

Automotive 100 V, 3 A power Schottky rectifier

Features

- AEC-Q101 qualified revision C
- Negligible switching losses
- · High junction temperature capability
- · Low leakage current
- Good trade-off between leakage current and forward voltage drop
- Avalanche capability specified
- ECOPACK2 compliant
- PPAP capable
- V_{RRM} guaranteed from -40 to +175 °C

Applications

- Switched mode power supplies
- DC/DC converter

Description

This high voltage Schottky barrier rectifier device is packaged in SMB Flat Notch and designed for high frequency miniature switched mode power supplies and for board DC to DC converters for automotive applications.

Product status link
STPS3H100UFNY

Product summary			
I _{F(AV)}	3 A		
V _{RRM}	100 V		
T _j (max.)	175 °C		
V _F (typ.)	0.57 V		

1 Characteristics

Table 1. Absolute ratings (limiting values at 25 °C, unless otherwise specified)

Symbol	Parameter	Value	Unit	
V _{RRM}	Repetitive peak reverse voltage, T _j = -40 °C to +175 °C	100	V	
I _{F(AV)}	Average forward current, δ = 0.5 square wave	3	Α	
I _{FSM}	Surge non repetitive forward current	135	Α	
P _{ARM}	Repetitive peak avalanche power $t_{p} = 10 \; \mu s,$ $T_{j} = 125 \; ^{\circ}C$		170	W
T _{stg}	Storage temperature range	-65 to +175	°C	
Tj	Maximum operating junction temperature range ⁽¹⁾	-40 to +175	°C	

^{1.} $(dP_{tot}/dT_j) < (1/R_{th(j-a)})$ condition to avoid thermal runaway for a diode on its own heatsink.

Table 2. Thermal resistance parameter

Symbol	Parameter	rameter Max. value	
$R_{th(j-l)}$	Junction to lead	15	°C/W

For more information, please refer to the following application note:

AN5088: Rectifiers thermal management, handling and mounting recommendations

Table 3. Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _R ⁽¹⁾ Reverse leakage current	Devenue le alcene accument	T _j = 25 °C	$V_R = V_{RRM}$	-		1.5	μA
	Reverse leakage current	T _j = 125 °C		-	0.6	1.7	mA
V _F ⁽²⁾ Forward voltage drop		T _j = 25 °C	I _F = 3 A	-		0.76	
	Farmend walters dues	T _j = 125 °C		-	0.57	0.61	V
		T _j = 25 °C	I _F = 6 A	-		0.84	V
		T _j = 125 °C		-	0.64	0.68	

- 1. Pulse test: $t_p = 5$ ms, $\delta < 2\%$
- 2. Pulse test: $t_p = 380 \ \mu s, \ \delta < 2\%$

To evaluate the conduction losses, use the following equation:

 $P = 0.54 \times I_{F(AV)} + 0.023 \times I_{F^{2}(RMS)}$

For more information, please refer to the following application notes related to the power losses:

- AN604: Calculation of conduction losses in a power rectifier
- AN4021: Calculation of reverse losses on a power diode

DS13090 - Rev 1 page 2/9

0.5

0.0

1.1 Characteristics (curves)

1.0

2.5 PF(AV)(W)
2.5 δ=0.05 δ=0.1 δ=0.2 δ=0.5 δ=1
1.0

Figure 1. Average forward power dissipation versus

Figure 2. Average forward current versus lead temperature ($\delta = 0.5$) $I_{F(AV)}(A)$ 12 10 8 δ= tp/T T_I(°C) 0 25 50 75 100 125 150 175

Figure 3. Normalized avalanche power derating versus pulse duration ($T_j = 125\,^{\circ}C$)

1.5

 $I_{F(AV)}(A)$

2.0

 $\delta = tp/T$

3.0

3.5

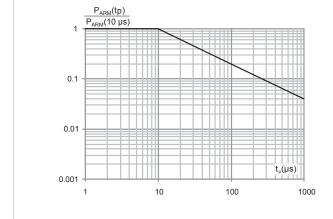
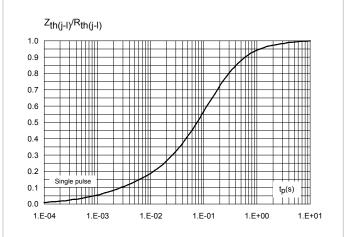



