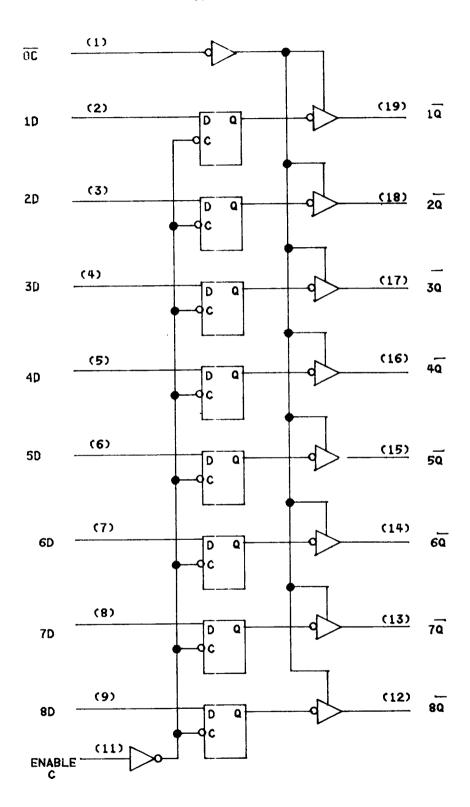


FIGURE 2. Logic diagrams - Continued.

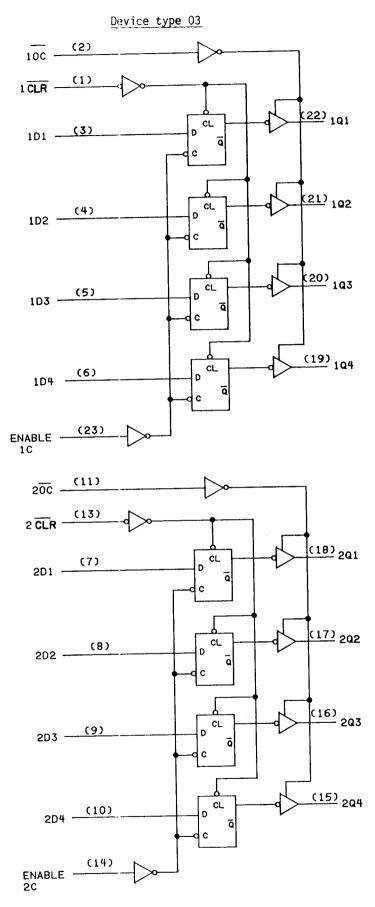


FIGURE 2. Logic diagrams - Continued.

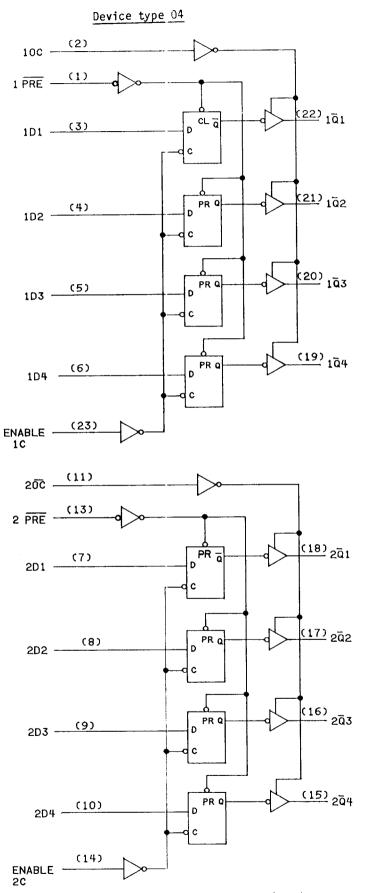


FIGURE 2. Logic diagrams - Continued.

Device type 01

 Output control	Enable	Data	Output
ōč	EN C	l D	Q
H L L	X L H H	X X L H	Z Qo L H

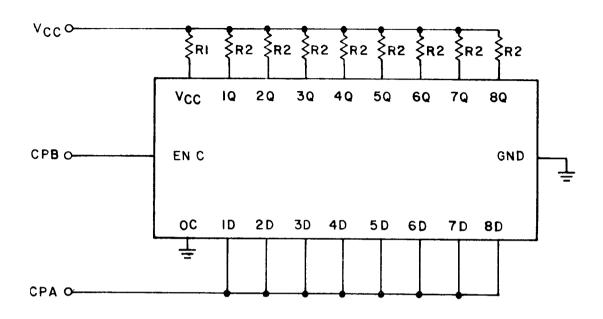
Device type 02

 Output control	t Enable Data		 Output
<u>oc</u>	EN C	l D	Q
Н	i x	i X	Z
! ! L	L	i x	\overline{Q}_O
 L L	H	L H 	H L I

Device type 03

Output control	Clear	Enable	Data	Output
ōc	I CLR	EN C	l D	Q Q
H L L L	X L H H	X X L H H	X X X L H	Z L Qo L H

Device type 04


 Output control	Preset	Enable	Data	 Output
o c	PRE	EN C	D	Q
H L L L	X L H H	X X L H H	X X X X L H	Z L Q ₀ H L

H = High level (steady state)
L = Low level (steady state)
Z = High impedance state
X = Irrelevant

 Q_0 = The level of Q or \overline{Q} before the indicated input conditions were established.

FIGURE 3. Truth tables.

Device type 01

Device type 02

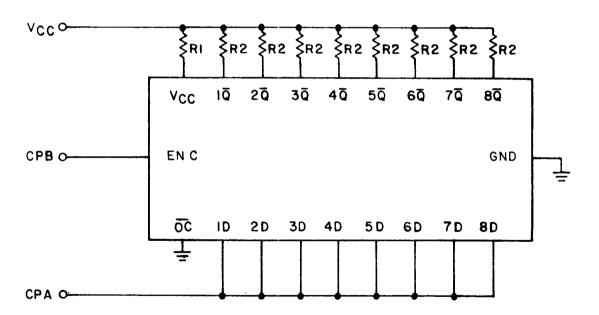
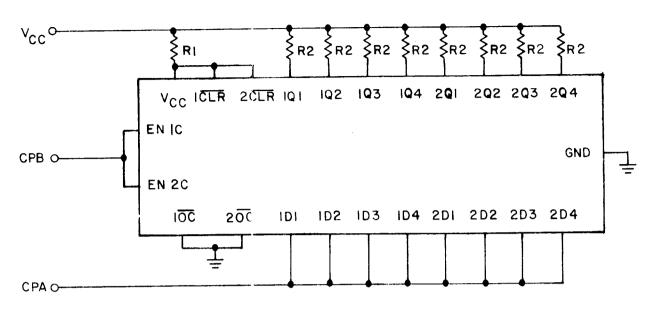
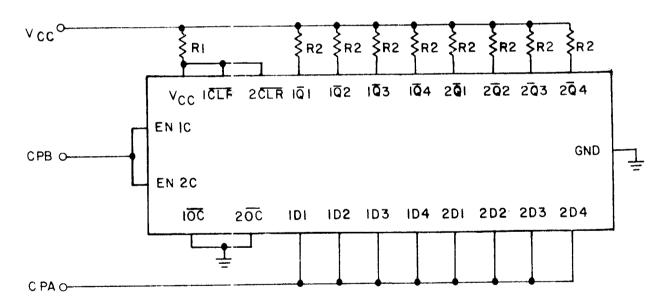
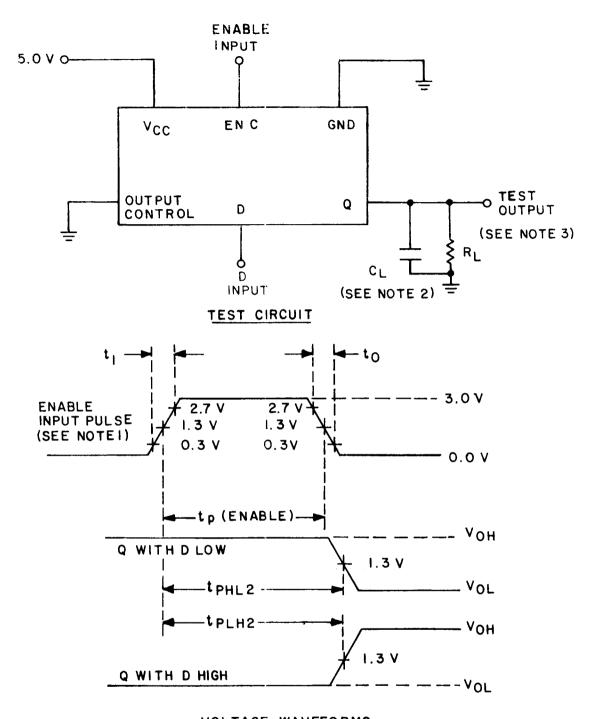




FIGURE 4. Burn-in and life test circuits.

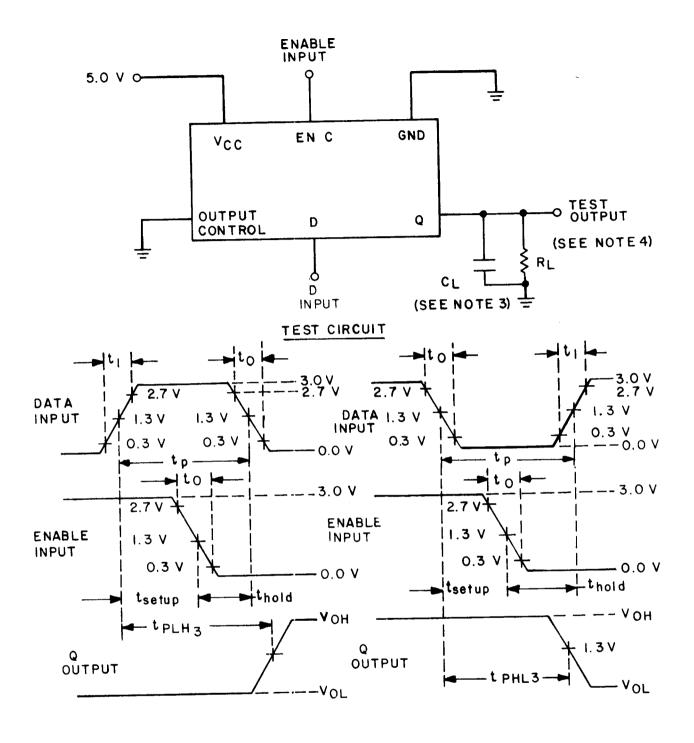
Device type 04



NOTES:

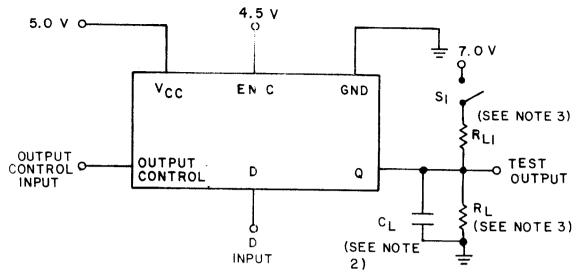
- 1. CPA = 100 kHz 50% square wave; duty cycle = 50 \pm 15%; $V_{
 m IL}$ = -0.5 V minimum to 0.7 V maximum; V_{IH} = 2.0 V minimum to 5.5 V maximum. 2. CPB is same as CPA, synchronized with CPA, except 50 kHz $\pm 50\%$ square wave. 3. R2 = 470 Ω $\pm 5\%$.

