SCLS240I - OCTOBER 1995 - REVISED JULY 2003

- Operating Range 2-V to 5.5-V V_{CC}
- 3-State Outputs Drive Bus Lines Directly
- Latch-Up Performance Exceeds 250 mA Per JESD 17

SN54AHC374 . . . J OR W PACKAGE SN74AHC374 . . . DB, DGV, DW, N, NS, OR PW PACKAGE (TOP VIEW)

OE [1 U	20] v _{cc}
1Q [2	19] 8Q
1D [3	18] 8D
2D [4	17] 7D
2Q [5	16] 7Q
3Q [6	15] 6Q
3D [7	14] 6D
4D [8	13] 5D
4Q [9	12] 5Q
GND [10	11	CLK

- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

SN54AHC374 . . . FK PACKAGE (TOP VIEW)

description/ordering information

The 'AHC374 devices are octal edge-triggered D-type flip-flops that feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. These devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels of the data (D) inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without interface or pullup components.

ORDERING INFORMATION

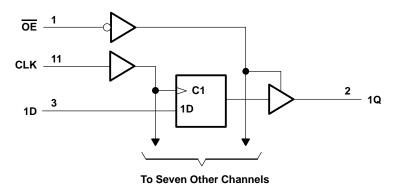
TA	PACKA	GE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	PDIP – N	Tube	SN74AHC374N	SN74AHC374N	
	SOIC - DW	Tube	SN74AHC374DW	AHC374	
	301C - DW	Tape and reel	SN74AHC374DWR	AHC374	
-40°C to 85°C	SOP – NS	P – NS Tape and reel SN74AHC374NSR A		AHC374	
-40 C to 65 C	SSOP – DB Tape and reel SN74AHC374DBR		SN74AHC374DBR	HA374	
	TSSOP – PW	Tube	SN74AHC374PW	HA374	
	1330F - FW	Tape and reel	SN74AHC374PWR	ПАЗ/4	
	TVSOP – DGV	Tape and reel	SN74AHC374DGVR	HA374	
	CDIP – J	Tube	SNJ54AHC374J	SNJ54AHC374J	
–55°C to 125°C	5°C to 125°C		SNJ54AHC374W	SNJ54AHC374W	
	LCCC – FK	Tube	SNJ54AHC374FK	SNJ54AHC374FK	

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCLS240I - OCTOBER 1995 - REVISED JULY 2003

description/ordering information (continued)


OE does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

FUNCTION TABLE (each flip-flop)

	INPUTS		OUTPUT
OE	CLK	D	Q
L	1	Н	Н
L	\uparrow	L	L
L	H or L	Χ	Q_0
Н	X	Χ	Z

logic diagram (positive logic)

SN54AHC374, SN74AHC374 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCLS240I - OCTOBER 1995 - REVISED JULY 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC}		0.5 V to 7 V
Input voltage range, V _I (see Note 1)		–0.5 V to 7 V
Output voltage range, VO (see Note 1)		$0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, $I_{IK}(V_I < 0)$		
Output clamp current, IOK (VO < 0 or VO > VCO	c)	±20 mA
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$	····	±25 mA
Continuous current through V _{CC} or GND		
Package thermal impedance, θ _{JA} (see Note 2)	: DB package	70°C/W
	DGV package	92°C/W
	DW package	58°C/W
	N package	69°C/W
	NS package	60°C/W
	PW package	83°C/W
Storage temperature range, T _{stq}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