Figure 4. Relative variation of thermal impedance junction to lead versus pulse duration

DS13090 - Rev 1 page 3/9

Figure 5. Reverse leakage current versus reverse voltage applied (typical values)

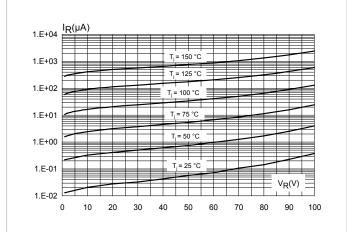


Figure 6. Junction capacitance versus reverse voltage applied (typical values)

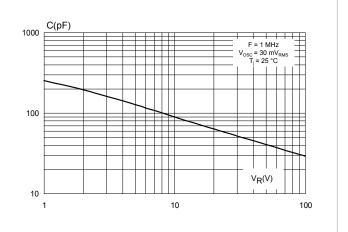


Figure 7. Forward voltage drop versus forward current (typical values)

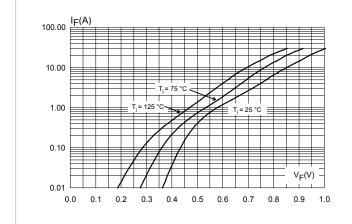
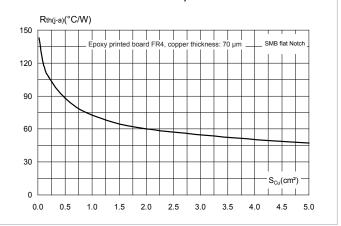
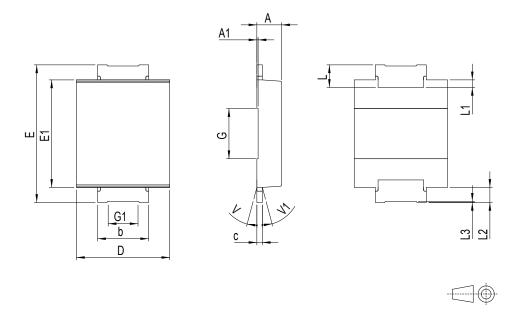



Figure 8. Thermal resistance junction to ambient versus copper surface under each lead (SMB flat Notch)(typical values)

DS13090 - Rev 1 page 4/9


Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

2.1 SMB Flat Notch package information

- Epoxy meets UL94, V0
- · Lead-free package

Figure 9. SMB Flat Notch package outline

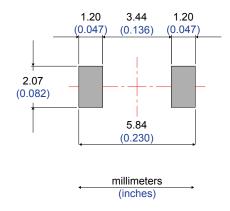

DS13090 - Rev 1 page 5/9

Table 4. SMB Flat Notch mechanical data

			Di	mensions			
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	0.90		1.10	0.035		0.043	
A1		0.05			0.002		
b	1.95		2.20	0.077		0.087	
С	0.15		0.40	0.006		0.016	
D	3.30		3.95	0.130		0.156	
E	5.20		5.60	0.205		0.220	
E1	4.05		4.60	0.159		0.181	
G		2.00			0.079		
G1		1.20			0.047		
L	0.75		1.20	0.030		0.047	
L1		0.30			0.012		
L2		0.60			0.024		
L3	0.02			0.001			
V			8°			8°	
V1			8°			8°	

Figure 10. Footprint recommendations, dimensions in mm (inches)

DS13090 - Rev 1 page 6/9

3 Ordering information

Table 5. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STPS3H100UFNY	B31Y	SMB Flat Notch	56 mg	5000	Tape and reel

DS13090 - Rev 1 page 7/9

Revision history

Table 6. Document revision history

Date	Version	Changes
31-Jan-2019	1	Initial release.

DS13090 - Rev 1 page 8/9

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics - All rights reserved

DS13090 - Rev 1 page 9/9