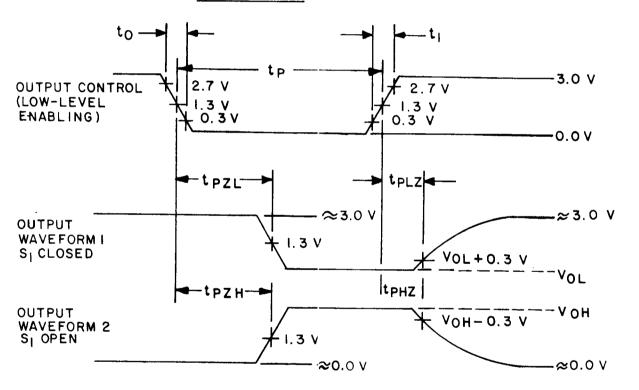
- 4. R_1 and V_{CC} shall be chosen to insure 5.0 V minimum is present at device V_{CC} terminal.


FIGURE 4. Burn-in and life test circuits - Continued.

VOLTAGE WAVEFORMS

- 1. Enable input pulse characteristics: $t_1 = t_0 = 6 \pm 1.5 \text{ ns}$; t_p (enable) = 10 ns; PRR \leq 1 MHz; $Z_{OUT} \approx 50 \Omega$.
- 2. $C_L = 50$ pF $\pm 10\%$ (including jig and probe capacitance). 3. $R_L = 499\Omega \pm 1\%$.

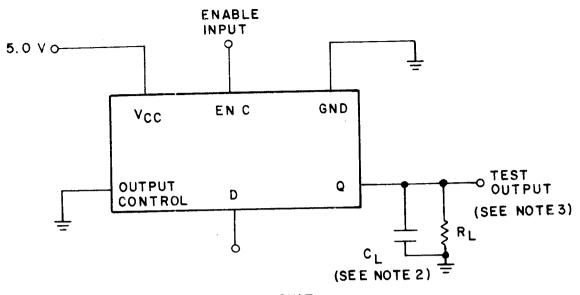

FIGURE 5. Enable switching test circuit and waveforms (device type 01).


NOTES:

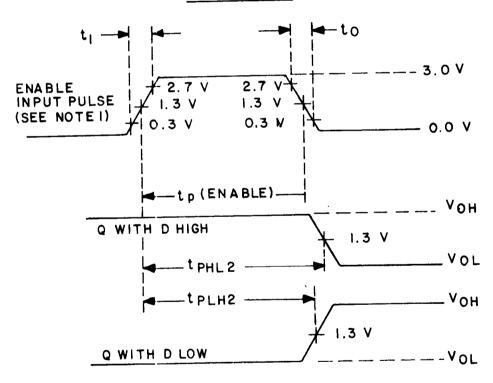
- 1. Enable input pulse characteristics: $z_0 = 6 \pm 1.5 \text{ ns}$; PRR < 1 MHz; $Z_{OUT} \cong 50\Omega$.
- 2. D input pulse characteristics: t_1 = t_0 = 6 ±1.5 ns; t_{setup} = 10 ns; t_{hold} = 7 ns; t_p = 17 ns; $Z_{OUT} \cong 50\Omega$.
- 3. CL = 50 pF 10% (including jig and probe capacitance). R_L = 499 Ω ±1%.

FIGURE 5. Data switching test circuit and waveforms (device type 01).

TEST CIRCUIT

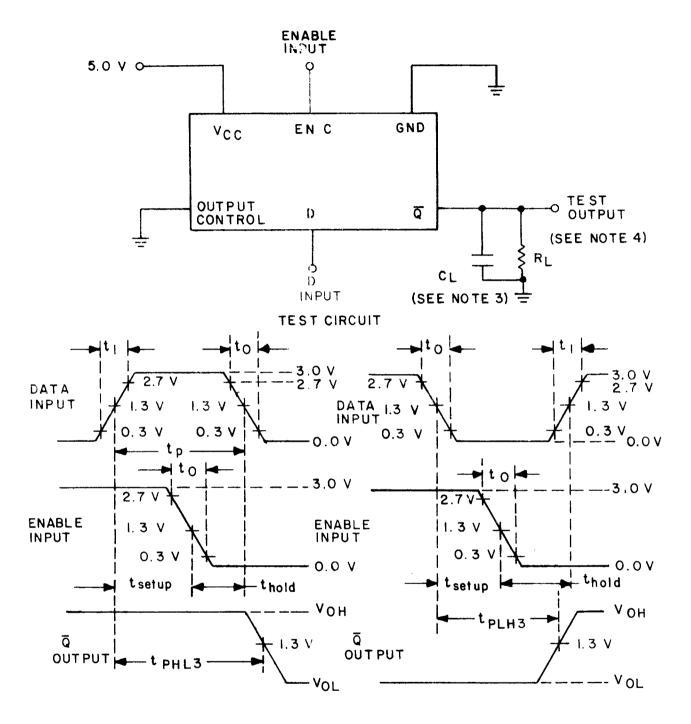


VOLTAGE WAVEFORMS


NOTES:

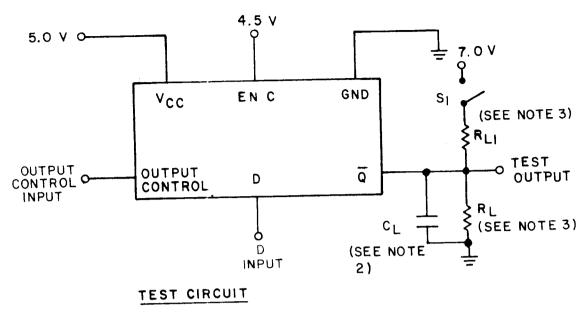
- 1. Output control input pulse characteristics: $t_0 = t_1 = 6 \pm 1.5 \text{ ns}$; $t_p \ge 200 \text{ ns}$; $PRR \le 1 \text{ MHz}$; $Z_{OUT} \cong 50\Omega$.
- 2. $C_L = 50 \text{ pF } \pm 10\%$ (including jig and probe capacitance).
- 3. $R_L = R_{L_1} = 499\Omega \pm 1\%$.

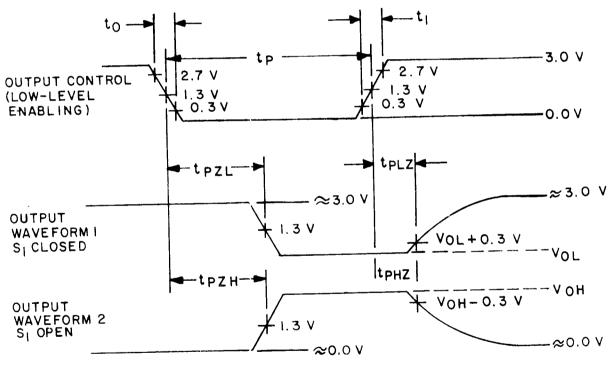
FIGURE .5. Tri-state switching test circuit and waveforms for device type 01.


TEST CIRCUIT

VOLTAGE WAVEFORMS

- 1. Enable input pulse characteristics: $t_1 = t_0 = 6 \pm 1.5 \text{ ns}$; t_p (enable) = 15 ns; PRR \leq 1 MHz; $Z_{OUT} \cong 50 \Omega$.
- 2. $C_L^{=}$ 50 pF $\pm 10\%$ (including jig and probe capacitance).
- 3. $R_L^2 = 499\Omega \pm 1\%$.

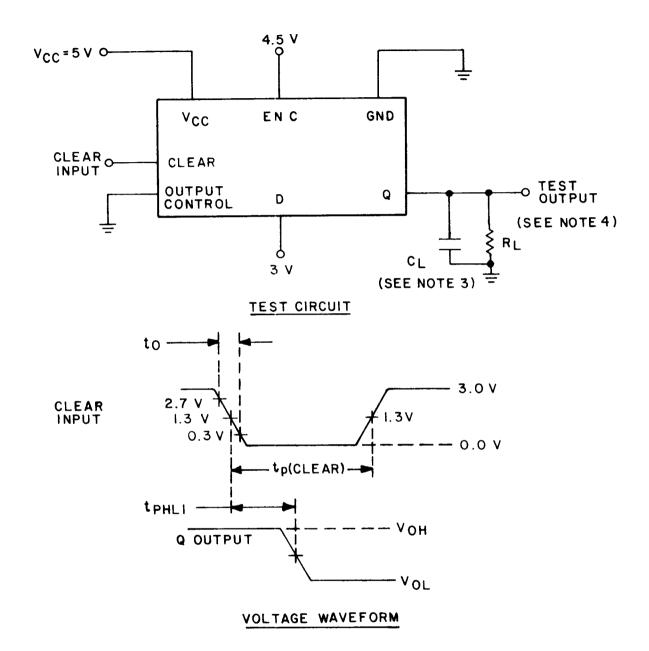

FIGURE 5. Enable switching test circuit and waveforms (device type 02).