		SN54AHC37		54AHC374 SN74AHC374			
		MIN	MAX	MIN	MAX	UNIT	
Supply voltage		2	5.5	2	5.5	V	
	V _{CC} = 2 V	1.5		1.5			
High-level input voltage	VCC = 3 V	2.1		2.1		V	
	V _{CC} = 5.5 V	3.85		3.85			
	V _{CC} = 2 V		0.5		0.5		
Low-level input voltage	V _{CC} = 3 V		0.9		0.9	٧	
	V _{CC} = 5.5 V		1.65		1.65		
Input voltage		0	5.5	0	5.5	V	
Output voltage		0	Vcc	0	Vcc	V	
	V _{CC} = 2 V		-50		-50	μΑ	
High-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		-4		-4	mA	
	$V_{CC} = 5 V \pm 0.5 V$		-8		-8		
	V _{CC} = 2 V		50		50	μΑ	
Low-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		4		4	A	
	$V_{CC} = 5 V \pm 0.5 V$		8		8	mA	
lanut transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		100		100	20/1/	
input transition rise of fall rate $V_{CC} = 5 \text{ V} \pm$			20		20	ns/V	
Operating free-air temperature		-55	125	-40	85	°C	
	High-level input voltage Low-level input voltage Input voltage Output voltage High-level output current Low-level output current Input transition rise or fall rate Operating free-air temperature	High-level input voltage $ \begin{array}{c} V_{CC} = 2 \ V \\ V_{CC} = 3 \ V \\ V_{CC} = 5.5 \ V \\ V_{CC} = 2 \ V \\ V_{CC} = 2 \ V \\ V_{CC} = 3 \ V \\ V_{CC} = 5.5 \ V \\ \hline \\ Input voltage \\ \hline Output voltage \\ \hline Output voltage \\ \hline High-level output current \begin{array}{c} V_{CC} = 2 \ V \\ V_{CC} = 5.5 \ V \\ \hline \\ V_{CC} = 2 \ V \\ \hline \\ V_{CC} = 5 \ V \pm 0.5 \ V \\ \hline \\ V_{CC} = 2 \ V \\ \hline \\ V_{CC} = 2 \ V \\ \hline \\ V_{CC} = 3.3 \ V \pm 0.3 \ V \\ \hline \\ V_{CC} = 5 \ V \pm 0.5 \ V \\ \hline \\ V_{CC} = 5 \ V \pm 0.5 \ V \\ \hline \\ V_{CC} = 5 \ V \pm 0.5 \ V \\ \hline \\ V_{CC} = 5 \ V \pm 0.5 \ V \\ \hline \\ V_{CC} = 5 \ V \pm 0.5 \ V \\ \hline \\ V_{CC} = 5 \ V \pm 0.5 \ V \\ \hline \\ V_{CC} = 5 \ V \pm 0.5 \ V \\ \hline \\ \hline \\ V_{CC} = 5 \ V \pm 0.5 \ V \\ \hline \\ \hline \\ V_{CC} = 5 \ V \pm 0.5 \ V \\ \hline \\ \hline \\ V_{CC} = 5 \ V \pm 0.5 \ V \\ \hline \\ \hline \\ V_{CC} = 5 \ V \pm 0.5 \ V \\ \hline \\ \hline \\ V_{CC} = 5 \ V \pm 0.5 \ V \\ \hline \\ \hline \\ \hline \\ V_{CC} = 5 \ V \pm 0.5 \ V \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ V_{CC} = 5 \ V \pm 0.5 \ V \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ V_{CC} = 5 \ V \pm 0.5 \ V \\ \hline \\ V_{CC} = 5 \ V \pm 0.5 \ V \\ \hline \\$	MIN Supply voltage 2 High-level input voltage VCC = 2 V 1.5 VCC = 5.5 V 3.85 VCC = 2 V VCC = 3 V VCC = 3 V VCC = 5.5 V Input voltage 0 Output voltage 0 High-level output current VCC = 2 V VCC = 3.3 V ± 0.3 V VCC = 5 V ± 0.5 V VCC = 5 V ± 0.5 V VCC = 3.3 V ± 0.3 V VCC = 5 V ± 0.5 V VCC = 5 V ± 0.5 V Input transition rise or fall rate VCC = 3.3 V ± 0.3 V Operating free-air temperature -55	MIN MAX Supply voltage VCC = 2 V 1.5 5 High-level input voltage VCC = 3 V 2.1 - VCC = 5.5 V 3.85 - Low-level input voltage VCC = 2 V 0.5 VCC = 3 V 0.9 0.5 VCC = 3 V 0.9 0.5 Input voltage 0 5.5 Output voltage 0 VCC High-level output current VCC = 2 V -50 High-level output current VCC = 3.3 V ± 0.3 V -4 VCC = 5 V ± 0.5 V -8 VCC = 2 V 50 VCC = 2 V 50 VCC = 5 V ± 0.5 V -8 VCC = 5 V ± 0.5 V 8 Input transition rise or fall rate VCC = 3.3 V ± 0.3 V 100 VCC = 5 V ± 0.5 V 20 Operating free-air temperature -55 125	MIN MAX MIN Supply voltage 2 5.5 2 High-level input voltage VCC = 2 V 1.5 1.5 VCC = 5.5 V 3.85 3.85 Low-level input voltage VCC = 2 V 0.5 VCC = 3 V 0.9 0.5 Input voltage 0 5.5 0 Output voltage 0 5.5 0 Output voltage 0 5.5 0 High-level output current VCC = 2 V -50 0 High-level output current VCC = 3.3 V ± 0.3 V -4 -7 VCC = 5 V ± 0.5 V -8 -7 -8 Low-level output current VCC = 3.3 V ± 0.3 V 4 -4 VCC = 5 V ± 0.5 V 8 -8 Input transition rise or fall rate VCC = 5 V ± 0.5 V 8 -8 Operating free-air temperature -55 125 -40	Supply voltage VCC = 2 V 1.5 2 5.5 2 5.5 High-level input voltage VCC = 3 V 2.1 1.5 1.5 1.5 Low-level input voltage VCC = 5.5 V 3.85 3.85 3.85 0.5 Low-level input voltage VCC = 2 V 0.5 0.5 0.5 Input voltage VCC = 3 V 0.9 0.9 0.9 Input voltage 0 5.5 0 5.5 Output voltage 0 5.5 0 5.5 Output voltage 0 VCC 0 VCC High-level output current VCC = 2 V -50 -50 VCC = 3.3 V ± 0.3 V -4 -4 VCC = 5 V ± 0.5 V -8 -8 VCC = 2 V 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50	