NOTES:

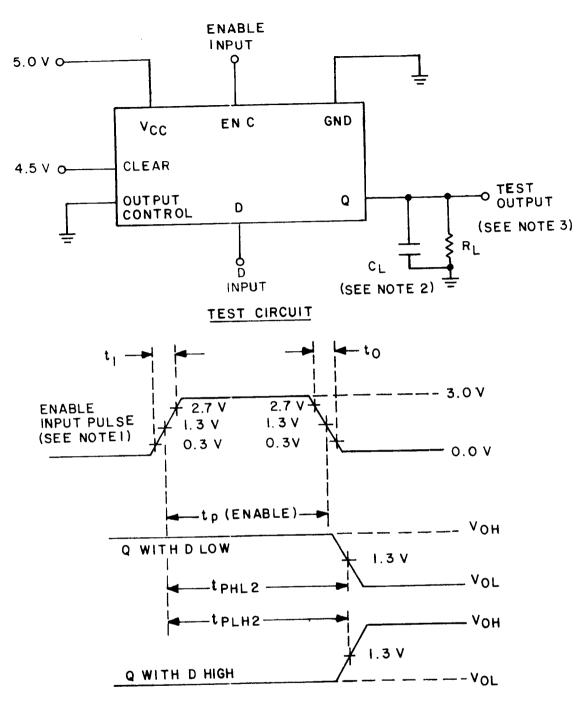
- 1. Enable input pulse characteristics: $t_0 = 6 \pm 1.5$ ns; $t_p = 15$ ns; PRR \leq 1 MHz, $Z_{OUT} \cong 50\Omega$.
- 2. D input pulse characteristics: $t_1 = t_0 = 6 \pm 1.5 \text{ ns}$; $t_{\text{setup}} = 10 \text{ ns}$; t_{hold} = 10 ns; t_p 20 ns; PRR is 50% of enable PRR, $Z_{OUT} \cong 50\Omega$.
- 3. $C_L = 50 \text{ pF} \pm 10\%$ (including jig and probe capacitance).
- 4. $R_{L} = 499\Omega \pm 1\%$.

FIGURE 5. Data switching test circuit and waveforms (device type 02).



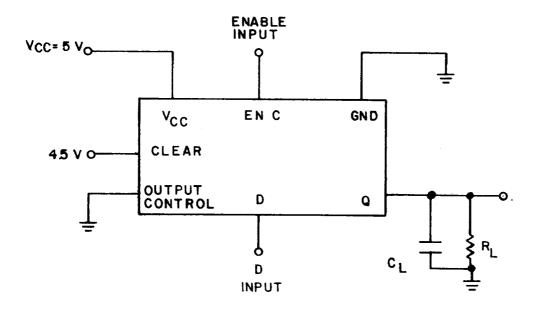
VOLTAGE WAVEFORMS

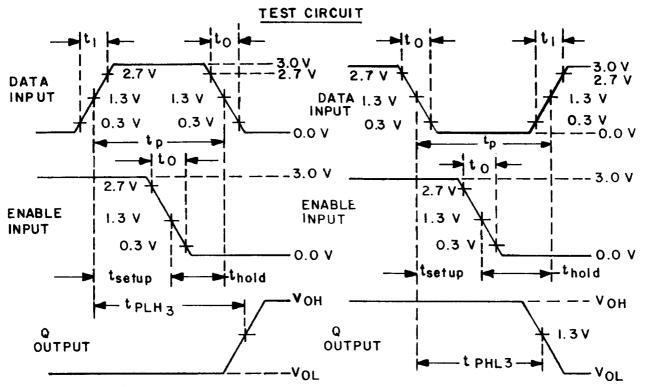
- 1. Output control input pulse characteristics: $t_0 = t_1 = 6 \pm 1.5 \text{ ns}$; $t_p \ge 200 \text{ ns}$; PRR \leq 1 MHz; $Z_{OUT} \cong 50\Omega$.
- 2. $C_1 = 50$ pF $\pm 10\%$ (including jig and probe capacitance).
- 3. $R_{L}^{-} = R_{L_{1}} = 499\Omega \pm 1\%$.


FIGURE 5. Tri-state switching test circuit and waveforms for device type 02.

NOTES:

- 1. Clear input dominates regardless of state of D input. 2. Clear input pulse characteristics: $t_1 = t_0 = 6 \pm 1.5$ ns; t_p (clear) = 15 ns; $PRR \le 1$ MHz, $Z_{OUT} \cong 50\Omega$.
- 3. $C_L = 50 \text{ pF } \pm 10\%$ (including jig and probe capacitance).
- 4. $R_L^2 = 499\Omega \pm 1\%$.

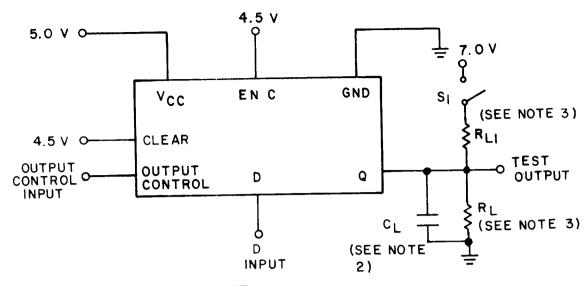

FIGURE 5. Clear switching test circuit and waveforms (device type 03).

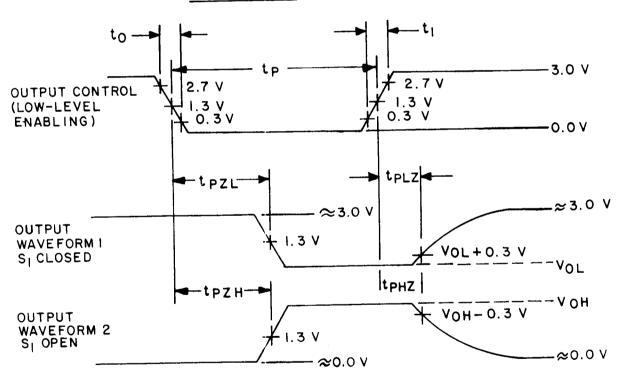


VOLTAGE WAVEFORMS

- 1. Enable input pulse characteristics: t_1 = t_0 = 6 ±1.5 ns; t_p (enable) = 10 ns; PRR < 1 MHz; $Z_{OUT} \cong 50 \Omega$.
- C_L = 50 pF ±10% (including jig and probe capacitance).
- 3. $R_L^2 = 499\Omega \pm 1\%$.

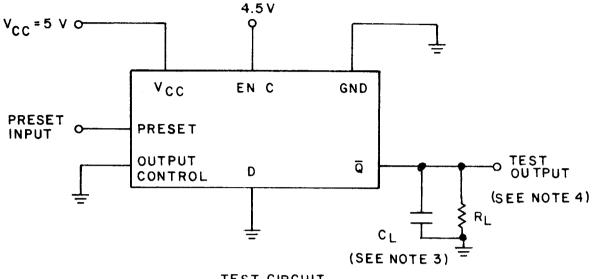
FIGURE 5. Enable switching test circuit and waveforms (device type 03).

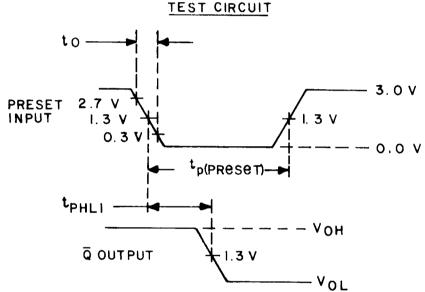



NOTES:

- 1. Enable input pulse characteristics: t_0 = 6 ±1.5 ns; t_p = 10 ns; PRR < 1 MHz; $Z_{OUT} \cong 50 \Omega$.
- 2. D input pulse characteristics: $t_1 = t_0 = 6 \pm 1.5 \text{ ns}$; $t_{\text{setup}} = 10 \text{ ns}$; $t_{\text{hold}} = 7 \text{ ns}$; $t_{\text{p}} = 17 \text{ ns}$; PRR is 50% of Enable PRR; $Z_{\text{OUT}} \cong 50 \Omega$.
- 3. $C_L^P = 50 \text{ pF } \pm 10\%$ (including jig and probe capacitance).
- 4. $R_{L}^{-} = 4990 \pm 1\%$.

FIGURE 5. Data switching test circuit and waveforms (device type 03).

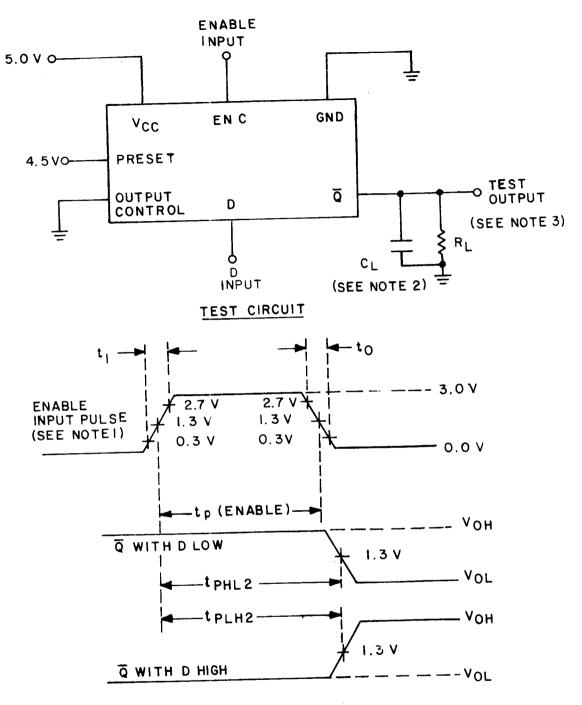

TEST CIRCUIT



VOLTAGE WAVEFORMS

- 1. Output control input pulse characteristics: $t_0 = t_1 = 6 \pm 1.5 \text{ ns}$; $t_p \ge 200 \text{ ns}$; PRR \leq 1 MHz; $Z_{OUT} \cong 50\Omega$.
- 2. $C_1 = 50 \text{ pF } \pm 10\%$ (including jig and probe capacitance).
- 3. $R_L^- = R_{L_1}^- = 499\Omega \pm 1\%$.

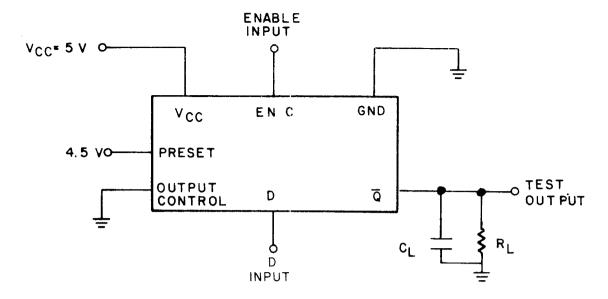
FIGURE 5. Tri-state switching test circuit and waveforms for device type 03.

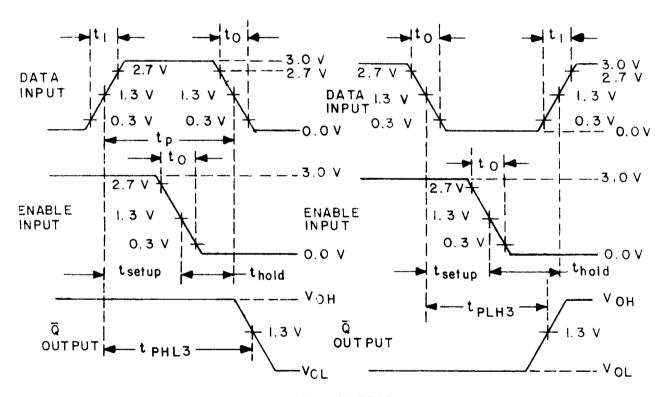


- 1. Preset input dominates regardless of state of D input.
 2. Preset input pulse characteristics: t_0 = 6 ±1.5 ns; t_p (preset) = 15 ns; PRR \leq 1 MHz; $Z_{OUT} \approx 50 \Omega$.

VOLTAGE WAVEFORM

- 3. $C_L = 50 \text{ pF} \pm 10\%$ (including jig and probe capacitance).
- 4. $R_{L} = 499\Omega \pm 1\%$.

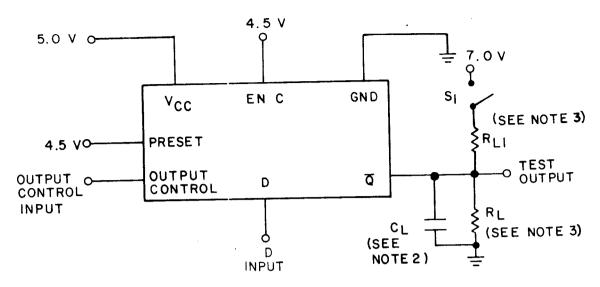

FIGURE 5. Preset switching test circuit and waveforms for device type 04.


VOLTAGE WAVEFORMS

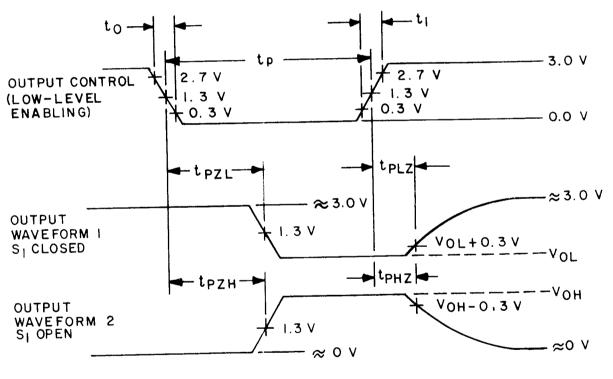
- 1. Enable input pulse characteristics: $t_1 = t_0 = 6 \pm 1.5 \text{ ns}$; t_p (enable) = 15 ns; PRR \leq 1 MHz; $Z_{OUT} \cong 50 \Omega$.
- 2. $C_L^{=}$ = 50 pF ±10% (including jig and probe capacitance).
- 3. $R_1 = 499\Omega \pm 1\%$.

FIGURE 5. Enable switching test circuit and waveforms (device type 04).

TEST CIRCUIT



VOLTAGE WAVEFORMS


NOTES:

- Enable input pulse characteristics: $t_0 = 6 \pm 1.5 \text{ ns}$; $t_p = 15 \text{ ns}$; PRR \leq 1 MHz; $Z_{OUT} \cong 50\Omega$.
- 2. D input pulse characteristics: $t_1=t_0=6$ ±1.5 ns; $t_{setup}=10$ ns; $t_{HOLD}=10$ ns; $t_p=20$ ns; PRR is 50% of enable PRR, $Z_{OUT}=50\Omega$. 3. $C_L=50$ pF 10% (including jig and probe capacitance). 4. $R_L=499\Omega$ ±1%.

FIGURE 5. Data switching test circuit and waveforms (device type 04).

TEST CIRCUIT

VOLTAGE WAVEFORMS

- 1. Output control input pulse characteristics: $t_0 = t_1 = 6 \pm 1.5$ ns; $t_p \ge 200$ ns; PRR \leq 1 MHz; $Z_{OUT} \cong 50\Omega$.
- 2. $C_L = 50$ pF $\pm 10\%$ (including jig and probe capacitance).
- 3. $R_{L}^{-} = R_{L_{1}} = 499\Omega \pm 1\%$.

FIGURE 5. Tri-state switching test circuit and waveforms for device type 04.

MIL-M-38510/382A

TABLE III. Group A inspection for device type 01. Terminal conditions (pins not designated may be high $\overline{2}$.0 V, low $\underline{<}0.8$ V, or open).

	 •				1001075028	· · · · · · · · · · · · · · · · · · ·	·
Sillinit	<u></u>	>:::::::			4 1 1 1 1 1 1 1 1 1		
Test Timitsl	Max.		4		A = = = = = = = = = = = = = = = = = = =	8********	100
	MIN -	4			~k:::::::		
Measured	 	10 20 20 20 20 20 20 20 20 20 20 20 20 20	8 26 25 3 2 5	18 3 8 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	E8 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88 89 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80	F8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
₹	23_	7					
	F 	-1.0 mA	12 mA				
3	82	-1.0 mA	12 mA				
	e .	-1.0 mA	12 mA				
3	6	-1.0 mA	12 mA				
: -	<u> </u>	-1.0 mA	12 mA				
:	<u>8</u>	-1.0 mA	12 mA				
3	۶_	-1.0 mA	12 mA				
7	80	-1.0 mA	12 mA				
:	ENC	2.0 V	* * * * * * * * * * * * * * * * * * * *	-18 mA	v 4 v	12.7 V	7.0 v
2	CIND	Q	=======================================				
, _		2.0 V	V 8.0	-18 mA	y 4.	[2.7 v	7.0 v
,_	e 	2.0 v	V 8.0	-18 mA	4. >	2.7 v	7.0 v
	9	2.0 v	0.8 v	-18 mA	v v v	2.7 v	7.0 v
_	es			-18 mA	v 4 v	2.7 v	7.0 v
	6	12.0 V	v 8 v	-18 F	y 4.0	2.7 v	7.0 v
_	8	2.0 v	8 · · · · · · · · · · · · · · · · · · ·	-18 mA	v 4.0	2.7 v	7.0 v
	es	2.0 v	» «°	-18 mA	V 4 V	2.7 V	× 0.7.0
_	9	2.0 V	» «	-18 mA	> 4.	2.7 v	7.0 v
	8	> 8,0	=======	-18 mA	v 4.0	2.7 v	7.0 v
R, S, 2	no.	1004500	10 11 12 13 14 16	22 22 23 24 24 25 25 26	27 28 30 31 32 33 33 36	33 33 33 33 44 45 45 45 46 46	64 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
STD-883	method lest	300	3007		3008	3010	
Symbol		, v _{он}	N _o D	21 ^	ПI	Ħ	11н2
Subgroup		T _C =+25°C					

MIL-M-38510/38ZA

	or open).
	- -
	ω.
ēd.	Ş١
3	Š
ont	>
ں	٧ ٥٠٤٠ ١١
5	ĭŽΙ
bе	191
ţ	٥
ice	d may be high
dev	E I
i for device type O	ted
n t	gna
1	design
0.00	ns not des
ins	2
⋖	i.
210	s (pin
ċ	''.c
_	= =
TARLE III.	ouc
133	erminal con
F	ii.
	Ter

Unit		¥	A::::::		AE .	=	=					S = = = = = = = = = = = = = = = = = = =
		2::::::	0::::::		19	24	27			ω ₊ : = : : : :		2::::::
Min Max	Ĺ	S = = = = = =								ω ₊ = = = = = =		00=======
Measured Wi		000000000000000000000000000000000000000	80 55 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9,26,2,30,00	ეე ,)) _{\(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\}	, vc			outhouts		VENC to 10 ENC to 20 ENC to 30 ENC to 40 ENC to 50 ENC to 60 ENC to 60 ENC to 60
	i	× : : : : : : : : : : : : : : : : : : :			<u>-</u>	=	-			> 0====================================		6
6 (2,25 V	2.7 v	v 4.						TT-1: T: -		00.7
0 10	3	2.25 v	2.7 v	V 4.								 E
/1	3	2.25 V	12.7 V	v 4.								T00
97	7	2.25 V	2.7 V	V 4 v					Ì			
c;	3	2,25 V	2.7 V	v 4 ·			L					
14	3	2.25 V	2.7 V	0.4 v		L				JIJ= = I = =		
13	8	2.25 v	2.7 V	0.4 v				•				
12	80	2,25 v	2.7 v	v 4.0				tests are omitted.	are omitted.			TU0 0T
11	ENC	> 0::::::			=	=	=	sts are	ts are	4: - 884884		Z::::::
10	CND	Q:::::::			=	=	=	V _{IC} te	V _{IC} tests	Q:::::::	ا -55°C.	
6	윤	5.0 ×	2.0 v	v 8 v	15.0 V	GND -	SS SS	+125°C and VIC	-55°C and VIC 1	& K & & & & & & & & & & & & & & & & & &	+125°C and	4.5 ×
ω	ę.	5.0 V	2.0 V	9 · · · · · · · · · · · · · · · · · · ·	5.0 V	GND	QND	T _C = +1;	رد = ع ال = -5	m K m m K = = m m	Tc = +1	۷ - 5 ۷
	69	5.0 V	2.0 v	0.8 v	5.0 V	GND	QNS	cept	cept	m4mm4:: mm	except	4.5 v
9	20	5.0 V	2.0 V	0.8 v	5.0 V	GND I	GND	up 1, exc	up 1, ex	04884= 88	7,	4.5 V
2	40	5.0 V	2.0 v	:•	15.0 V	GND I	GND	subgroup	subgroup	84884: 88	dnoubgnonb	4.5 V
7	30	5.0 v	2.0 v	0.8 v	5.0 V	GNO	GND	as for	as for	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	as for	4.5 V
2	50	5.0 v	2.0 V	, 8. 0	5.0 V	GND	GNS	limits	limits	∞<∞∞<- : ∞∞	d limit	ν 9. γ
22	9	5.0 v	2.0 v	0.8 v	5.0 V	GND	QND	ins, and	ons, and		ons, and	7
	8	8::::::	5.0 V	, 0.5 	GN9	ON9	5.0 V	conditions, and	conditions,	m:::::::	conditions, and limits	S
Cases	lest no.	57 59 59 60 61 63 63	65 67 69 72 71 72	73 74 75 77 77 79 80	81	82	83	terminal c	terminal	88 88 89 89 90 91	terminal	93 94 95 95 97 97 98 98 99 99 99 99 99 99 99 99 99 99 99
MIL- Cases	method T	3011			3005	=	=	tests, te	tests, te	301	tests,	F19. 5
Combol		0	ндел	Iozu	ICCH	Iccr	ICCZ		Same t	Truth Trable tests	Same	с 142
1	dnoahons	1 T _C =+25°C						2	m	7 4/ T _C =+25°C	· &	T _C =+25°C

See footnotes at end of device type 01.