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN54AHC374, SN74AHC374 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCLS240I - OCTOBER 1995 - REVISED JULY 2003

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS	V	T,	չ = 25°C	;	SN54A	HC374	SN74AHC374		UNIT
PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
		2 V	1.9	2		1.9		1.9		
	I _{OH} = -50 μA	3 V	2.9	3		2.9		2.9		
V _{OH}		4.5 V	4.4	4.5		4.4		4.4		V
	I _{OH} = -4 mA	3 V	2.58			2.48		2.48		
	I _{OH} = -8 mA	4.5 V	3.94			3.8		3.8		
		2 V			0.1		0.1		0.1	
	I _{OL} = 50 μA	3 V			0.1		0.1		0.1	
VOL		4.5 V			0.1		0.1		0.1	V
	I _{OL} = 4 mA	3 V			0.36		0.5		0.44	
	I _{OL} = 8 mA	4.5 V			0.36		0.5		0.44	
lį	V _I = 5.5 V or GND	0 V to 5.5 V			±0.1		±1*		±1	μΑ
I _{OZ}	$V_O = V_{CC}$ or GND	5.5 V			±0.25		±2.5		±2.5	μΑ
ICC	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			4		40		40	μΑ
Ci	V _I = V _{CC} or GND	5 V		4	10				10	pF
Co	$V_O = V_{CC}$ or GND	5 V		6						pF

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested at $V_{CC} = 0 \text{ V}$.

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

		T _A = 25°C		SN54AHC374		SN74AHC374		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
t _W	Pulse duration, CLK high or low	5		5.5		5.5		ns
t _{su}	Setup time, data before CLK↑	4.5		4		4		ns
th	Hold time, data after CLK↑	2		2		2		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

		T _A = 25°C		25°C SN54AHC374		SN74AI	UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
t _W	Pulse duration, CLK high or low	5		5		5		ns
t _{su}	Setup time, data before CLK↑	3		3		3		ns
t _h	Hold time, data after CLK↑	2		2		2		ns

SCLS240I - OCTOBER 1995 - REVISED JULY 2003

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

DADAMETER	FROM	то	LOAD	T,	4 = 25°C	;	SN54A	HC374	SN74AI	HC374	UNIT
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII
f			C _L = 15 pF	80*	130*		70*		70		MHz
f _{max}			$C_{L} = 50 \text{ pF}$	55	85		50		50		IVITZ
t _{PLH}	CLK	Q	C: - 15 pF		8.1*	12.7*	1*	15*	1	15	ns
t _{PHL}	GLK	g	C _L = 15 pF		8.1*	12.7*	1*	15*	1	15	110
^t PZH	ŌĒ	Q	C: - 15 pE		7.1*	11*	1*	13*	1	13	20
t _{PZL}	OE	g	C _L = 15 pF		7.1*	11*	1*	13*	1	13	ns
^t PHZ		Q	C: - 15 pE		7.5*	10.5*	1*	12.5*	1	12.5	ns
^t PLZ	ŌĒ	\overline{OE} Q $C_L = 15 \text{ pF}$	OL = 13 pr		7.5*	10.5*	1*	12.5*	1	12.5	115
t _{PLH}	CLK	Q	C _I = 50 pF		10.6	16.2	1	18.5	1	18.5	ns
^t PHL	OLK	y	CL = 30 pr		10.6	16.2	1	18.5	1	18.5	115
^t PZH		Q	C _I = 50 pF		9.6	14.5	1	16.5	1	16.5	ns
t _{PZL}	ŌĒ	y	CL = 30 pr		9.6	14.5	1	16.5	1	16.5	110
t _{PHZ}	<u></u>	Q	C _I = 50 pF		10.2	14	1	16	1	16	ns
tPLZ	ŌĒ	3	CL = 50 pr		10.2	14	1	16	1	16	115
t _{sk(o)}			C _L = 50 pF			1.5**				1.5	ns

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	LOAD	T,	4 = 25°C	;	SN54AI	HC374	SN74AI	HC374	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT	
4			C _L = 15 pF	130*	185*		110*		110		MHz	
f _{max}			C _L = 50 pF	85	120		75		75		IVITIZ	
^t PLH	CLK	Q	C: - 15 pF		5.4*	8.1*	1*	9.5*	1	9.5	ns	
t _{PHL}	GLK	y	C _L = 15 pF		5.4*	8.1*	1*	9.5*	1	9.5	110	
^t PZH	ŌĒ	Q	C: - 15 pE		5.1*	7.6*	1*	9*	1	9	20	
t _{PZL}	OE	y	C _L = 15 pF		5.1*	7.6*	1*	9*	1	9	ns	
^t PHZ		Q	C: - 15 pE		4.6*	6.8*	1*	8*	1	8	ns	
t _{PLZ}	ŌĒ	OE	y	C _L = 15 pF		4.6*	6.8*	1*	8*	1	8	10
^t PLH	CLK	Q	C _I = 50 pF		6.9	10.1	1	11.5	1	11.5	ns	
^t PHL	OLK	y	CL = 30 pr		6.9	10.1	1	11.5	1	11.5	10	
^t PZH		Q	C _I = 50 pF		6.6	9.6	1	11	1	11	ns	
t _{PZL}	ŌĒ	y	CL = 30 pr		6.6	9.6	1	11	1	11	110	
^t PHZ	ŌĒ	Q	C _I = 50 pF		6.1	8.8	1	10	1	10	ns	
tPLZ		3	CL = 50 pr		6.1	8.8	1	10	1	10	110	
tsk(o)			C _L = 50 pF			1**				1	ns	