MIL-M-38510/382A

		- 		MIL-M-38510/	′382A	, b	- -
Unit	C: :::::			=======================================			
Test imits Min Max	O = = = = = = =	4		α	2 2 2 2 2 2	9::::::	S: : : : : :
Test	0222222	Ole 2 d 2 d 2 d		4::::::		NI I I I I I	Q= = = = = =
Measured terminal	V IENC to 10 IENC to 20 IENC to 30 IENC to 60 IENC to 80 10 to 10 20 to 20 30 to 30 40 to 40 50 to 50 60 to 60 70 to 60 80 to 60	1D to 10 2D to 20 3D to 30 40 to 40 5D to 50 6D to 60 7D to 70 8D to 80	00 00 00 00 00 00 00 00 00 00 00 00 00	2000 000 000 000 000 000 000 000 000 00	00000000000000000000000000000000000000	100 100 100 100 100 100 100 100 100 100	
20 VCC	0::::::						
19	T30	TU0	66.1	10 110	1100	70	TU0
70	TN00	00.7	TUO	T.NO	T70		00T
30	TD0	100 TT	0 TUO	90	190 Ta	TU0	0UT
40	TA00	D00	TU00	0 Tho	10 T3	T.00	TN0 .
20 13	TNO TNO	OUT	0UT	TU0	TU0	100	
14	TN0	TU0	0 TU0	TUO	TU0		OUT
E &	T00	T00	 T0	TNO	0UT	0UT	TOO -
80		TU0		- 00T			TU0
ENC	Z:::::::			y			
GND	S::::::						
80	GND	Z	NI NI	4.5 V	GND	4.5 v	QND
8 Q	GND	ž.	Z	γ 2 γ	GND	v 5.4	GND
99	GND	NI N	N	4.5 V	GND	4.5 V	GND
9 2D	GND	Z.	NI 	4.5 V	GND	4.5 v	GND
5 40	GND	Z.	N.	4.5 V	GND	۷.5 ۷	GND
30 4	QN 9	Z.	N N	. s.	GND	y 5. 5	GNS GNS
3	Q Q	Z Z	Z I	? ? 	GND	4.5 V	GND
2 10	GND	Z.	Z	4 · 5 · V	GND	4.5 v	GND
- ეგ	GN: 12:21			Z :::::	,		
Cases 3 R,S,2 Test no.	102 103 103 105 105 105 105 105 105 105 105 105 105	100 111 111 1113 1114 1116	117 118 118 123 123 123	128	133 134 135 139 130 140	141 142 143 144 146 146 148	149 150 151 152 152 153 154 156
Symbol STD-883 R.S.2 method Test	7.003 9. 1. 1. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	2 . 2 . 2					* * * * * * * * *
Ѕушро	т риг 2	t РLH3	tPHL3	tрZн	tPZL	tpHZ	t _{PLZ}
Subgroup	C=+25°C			34			

TABLE III. Group A inspection for device type 01 - Continued. Terminal conditions (pins not designated may be high $\Sigma 2.0$ V, low $\underline{c}0.8$ V, or open).

2000	Cumbol CTD BS	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Test limits 	its Unit
dno lagons	method lest	Odinary 10 10 120 130 140 150 60 70 80 GND ENC 80 70 60 50 40 30 20 10 10 10 10 10 10 10 10 10 10 10 10 10	lin IMa	1 1
10 tpLH2	tPLH2			27 ns l
n c 71 ₊ =3 ₁	tpHL2		4	. 50
	tpLH3	Same tacks and terminal conditions as for subaroup 9. except Tr = +125°C.	2	15
	tpHL3		2	15 "
	трдн	-	4	. 12
	tpZL		4	21 "
	TPHZ	}	[- 2	12 "
	tpL2			18
11 S	Same tests,	Same tests, terminal conditions, and limits as for subgroup 10, except $T_C = -55$ °C.		

1/1 limits shall be as follows:

lest		·	L - 1
est Limits in uA est A B IL 0/-200 0/-10	circuit	د	0/-200
est 0/-	in µA for	æ	0/-100
Test	Limits	4	0/-200
		Test T	711

2/ Method 3011 shall be used, except the output voltage shall be as specified herein, and the output current shall be operating rather than short-circuit current. The output conditions have been chosen to produce a current that closely approximates one-half of the true short-circuit output current Ios.

 $\underline{3}/$ I₀ limits shall be as follows:

35

İ	-	-		
	or circuit	ပ	011-/0/-	
- 1	Limits in mA for	8	-15/-110	
	Limits	A	-30/-112	
	_	Test	0	

 $\overline{4}/$ Tests shall be performed in sequence, attributes data only.

 $\frac{5}{2}$ Outputs shall be high $\frac{1}{2}$ 1.5 V, low $\frac{1}{4}$ 1.5 V.

	Max Unit	>======================================	4	9	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		2
t limits	Min Nk	4	0 1 1 1 1 1	9:=====================================		2:::::::	00::::::::
Test		2			A		
Measure	Tterminal	82888888		P32848388	P0 28 9 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00 20 20 20 20 20 20 20 20 20 20 20 20 2
20	, , , ,	MA 4.5 V					
1 19	101	-1.0	12 mA				
18	20	-1.0 mA	112 mA				
17	30	-1.0 mA	12 mA				
16	40	-1.0 mA	12 mA				
15 -	50	-1.0 mA	12 шА				
14	60	-1.0 mA	12 mA				
13	70	-1.0 mA	12 п.А				
12	188	-1.0 mA	12 mA				
E	ENC	* 0 *	* * * * * * * *	-18 mA	4.0	2.7 v	7.0 v
10	GND	Qu: : : : : :					
6	88	v 8.0	2.0 v		, v	2.7 V	7.0 v
80	0Z	۷ 0.8 ۷	2.0 v	. 18 mA	, 4.0	12.7 v	7.0 4
_		8.	, 12.0 v	-18	y 4.0	2.7 v	7.0 V
9	20			A -18 mA -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	, 4. V		7.0 ٧
S	9	.0 8.	2.0 ×	- 18 mA	v 4 v		7.0 v
4	30	0.8 v	2.0 V	-18 mA	v 4.0	2.7 Y	7.0 V
e .	20	7 8 v	2.0 v	- 18 mA	v *	2.7 v	7.0 v
2	9	8. 0	2.0 v	18 mA	0.4 γ	12.7 v	7.0 v
	B	> 8	* * * * * * * * * * * * * * * * * * *	-18 mA	4. *	2.7 v	7.0 v
Cases IR, S, 2	no.		111 121 141 16	11 11 11 11 11 11 11 11 11 11 11 11 11	27 28 30 31 31 33 34 34 35	37 38 39 39 40 44 44 45 46 46	647 648 649 650 653 653 655 655 655
MIL- Cases Symbol STD-883 R,S,2		3000	3007		300	3010	=======================================
Symbol		HO A	v ^V ol	VIC	11	IIHI	I 1H2
Subsroup		T _{C=} +25°C	·	·	·	·	

MIL-M-38510/382A

TABLE III. Group A inspection for device type 02 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V, low ≤ 0.8 V, or open).

						+						
Unit		¥::::::	4		¥	¥ □	¥E					N= 2 = 2 = 2
	ž č	·	8	-20	17	24	27			Σ¢ = = = = = =		
Z Z	- 1									ώ‡ : : : : : : :		0:::::::
Measured terminal		 	5 25 25 35 3 5 25 25 35 3	######################################	N _{CC}	Λcc	Λcc			V outputs		VIENC to 10 ENC to 20 ENC to 30 ENC to 30 ENC to 40 ENC to 50 ENC to 50 ENC to 60 ENC to 60 ENC to 60
, j	ខ្ល	S::::::			=		<u>-</u>			<u></u>		0:::::::
i i	3	2.25 V	2.7 v	v v								00 T
iç iç	₹	2.25 V	2.7 V	v 4.								
; Iş	3	2.25 V	2.7 V	V 4.0					į			TNO
2 6	2	2.25 V	2.7 V	V 4.0								0 TN
2 16	25	2.25 V	2.7 V	10.4 V		L						0
r k	60	2.25 V	2.7 V	0.4 v								0UT
2 k	70	2.25 V	2.7 V	0.4 v				_				
4 8	80	2,25 V	2.7 V	v 4.0				omitted	V _{IC} tests are omitted.			- OUT
1 8	ENC	> 2			=	=	=	tests are	its are	<= = mm <mm<< td=""><td></td><td>Z::::::</td></mm<<>		Z::::::
2 5	SS.	S::::::					=	V _{IC}	V _{IC} tes		d -55°C.	
۳ ر	8	GND	y 8.0	2.0 v	GND	5.0 V	5.0 V	+125°C and	55°C and	<	+125°C and	ON ON ON ON ON ON ON ON ON ON ON ON ON O
∞ ;	6	GND	v s. 0.	2.0 v	GND	15.0 V	15.0 V	T _C = +1	T _C = -5	48448: 44	T _C = 1	GND
_	8	OND	× 8.	2.0 v	GND	5.0 V	15.0 V	except	except	48448: : 44	except	GND
٥	G	GND	» «	2.0 v	GND	15.0 V	5.0 V	1,	ı.i	40440: 44	oup 7,	OND OND
ıo .	3	CND CND	v 8.c.	; ;	GND	15.0 v	15.0 V	r subgroup	r subgroup	<pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre>	r subgroup	GND
4	æ	GND	, se.	2.0 v	GND	5.0 ٧	5.0 V	s as for	s as for	4m44m: : 44	s as for	GND
m	20	GND 	8.0	2.0 v	GND	5.0 V	5.0 v	and limits	1 limits	4 0448: = 44	d limit	GND
2	10	GND	y 8.0	2.0 V	GND	5.0 V	5.0 V	ns, and	ons, and	4m44m::44	ons, an	GND
-	<u> </u>	09: : : : : : :	> 0::::::::		QND -	GND	5.0 v	conditions,	conditions,		conditions, and limits	S
Cases IR,S,2 Test	00	57 59 60 61 63 63	65 66 66 68 68 69 70 71 72	75 77 78 78 79 80		85	83	terminal	terminal	88 88 88 88 89 90 91	erminal	94 94 97 99 99 99 99 99 99 99 99 99 99 99 99
MIL- Cases Symbol STD-883 R,S,2 method Test		3011			3005		=	Same tests, te	tests, te	3014	tests, terminal	Fig. 5
Symbol		L ₀ 2/	102н	I ozt.	I CCH	I CCL	Iccz	Same t	Same	Truth table tests	Same	tpLH2
Subgroup		T _C =+25°C	,					2	m	T _C =+25°C	80	9 T _C =+25°C

See footnotes at end of device type 02.

TABLE III. Group A inspection for device type 02 - Continued. Terminal conditions (pins not designated may be high $\overline{>}2.0$ V, low $\underline{<}0.8$ Y, or open).

		 		F1L-M-	38510/382A		
		S:::::::					
Test Inmits	Ma ×	7:::::::	φ::::::	7::::::	<u>α::::::</u>		œ::::::
lest	Ě	ο:::::::	m::::::		4::::::		N::::::
 Measured Terminal	} 	ENC to 10 ENC to 20 ENC to 30 ENC to 40 ENC to 60 ENC to 60 ENC to 60 ENC to 60 ENC to 80 ENC to 80	20 10 10 10 10 10 10 10 10 10 10 10 10 10	100 100 100 100 100 100 100 100 100 100	8448486 844848 848	<u> </u>	99999999999999999999999999999999999999
8	οολ	o:::::::					
61	10	00T	Tuo	100	100 1	00.1	100
18	20॒	OUT	00.T	TUO OUT	00.1	T100	TU0
17	30	00T		0 T	00T	0 	OUT
] I6	40	OUT	DO T	OUT	T no	T.00	00T
15	50	OUT	TU0	OUT	00T	8	0_T
4	<u>60</u>	OUT	TUO	TUO	0	0_T	
13	Δ 1	00T	OUT	1.50	TUO	T.00	00T
12	80	00T	OUT	TUO	DOUT.	TU0	OUT
=	ENC	Z:::::::			y		
s	GND	GND					
6	8	4.5 V	N I	Z	GND	4.5 v	QND GND
∞	70	4.5 V	N.	:=	QN O	4.5 v	GND
- [9	4.5 V	N.I.	Z.	GND	4.5 v	GND
٥	25	4.5 V	NI NI	N.	GND	4.5 V	QND
e l	6	7 · · · · · · · · · · · · · · · · · · ·	N.	X.	GND	4.5 V	GND
4	30	4.5 V		Z.	CND	¥ 5. ¥	GND
,	20	4.5 V	Z I	Z.	GND	y 5.5	GND
2	9	4.5 V	NI	Z	GND	7 S.	GNS
-	ا 1 مد	N		* * * * * * * * *	Z: : : : : :		
R,S,2	.00	101 102 103 104 106 106 108	109 110 111 112 113 114 116	117 118 119 120 121 122 122 124	125 126 127 128 129 130 131	133 134 135 135 136 139 140	141 142 144 145 146 148
MIL- Cases Symbol STD-883 R,S,2 method Test		3003 1. 1. 5 1. 5					22 22 2 2 2 2 4
Symbol		tрн12	фр.н.з	tрн <u>L</u> 3	tр2н	tpZL	трнд
Subgroup		7.55°C	-	<u> </u>	<u></u>	,	

TABLE III. Group A inspection for device type 02 - Continued.

								Termir	nal cond	itions	pins not	designa	rea may	5 = 20	Terminal conditions (pins not designated may be mign zero ', 'ca zero')				ļ		×	06	201	Tact limits	1	ï
	L	MIL-	Cases		2	3	4	2	و		8	21	Ë	112	13	14	15	16	1/	2	2	Measured			<u> </u>	
Subgroup Symbol STD-883 R,S,2	Symbol	STD-883 method	R,S,2 lest	150	9	8	æ	8	S	8	£	SS GND	 	ENC 80	100	P.S.	50		30	20	10	Vcc	Min	Max		;
9 6 + 2 + 2 + 2 + 2	tPLZ	3003	149	Z.	4.5 V	4.5 V						GNS :		4.5 v					Tilo	Tuo	TU0	5.0 V 0C to 0C to 10C to	10 - 3		E= = :	
			151				4.5 v	4.5 V										T00	<u> </u>			: : :				
			153 154 155						·	4.5 V	4.5 V				out	OUT							 208			
			156	= 							-	-		3-			-	_				-	- -	-		- -
-																										
TC=+125°C	CILCPLHZ																						<u></u>	22	<u>-</u> -	
	tpHL2																							12	-	-
	1 tPLH3		ests an	d termin	nal con	ditions	as for	subgrou	ть 6 ф	ept Tc	Same tests and terminal conditions as for subgroup 9, except $I_{\rm C}$ = *125°C.												.Ľ.	12	-	
. – - •	TPHL3																							12		<u> </u> -
	tPZH 																						4	121	-	<u> </u>
	t PZL	- -																						<u> </u>	- -	-
	TPHZ	-																						15	- -	-
	ItpLZ																						-	-	-	-
11 To55°C	Same	same tests, terminal conditions, and limits as for subgroup 10, except TC = -55° C.	minal	conditi	ons, an	nd limit	s as for	r subgro	oup 10,	except	ຸເຣ - 55	.;														
١- ١	-																									

 $I_{
m IL}$ limits shall be as follows: 7

Limits in "A for circuit	

Method 3011 shall be used, except the output voltage shall be as specified herein, and the output current shall be operating rather than short-circuit current. The output conditions have been chosen to produce a current that closely approximates one-half of the true short-circuit output current 10s. 72

 \mathbf{I}_0 limits for circuit C shall be -70 to -110 mA

 $\underline{4}/$ Tests shall be performed in sequence, attributes data only. $\underline{5}/$ Outputs shall be high $\underline{>}1.5$ V, low $\underline{<}1.5$ V. 3/

Unit Мах ç E Measured 101 102 103 203 203 204 204 2.0 * 2.0 4 2.0 * ¥ ٥.4 ٧ ENC: -1.0 MA 12 mA 101 12 mA ž 102 12 mA 12 mA 103 12 mA 104 E 2 12 mA 12 mA 201 or low <0.8 %, or open). 12 mA 12 mA 202 12 mA 203 20 12 TABLE III. Group A inspection for device type 03. conditions (pins not designated may be high >2.0 V, EN2C ź 0.4 V 2.0 v 2.0 2.0. ZELA ĭ 0.4 ¥ e: : : -18 8 8. * 8. . . > 8:::: > 8 · · · · E 100 2.0 V ₩ 8.0 0.4 v 12 2D4 2.0 V 0.8 v 0.4 V ¥ 203 [ermina] 2.0 4 7 8.0 2 202 2.0 v 9.0 201 0.4 Y \$ 2.0 V ν 8.0 103 ٥.4 ٧ 102 2.0 V 9.0 101 V 4.0 9.0 8. . . . ş 100 ě CLR NIL-STD-883 method T_C = +25°C Subyroup

See footnotes at end of device type 03

 ⊦	Unit						É:::::	A	0-1111
Limits			8		0		ig	25: :: : : :	27-
<u> </u>		ž							
	Reasured terminal		IS PE	101 102 103 104 202 202 203 204 204 205 205 205 206 200 200 200 200 200 200 200 200 200	100 100 100 100 100 100 100 100 100 100	SCLK EN2C EN1C	2554 2554 2554 2554 2554 2554	17 19 19 19 19 19 19 19 19 19 19 19 19 19	101 102 103 103 203 203 203 203 203 203 203 203 203 2
	4		5.5 Y						
- 13	E3	EN1C		2.7 v		7.0 4	5.0 V		% : :
-	22	101					2.25 V	2.7 v	y 4.0
	12	142					2,25 V	2.7 v	V 4 V
75	20	163					2.22 v	2.7 V	0.4 V
22	19	154	 				2.25 v 2	2.7 ¥	0.4 v
	18	241					2.25 v 2.25	2.7 V	v 4.0
0 21	1	207 5					2.25 V 22.25	2.7 v	y 4.0
02	\vdash	20,5					2.25 V 2.	y 7.2	4. >
113	19	204	-				2.25 V 2.25 V	2.7 v	, 4.
PF -	Ē	EN2C 20	+	2.7 v		7.0 V	5.0 ×	, o	> 0 ; : :
1	14	ZCLR EN	-	2.7 V 2.		7.0 %	> ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	> 0°; ; ;	> 0
1	1	-F-		×		=	 		
7	12	8	8			 		> 0::::	> 0:::
13	F	Ę	3	2.7 v		7.0 V			
10 11 11 11 14 1		2	5	2.7 V	20.2		> c		0.8 V
	.	, 2	507	2.7 v	7.0 v			V 2.0 V	8. 0 v
2	2	0	707		7.0 v		5.0 ×	, S. O. V	>
c	,	` [201	2.7 V	7.0 v		2.0	<u></u>	> 0 8.
	`	٥	104	2.7 ¥	2		, o	2.0 v	» «»
	٥		103	2.7 V	7.0 V		, o. 5. o. s	2.0 ^	, s. o. s. s. s. s. s. s. s. s. s. s. s. s. s.
	5	4	102	v 7.2	7.0 v		5.0 v	2.0 *	v 8.00
	4	r	13.	2.7 v	7.0 ×		× 0.6	× 0.2.0 ×	× 0.0 × ×
	,	2	201	¥ 7.3	7.0 v		GN	> 0: 1 F	>
	2		1CLR	2.7 ×	7.0 V		V 0.2		9 3 3 3
	Case 1/1	es –		.24.25.25.25.25.25.25.25.25.25.25.25.25.25.	66 67 68 68 77 77 77 75	5 7 8 5		8 88 62 32 5	25 29 88 100 100 100 100 100 100 100 100 100
		STD-862 TC		0			/r 110c	:	
		IST IST		I			01	102н	1021
		ec] dnoredns		1 +25°C					