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

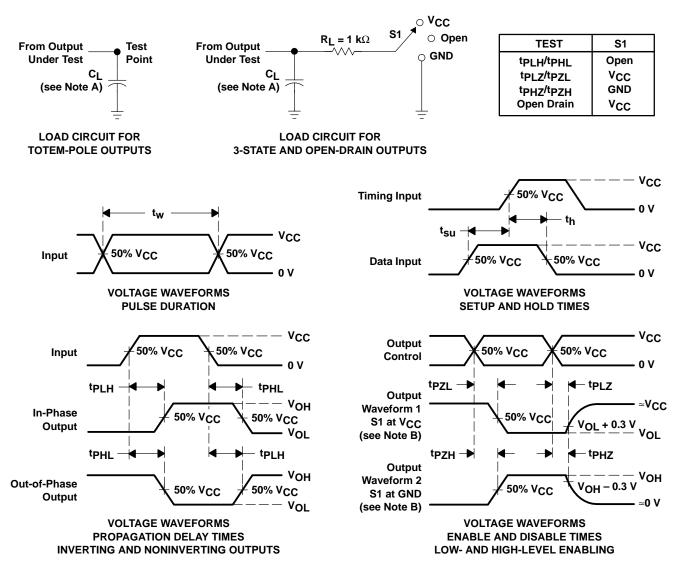
^{**} On products compliant to MIL-PRF-38535, this parameter does not apply.

^{**} On products compliant to MIL-PRF-38535, this parameter does not apply.

SN54AHC374, SN74AHC374 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS SCLS240I – OCTOBER 1995 – REVISED JULY 2003

noise characteristics, $V_{CC} = 5 \text{ V}$, $C_L = 50 \text{ pF}$, $T_A = 25^{\circ}\text{C}$ (see Note 4)

	PARAMETER				UNIT
	PARAMETER	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.5	1	V
V _{OL} (V)	Quiet output, minimum dynamic V _{OL}		-0.5	-0.8	V
VOH(V)	Quiet output, minimum dynamic VOH	4			V
VIH(D)	High-level dynamic input voltage	3.5			V
V _{IL(D)}	Low-level dynamic input voltage			1.5	V


NOTE 4: Characteristics are for surface-mount packages only.

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST C	ONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load,	f = 1 MHz	32	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f \leq 3$ ns. $t_f \leq 3$ ns.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-9686401Q2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	N / A for Pkg Type
5962-9686401QRA	ACTIVE	CDIP	J	20	1	TBD	Call TI	N / A for Pkg Type
5962-9686401QSA	ACTIVE	CFP	W	20	1	TBD	Call TI	N / A for Pkg Type
SN74AHC374DBLE	OBSOLETE	SSOP	DB	20		TBD	Call TI	Call TI
SN74AHC374DBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC374DBRE4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC374DGVR	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC374DGVRE4	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC374DW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC374DWE4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC374DWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC374DWRE4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC374N	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74AHC374NE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74AHC374NSR	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC374NSRE4	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC374PW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC374PWE4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC374PWLE	OBSOLETE	TSSOP	PW	20		TBD	Call TI	Call TI
SN74AHC374PWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC374PWRE4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SNJ54AHC374FK	ACTIVE	LCCC	FK	20	1	TBD	Call TI	N / A for Pkg Type
SNJ54AHC374J	ACTIVE	CDIP	J	20	1	TBD	Call TI	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in