ź Aid.) 13 3 S Nin 1021 1021 1021 1022 2021 2022 2021 2022 2021 2 22222222 Fieasured terminal 22222222 22222222 2222222 γ C ر دو 5.0 V | 5.5 V رر EN1C 101 22 507 13 102 100 Ę UO. 163 <u>0</u> TU0 DELT 104 ë PUC 170 241 Ð 100 ē TABLE 111. Group A inspection for device type 03 - continued, terminal conditions (pins not designated may be high $\geq 2.0~V_{\rm s}$ or low $\pm 0.8~V_{\rm s}$ or open). 202 ē Ę Ð 203 DQ_ æ J. 204 Ð PU ē 5.0 V EN2C ZOLR GND GND 용 QN3 5.0 v G.S 욯. . . 8... ğ... 200 omitted. 5.0 V omi t GND 2D4 GNS are are 5.0 4 tests 4.5 V G#9 tests 203 덩 -55°C. and Vic 5.0 V ۸ıc 4.5 V 4.5 V 93 9 202 and T_C = *125°C and GNO T_C = *125°C . -55°C 5.0 V 4.5 ¥ 4.5 V CNC 201 GND ن 5.0 V 4.5 V G.S. 1, except 104 except g 5.0 v 4.5 V 4.5 V 3 105 S subgroup quoabqns dnoubqus 5.0 V SP 102 GNO and limits as for for CALC 101 limits as 9 limits a 0.85 CKL 100 g. . . and pup terminal conditions, 1CLR 3 377 ; C 107 125 126 127 127 128 129 130 131 134 134 135 139 146 141 142 144 146 146 148 Same tests, terminal tests, terminal 3777 Truth table tests tPLH2 Sane Same 7 5/ = +25°C Subgroup ا 'د*ئ*'' . ر 4 1₀ = 125°د

type

device

footnotes at end of

	Umit		S :	======		* * * * * * * * * * * * * * * * * * * *		
Cimit Co		χ S S	12					
	Measured terminal	n i i	01 to 101 2	102 to 104 103 to 103 " 104 to 104 " 201 to 201 " 202 to 203 " 203 to 204 " 204 to 204 "	101 to 101 102 to 102 103 to 103 1104 to 104 1105 to 104 1106 to 202 1202 to 203 1209 to 204 1209	100 to 100 in 10	100 to 101 3 100 to 104 3 100 to 104 3 100 to 104 3 100 to 202 3 100 to 203 3 100 to 204 3 3 100 to 204 3 10	100 to 101 100 to 103 100 to 104 100 to 201 100 to 201
	24	, cc	5.0 V 11				* = = = = =	
	23	ENIC ! V			z:::		7# = =	25 x x
- - 8	22	101	P.T.		§	TN0	5	TV0
 g	12	102			150	тэо 	29	TU0
5	20	163			TU0		100	E T
 8	61	104	-	TJ0	E:	DO TIN	TUO	00T
21	18	201	-	 5	Tho	TUO	770 1	T300
02	-	202	-			TU0	ino Lino	TD0
19	- Je	203	+	<u>г</u>	190	j9	TUO	Б
18	- -	204		5 5		190	100	100
-	=	ENZC		Z: • •	Z* = *	¥ 3. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 	A
16	- -	ZCLR	+	y	,	4 3.1 1 1	, t , t :	A >
14	-	- S	+	g:		= = = = = = =		
-	- -		+	g:::	QV	Z:::	Z* * *	2:::
21			-	 	3	3	2	4.5 v
	-	, Eg				¥.5 ¥	QND	4.5 v
101				 z		y 5.	GND	y 5.4
	_		+	z	z.	4.5 V	GN D	4.5 ¥
-		- ا		<u>.</u>	3	4.5 v	GND	v - 5 - V
	 o		3		ž	4 · 5 · V	GND CND	y 6.4
-			707	z	2	4.5 v		
	4		101		×	¥.5 ¥	GWD	. s
	 E	2	100	8 : :	O	Z: : :	ž: : :	Z: : :
	~-	 	1CLR	> 2	×	4 N: ::	4 e::::	4 %: ; ;
	Case 3 1/	Cases K,L Test	ė	149 150 151 152 153 153 154	156 157 158 160 161 161 163	164 165 166 167 169 170	172 173 174 175 176 177	181 182 183 184 186 186
		STD-883 T		3003 1519. 5				
		Symbol		tpLH3	tPHL3	трун	724	t PHZ
		Subyroup S		J. \$2. = J				

43

TABLE III. Group A inspection for device type 65 - Continued. Terminal conditions (pins not designated may be high $22.0\,V_{\rm s}$ or low $\underline{4}$ 0.8 V, or open).

																i		1												
		-14 -17	odse 5 1/1		n	 				e 	F 	21	r 	2	e -	-	<u>=</u>	<u> </u>	₽-	E	2	12	52	92	12	32		Limits	,	-
Subgroup	Symbol method		Cases (2	F			- 1	[-		<u>-</u> -	F	-	- -	1.4	15	192	1-	F	£	 	- 21	22	23	27	Heasured	-		
				10TR 10C		101 102	22 103	104	201	302	503	2D4	20C	SP	ZCCR	EN2C	204	265	202	241	174	3	102	57	ENIC	ΛCC				t
	·	29	150 150 151 152 152 153 195 196	9 9 10 10 10 10 10 10 10 10 10 10 10 10 10		CPC CND		GND CND	GNS	ONS Q	OND	0.00 0.00	<u>z</u>	8	4.::: 3.:::		T00		TU0	00.1	100 TU	9	§ 	13	3. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	> 0::::::	110. to 14.1 110. to 14.2 110. to 14.2 110. to 14.4 100. to 14.4 120. to 26.1 120. to 26.2 120.	(Va t t t t t t		**************************************
7,53[; -2].	рын 1 рын 2 рын 2 роди роди роди роди роди	then: Same tests and terminal conditions as for subgroup 9, except TC = +126°C. THL: TH	and term	ina] con	ditions.	100 101 101 101 101 101 101 101 101 101	bgroup 9	3, except	. 1c = 31. 1 d = 31. 1		-	-		-	-		-	-	-	-	-	_		_		_	:		24 22 22 22 22 22 22 22 22 22 22 22 22 2	

 $\underline{1}/$ Pins not referenced are $\mathrm{li}/\mathrm{U}.$

 $\underline{2}/$ IIL limits shall be as follows:

		200	-	>/ hethod 3011 shall be used, except the output voltage shall be as specifie	Current shall be operation rather than short-circuit current. The outsuit
LIMITS IN THE CIPCUIT	2 8	0/-100 0/-200	-	xcept the output	ather than chort
- !	lest A	111 0/-100	-	3011 shall be used, e	snall he operation r
				5/ Nethod	current

current shall be used, except the output voltage shall be as specified herein, and the output current shall be operating rather than short-circuit current. The output conditions have been consent to produce a current that closely approximates one-half of the true short-circuit output current los-

 $\frac{4}{2}$ I_G limits for circuit C shall be -70 to -110 mA. $\frac{5}{2}$ Tests shall be performed in sequence, attributes data only, $\frac{5}{2}$ Cutputs shall be high $\underline{\lambda}_1.5$ V, low $\underline{\zeta}_1.5$ V.

	mit.		>:						G
Limits		× o×					9		Jr = = = = = = = = = = = = = = = = = = =
	Measured T	ž 	2.4	\$655000 0		2007 2007 2007 2007 2007 2007 2007 2007	197E 107C 101 102 103 203 204 204 205 207 207		100 100 100 100 100 100 100 200 200 200
	Γ-		>						>-
-	24	20, 20	2,0 V 4.5		2.0 v			- 18 mA	> 4.
 -	2	1 ENIC	-1.0 mA 2,0		* *				
28	22	101		-1.0 mA	§ §				
52	- 51	103 102	-	-1.0 mA	12 mA 12 12 15 15 15 15 15 15	۲: د:			
24	22		-	-1.0 mA	-	15 MB 21			
53		104	-	-1.0 mA -1.0	12 mA 12	12 mA 11			
12	F	2 ZQ1	-	-1.0 ma -1.4	12 mA 12	§			
22	-	3 202		-1.0 mA -1.	 *	2 mA 12			
61	191	7 203	+-	-1.0 mA	12 mA 12	12 mA			
81		204		2.0 v 	2°0 v	7 · · · · · · · · · · · · · · · · · · ·		-18 mA !	y 4.0
\		TE EN2C						-18 mA -	v 4 v
Terminal conditions (pTns not designated may be High 22.0); or conditions (pTns not designated may be High 20 2)	F 	ZPRE		> 0.5 2.0 2.0	2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	*			
esignate	:	: §		g 				 	, o , 4.
ns not d	;	: k	3	> 8* * *	8:::	8: : :		mA -18 mA	, o
ions (p)	7 -	3 3	5		2.0 v			# 8 1,	4.
1 condit		^ {	503	× 8.0 0.8	2.0 v		mA -18 mA		, 4, 0
Termina	<u> </u>	×	505	 8:0	2.0		mA -18 mA		
	6		201	× 8.0 	2.0 v		-18 -18		v 4.0
	_	ا ه	104	 8. 8.	2.0 4		п.А -18 m.A		, 4 , 5 , 0
	ω 	ا م	103	» «. «.	2.0 ×				, , , , , , , , , , , , , , , , , , ,
	2		102	× 8: 	20.0		mA -18 mA		y 4.
	4		101	» 8.0 	2.0 v	 >	ПА -18 mA		y 4.0
		2	190	»: : : 0 	> 0: : :	α::: - 	-18		v 4.0
	2		1PRE	2.0.2	2.0			23.88.33	
	Case /	K,L K,L		1284597			10 000000		000: 11: 11: 11: 11: 11: 11: 11: 11: 11:
	2	STD-883		300	. 300				0::::::::::::::::::::::::::::::::::::::
		Symbol		но			, v IC		
		Subgroup		1 = +25°C					

See footnotes at end of device type 04.