a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

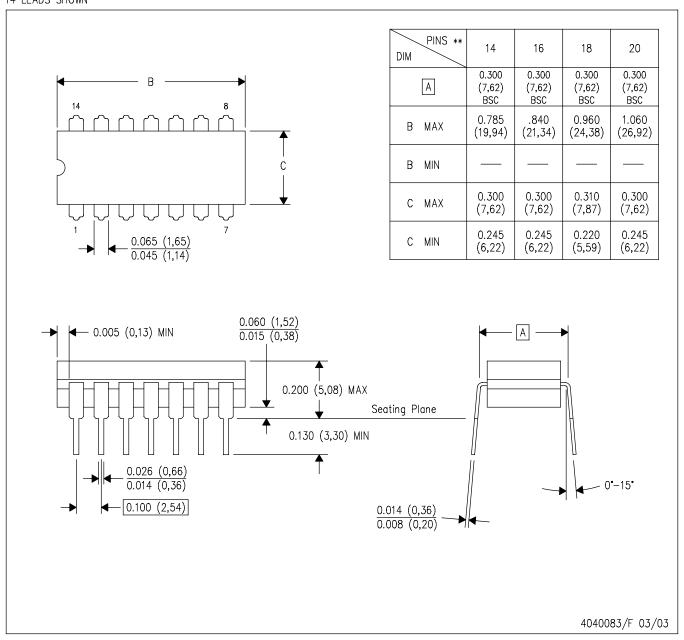
12-Jan-2006

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

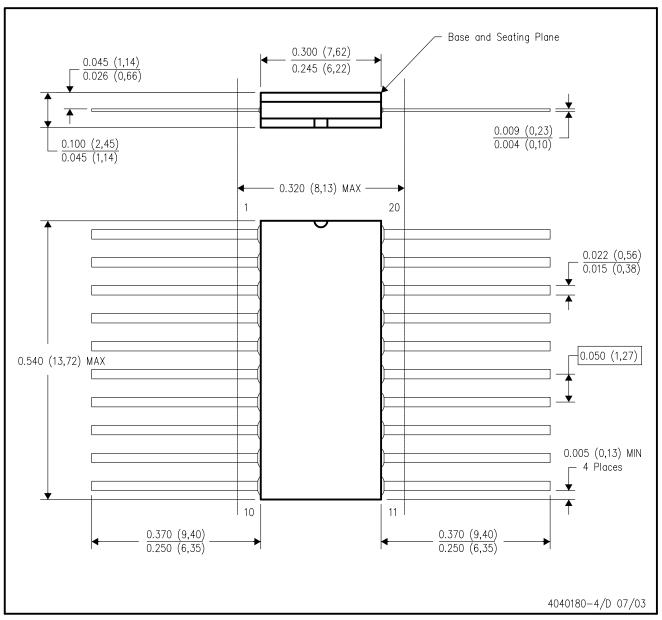
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.


Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

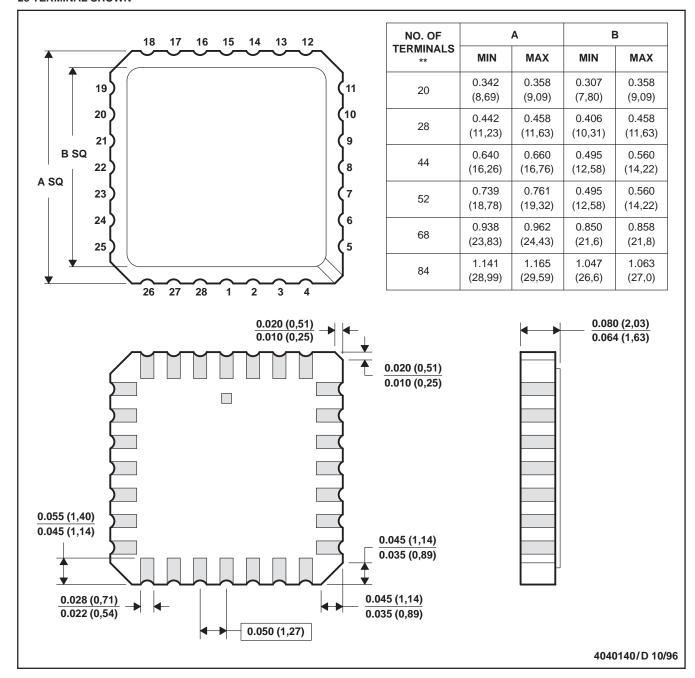
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F20)