Max 8. Measured termina; \$**\$\$\$\$**\$\$\$\$ 프립트**로**트립등등 2.7 ¥ 7.0 7 × 0.0 V 0.1. ENIC 0.4 ¥ 101 27 122 103 Ę. 3 12.25 V ğ TABLE 11. Group A inspection \mid for device type 64 - Continued. Terminal conditions ($\sqrt{118}$ not designated may be high 22.0 V, or low $\frac{1}{2}$ 0.8 Y, or open . 2.25 V 2.7 V 0.4 V 3 0.4 V 2.25 ₹ 2.7 V 8 234 7.0 % > 0... EM2C 2.7 V ZPRE 0,3 GNS 8 . . . 贸 7.0 V GNB ž 7.0 V 0.8 V 2.0 V GND 203 7.0 V 0.8 γ 2.0 V GND b 202 V 8.0 2.0 V GN9 201 7.0 V QNS ğ 2.0 V GND 103 V 8.0 105 GND 2.0 v 2 101 y 0.2 7.0 V 8... 100 > 0.6 5.0 4 1 PRE 332733433 1021 0. 19.0

device type

tootnotes at end of

	; E,		Am -		-													2.								-
3	, and		13	4	15	_			- €		· ·							:7=		- 52			7" "			-
									/9#		x z		: :	= =		-							 E0.3	a a a	2.24	_
	terminal		λςς	, cc					Ali					- 1			1	3.	1PRE to 105 1PRE to 105 2PRE to 201 2PRE to 202 2PRE to 202 2PRE to 203 2PRE to 203	3 3	ENIC to 102 ENIC to 103 ENIC to 104 ENIC to 203 ENIC to 203 ENIC to 203 ENIC to 203	2	ENIC to 101	33	ENZC to 20	_
	5.7	vcc	5.5 ¥		-				5.0 V				, =	z =		=		V 0.6				- 				
	23	EN1C -	5.0 V		V 0 -6				≪ s	:		 	= ×	so 82	 > •< =			4.5 V		2			z: :	ı		
		101 E			-										د عد د	c .~		FUZ		Lie			9			
	[2	102			+					 .x::		. ::		 c = -		=			E		Tu0					_
-	50	15:		+-			ļ								:				100		THO .			3		
12	- 51	104							=-	J I I I I			: :	 ==-	_ :				ъ Т		13			TUO		
	18	201	-					-	=						 				T00				_	ä	. .	
12 21	<u>-</u> -	202	+-	+	+				r			= -	 		 	 		-	Т		T30				T.90	
22	-	202	+-	-														-	<u>-</u>			3			PGT	
\$1	19	102	-	-					 x						<u>.</u>	т J		-		E		TS				190
18	112	ENZC 2C		+	+				- ×				- -					-	y = =					:	z : :	=
16 1 17	-	ZPRE EN	> 0 K													 .ea	-				> 50				v = =	=
	ř	12		-	S		1		+-								-	F		==-		::== ::				
14	27	GND	2		-	-			- CNS						= x		-	-							 8	 :
11 1 12 1 13 1 14	-	200	- 8	S S		1 5.0 V	tted.	omitted.	-							- -	_	-				ON ON	-			4.5 v
12	e;	462		3	₹ 0.6		are omitted	a Pe	-		. 		- - -				-	-		ON CONTRACT		GND			 > '	
F	5	508	3	QN9	2.0 v	<u> </u>	IC tests	tests			. ≪ : 		o = :			 		;		ONS .			-		 >	-
9	00	000	300	3	1 5.0 V	:	"C and VIC	C and VIC		n<====			a = 		 		1	1				5 	-		4.5	
2	,		9	GN CN	5.0 v	=	- +125	-55			o « :		n: 		: : 			3			S				4.5	
		, ;	104	GND	5.0 V	5	xcept T _C	except Tr	Veb.	m ≪ m :	o≪:	× :						except			GND				• • •	
		,	3	QN5	5.0 V	·	oup 1, e	oup 1. e	-	en≪.en∘			a:	: :	 			roup /,			ON CHARLES			¥ - 4.5 ¥		
	-	,	10%	OND	5.0 V		or subgre	for suboroup	leans 10	m < m	m ≪:	 	n=	. :	= =			for subg			ese 			4.5 v		
-		,	IOI	QN9	5.0 4		ts as fc	ite ac fe	g l	a 4 a	 ∞≪:		9=			:		wits as	GND		CND		2 4			
	,	7	100	ONS		15.0 V	and limi	ind limi	and limi	a : =								and lin	g		9N9			g 		
İ			JPKE	5.0 V	93		itions,	10014	itions,	«::				20 e	c <c :<="" td=""><td></td><td>20</td><td>ditions,</td><td>2: : :</td><td></td><td>4 2 3</td><td></td><td></td><td></td><td></td><td></td></c>		20	ditions,	2: : :		4 2 3					
	- 71 - 71	L		105	1.06 	107	al condi		nal cond	108 109 110	1111	<u>a</u> ::	1115	117	111	121	123	inal com	124 125 127 127	128 136 131	25.1 15.5 46.1 15.6	158		- 140 141 145	14°	146
		iSTL-SAS T method		3000		-	Same tests, terminal conditions, and limits as for subgroup 1, except		tests, terminal conditions, and inmits	1014	: =	= 4					-	Same tests, terminal conditions, and limits as for subgroup /, except	1500 1719, 5	z s =				 		
	 	JEST COUNTY	· —	ICG.	1 23	1,02	ime tests		Same tests	Truth table tests								san ames	The T		t PLHz			tPHLE		
	} -	i lige quoueduc		31-		-⊢≟-			3-	7 5/ Tr								· - ' -	Jc = +25°C				٠			

£::::::: ď . 충분성정보인성 5555555555 heasured tenuinal 결심성급취급성급 5555555**5** 2222222 2222222 2222222 2222222 101 105 105 105 202 202 203 203 203 203 202 201 202 203 203 204 204 101 102 104 202 203 204 204 ENIC 2::: ij Ę 100 물 96,1 D01 105 53 53 UO E. TNO 710 OUT 103 110 00.1 Ę, ίĵ et O 174 DO 딍 J00 βŢ Đ ĘĎ? 190 Ð 90 10 981 TABLE III. Group A inspection for device type 04 - Continued. conditions (pins hot designated may be high $\underline{22.0}$ V, or low $\underline{c}0.8$ V, or open). 202 υŢ 06.T R Ŋ, Ę ē 8 00.T ВŢ .3 901 οΩ **8**5 Ę DQ. E. æ ъ > 2::: EN2C ž: :: Z.F.R.E. ≻ GNO 8. ğ. . . Š 8. . . 2::: 4.5 ¥ GNO GND ğ × 3 SNS SNS 203 3 æ GND GNO ₹ × 202 GN G GND 201 Q. GND ₹ Z Ä GNO GNO 2 z 103 102 GND × × GND 101 S. S 2 §. . . g. . . z. . . 100 1PRE 148 148 150 151 151 151 151 153 154 154 156 157 158 158 150 160 161 162 164 165 167 168 170 171 175 175 176 178 178 181 181 185 186 187 type | MIL-|STD-685 | method footnotes at end of device J, \$2+ ≖ Subgroup ں See

TABLE III. Group A inspection for device type 04 - Continued. Ferminal conditions (pins for designated may be high $\Sigma 2.0$ V, or low $\underline{40.8}$ V, or open).

may be mign 22.0 1, 01 ms 15 1 20 1 22 25 1 25 25 1 26 1 27 1 28 1 10 1 10 1 10 1 10 1 10 1 10 1 10	21 22 23		64.5 V 4.5 V 4.5 V 00T 00T 00T 00T 00T 00T 00T 00T 00T 0	
	Cases	Jubyrrup 1980	, 2,	ic files that I formate the season terminal conditions as for subgroup 9, except Ic = 1125°C. Prints Print

 $\underline{1}1$ - Pins not referenced are N/C. $\underline{2}/-11L$ limits shall be as follows:

circuit	J	0/-200
IN JA TOP CI	20	0/-100
Limits	¥	001-70
	Test	ii.

Firthon JOII shall be used, except the output voltage shall be as specified herein, and the output current shall be operating rather than short-circuit current. The output conditions have been chosen to produce a current that closely approximates one-half of the true short-circuit output current 165.

 $\frac{u_f}{b_f}$ limits for circuit C shall be -70 to -110 mA. $\frac{b_f}{b_f}$ Tests shall be performed in sequence, attributes data only, $\frac{b_f}{b_f}$ (outputs shall be high $\frac{b_f}{b_f}$ V, low $\underline{c_f}$.5 V.

6. NOTES

- 6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
 - 6.2 Ordering data. The acquisition document should specify the following:
 - a. Complete part number (see 1.2).
 - b. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - c. Requirements for certificate of compliance, if applicable.
 - d. Requirements for notification of change of product or process to the contracting activity in addition to notification to the qualifying activity, if applicable.
 - e. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - f. Requirements for product assurance options.
 - g. Requirements for special carriers, lead lengths, or lead forming, if applicable, these requirements shall not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - h. Requirements for "JAN" marking.
- 6.3 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-M-38510, MIL-STD-1331, and as follows:

GND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	Ground zero voltage potential.
VIN	-	-	-	_	-	_	••	_	_	-	_	_	_	-	_	Voltage level at an input terminal
IN	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Current flowing into an input terminal.

- 6.4 Logistic support. Lead materials and finishes (see 3.3), are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), and lead material and finish C (see 3.3). Longer lead lengths and lead forming shall not affect the part number.
- 6.5 <u>Substitutability</u>. The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information shall not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-M-38510.

Military device type	Generic-industry type
01	54ALS573
02	54ALS580
03	54ALS873
04	54ALS880

 $6.6~\underline{\text{Manufacturers'}}$ designations. Manufacturers' circuits which form a part of this specification are designated with an "X" as shown in table IV herein.

TABLE IV. Manufacturers' designations.

		Circuits	
Device 7	A	В	C
type	Texas Instruments	Motorola Inc.	National Semi- conductor Corp.
01	Χ !		1
02	X		
03	X		
04	X		

Custodians:

Army - ER Navy - EC Air Force - 17

Review activities:

Army - AR, MI Navy - OS, SH, TD Air Force - 11, 19, 85, 99

DLA - ES

User activities:

Army - SM Navy - AS, CG, MC

Preparing activity: Air Force - 17

Agent: DLA - ES

(Project 5962-1010)

[☆]U. S. GOVERNMENT PRINTING OFFICE: 1987-704-036/74936