CERAMIC DUAL FLATPACK

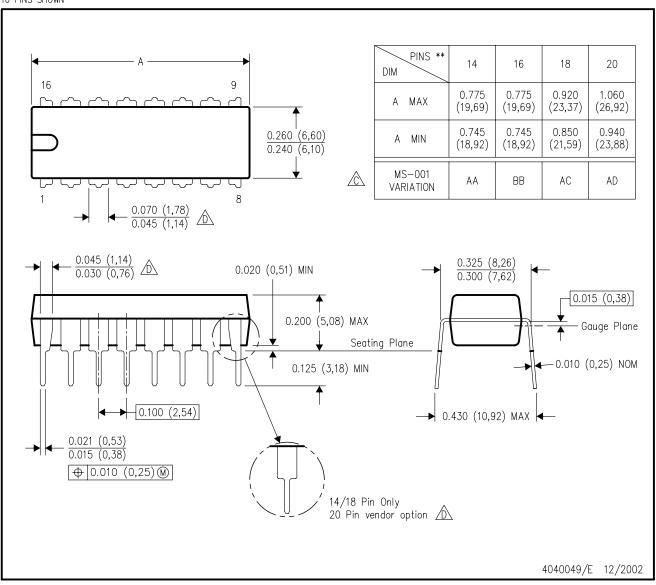

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within Mil-Std 1835 GDFP2-F20

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER

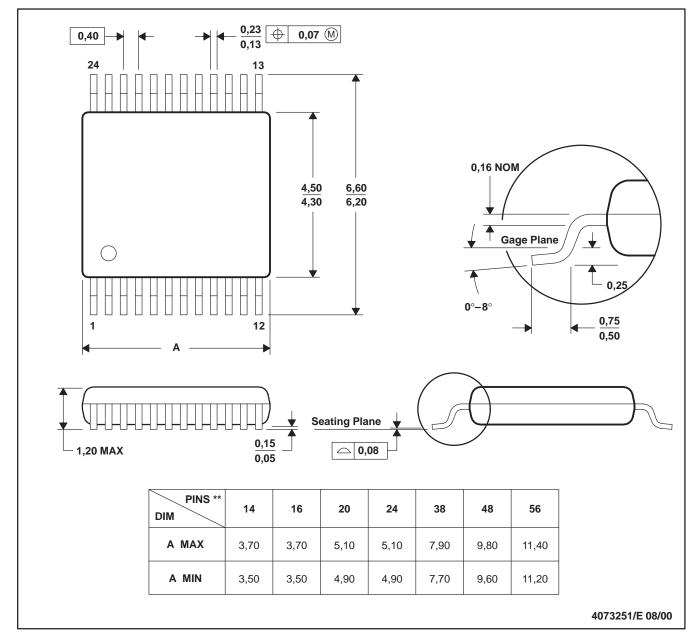
NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

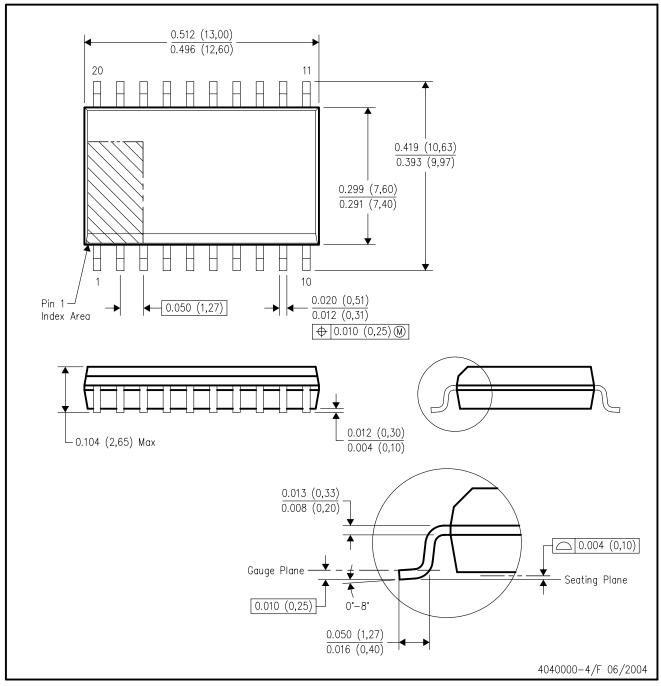
DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

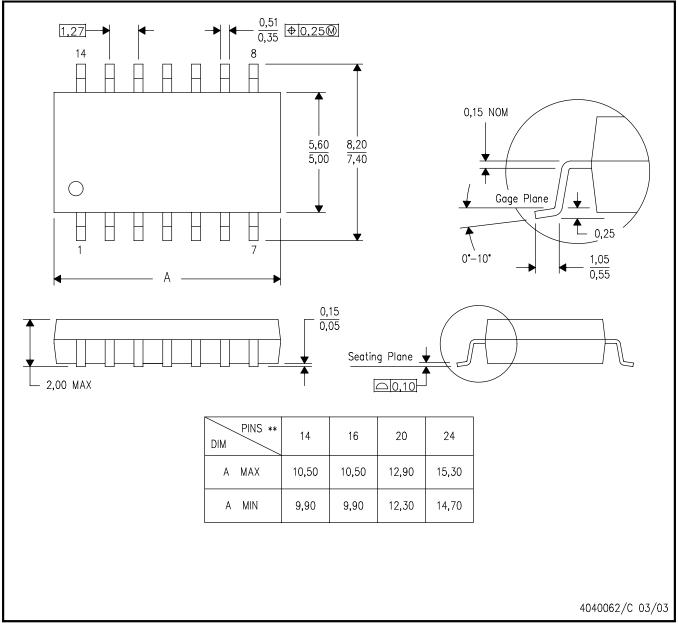

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

DW (R-PDSO-G20)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AC.

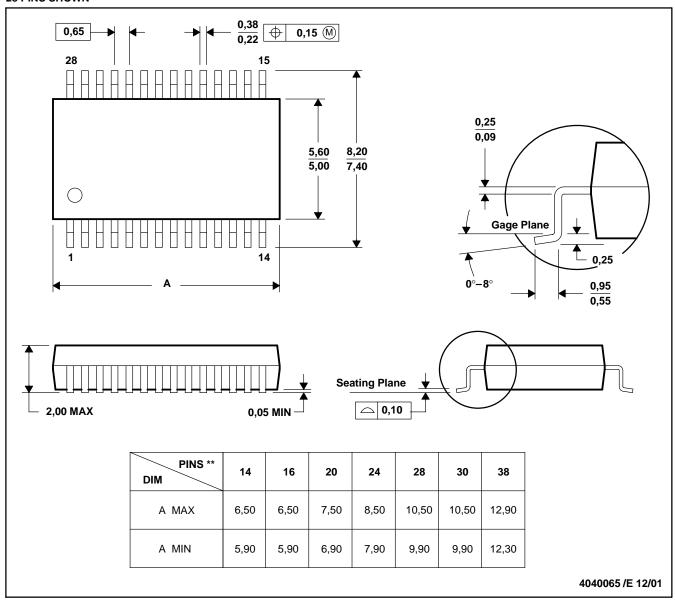


MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

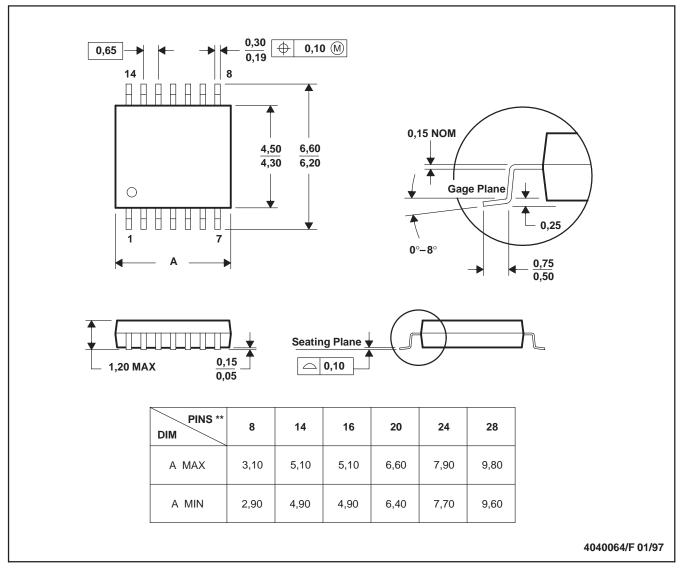
DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated