

アキシャルリード形セラミックコンデンサ AXIAL LEADED CERAMIC CAPACITORS

OPERATING TEMP. -25~+85°C

フロー/WAVE

特長 FEATURES

- 汎用型セラミックコンデンサで、単層形と積層形合わせて1pF~10μFと広い容量範囲で部品の標準化が可能
- ラジアルに比べ自捕コストが安く、部品高さ低減、実装密度アップ、在庫スペースも減少
- 実装ピッチ5mmから26mmまでジャンパー線機能と兼用可能

- This widely used ceramic capacitor includes both monolithic and multi-layer types to provide a wide capacitance range of 1pF through 10μF in one standard size and shape.
- Automatic insertion related costs are lower than with radial type capacitors.
- Mounting pitch can be between 5mm to 26mm which could be used as a jumper.

用途 APPLICATIONS

- Class1品は回路の温度特性補正及び周波数特性の安定化。B、F特はバイパスコンデンサに最適

- The class 1 temperature compensating (NPO) products can be used in circuits to stabilize frequency and temperature characteristics.
- The B, and F dielectrics are optimum for bypass capacitors.

形名表記法 ORDERING CODE

1	定格電圧 [VDC]
L	10
E	16
T	25
G	35
U	50

3	形状寸法(L×φd) [mm]
075	4.2×3.2(積層形)
050	3.5×1.9(単層形)
025	3.2×2.2(積層形)
015	2.3×2.0(積層形)
	3.0×2.5(積層形)

5	公称静電容量 [pF]
例	※R=小数点
010	1
1R2	1.2
103	10000

6	容量許容差
D-	±0.5pF
J-	± 5%
K-	±10%
M-	±20%
Z-	±20%

8	梱包
B	つづら折り
C	袋づめ

2	形式
P	アキシャルリードコンデンサ

4	温度特性
CK	0± 250 (ppm /°C)
CH	0± 60 (ppm /°C)
RH	-220± 60 (ppm /°C)
UJ	-750±120 (ppm /°C)
SL	+350~-1000 (ppm /°C)
△B	±10%
△F	±30%

△=スペース

7	リード形状 [mm]
A-	26mmテープ幅テーピング
B-	52mmテープ幅テーピング
KF	5.0ピッチフォーミング
KE	7.5ピッチフォーミング
NA	単品ストレートリード

9	当社管理記号
△△	単層標準品
△Z	積層標準品
△J	積層品(低電圧タイプ)

△=スペース

U P 0 5 0 C H 1 0 0 J - A - B ○ ○

1 2 3 4 5 6 7 8 9

1	Rated voltage [VDC]
L	10
E	16
T	25
G	35
U	50

3	Outside Dimensions(L×φd) [mm]
075	4.2×3.2(multilayer type)
050	3.5×1.9(monolithic type)
025	3.2×2.2(multilayer type)
015	2.3×2.0(multilayer type)
	3.0×2.5(multilayer type)

5	Nominal Capacitance [pF]
example	1
010	1
1R2	1.2
103	10000

※R=decimal point

6	Capacitance Tolerances
D-	±0.5pF
J-	± 5%
K-	±10%
M-	±20%
Z-	±20%

8	Packaging
B	Ammo
C	Bulk

2	Type
P	Axial leaded capacitors

4	Temperature characteristics
CK	0± 250 (ppm /°C)
CH	0± 60 (ppm /°C)
RH	-220± 60 (ppm /°C)
UJ	-750±120 (ppm /°C)
SL	+350~-1000 (ppm /°C)
△B	±10%
△F	±30%

△=Blank space

7	Lead Configuration
A-	26mm lead space, ammo pack
B-	52mm lead space, ammo pack
KF	5.0mm pitch formed lead bulk
KE	7.5mm pitch formed lead bulk
NA	Axial lead, bulk

△=Blank space

9	Internal code
△△	Monolithic type Standard products
△Z	Multilayer type Standard products
△J	Multilayer type (Low voltage products)

TYPE	Dimensions			テーピング品 Taped product		単品 Bulk Product			
	L	ϕD	ϕd	ストレート	Straight	ストレート	Straight	フォーミング	Formed
単層形050 (Monolithic Type)	3.5max (0.138max)	1.9max (0.075max)	0.45±0.05 (0.018±0.002)	B 52mm (2.05)	A 26mm (1.02)	N/A		K F Pitch: 5mm (0.197)	
積層形075 (Multilayer Type)	4.2max (0.165max)	3.2max (0.126max)	0.55±0.05 (0.022±0.002)					K E Pitch: 7.5mm (0.295)	
積層形050 (Multilayer Type)	3.2max (0.126max)	2.2max (0.087max)	0.45±0.05 (0.018±0.002)					K F Pitch: 5mm (0.197)	
積層形025 (Multilayer Type)	2.3max (0.09max)	2.0max (0.079max)							
積層形015 (Multilayer Type)	3.0max (0.118max)	2.5max (0.098max)							

Unit : mm (inch)

概略バリエーション AVAILABLE CAPACITANCE RANGE

Class 1 (Temperature compensating)		Class 2 (High dielectric constant)																	
WV		50V (UP)						35V (GP)						25V (TP)		16V (EP)		10V (P)	
Temp.char.		CH	RH	UJ	SL		B	F	B	F	B	F	B	F	B	F	B	F	
Type cap.		025	050	050	050	025	050	075	015	025	050	075	015	025	050	015	025	050	050
[pF]	[pF : 3digits]																		
1	010																		
1.2	1R2																		
1.5	1R5																		
1.8	1R8																		
2.2	2R2																		
2.7	2R7																		
3.3	3R3																		
3.9	3R9																		
4.7	4R7																		
5.6	5R6																		
6.8	6R8																		
8.2	8R2																		
10	100																		
11	110																		
12	120																		
13	130																		
15	150																		
16	160																		
18	180																		
20	200																		
22	220																		
24	240																		
27	270																		
30	300																		
33	330																		
36	360																		
39	390																		
43	430																		
47	470																		
51	510																		
56	560																		
62	620																		
68	680																		
100	101																		
150	151																		
220	221																		
330	331																		
470	471																		
680	681																		
1000	102																		

※単層タイプの製品につきましては、生産終息予定ですので詳細につきましては最寄の弊社営業窓口までお問い合わせ下さい。

※Since the production of monolithic layer products is scheduled to be discontinued, please contact your nearest sales office if you require any detailed information.

温度特性 Temperature char.	静電容量変化率 Capacitance change	容量許容差 Capacitance Tolerance	Q又はtan δ Q or tan δ	種類 Class
CH	0± 60ppm/°C	D (±0.5pF) M (±20%) K (±10%) J (±5%)		1
RH	-220± 60ppm/°C			
UJ	-750±120ppm/°C			
SL	+350~-1000ppm/°C			
△B	±10%	K (±10%)		2
△F	±20%	Z (±20%)		

※20°Cにおける静電容量を基準。

※Capacitance characteristics measured at 20°C

セレクションガイド
Selection Guideアイテム一覧
Part Numbers特性図
Electrical Characteristics梱包
Packaging信頼性
Reliability Data使用上の注意
Precautions

etc

P.122

P.128

P.129

P.130

P.142

[単層タイプ Monolithic type]

Class 1

※単層タイプの製品につきましては、生産終息予定ですので詳細につきましては最寄の弊社営業窓口までお問い合わせ下さい。

※Since the production of monolithic layer products is scheduled to be discontinued, please contact your nearest sales office if you require any detailed information.

定格電圧 Rated Voltage (DC)	形名 Ordering code	EHS (Environmental Hazardous Substances)	温度特性 Temperature characteristics	公称 静電容量 Capacitance (pF)	容量 許容差 Capacitance tolerance	Q or tan δ	絶縁抵抗 Insulation resistance		
50V	UP050△010M-○	RoHS	CH RH SL	1.0	±20%	Q≥400+20C (C:公称静電容量 capacitance[pF]) ただしRHは 16pF以上は Q≥500 but Q≥500 at 16pF or over of characteristic RH	10000MΩ min		
	UP050△1R2M-○	RoHS		1.2					
	UP050△1R5M-○	RoHS		1.5					
	UP050△1R8M-○	RoHS		1.8					
	UP050△2R2K-○	RoHS	CH RH UJ SL	2.2					
	UP050△2R7K-○	RoHS		2.7					
	UP050△3R3K-○	RoHS		3.3					
	UP050△3R9K-○	RoHS		3.9					
	UP050△4R7K-○	RoHS		4.7					
	UP050△5R6K-○	RoHS		5.6					
	UP050△6R8K-○	RoHS		6.8					
	UP050△8R2K-○	RoHS		8.2					
	UP050△100J-○	RoHS		10					
	UP050△110J-○	RoHS		11					
	UP050△120J-○	RoHS		12					
	UP050△130J-○	RoHS		13					
	UP050△150J-○	RoHS	CH、UJ、SL	15	±10%				
	UP050△160J-○	RoHS		16					
	UP050△180J-○	RoHS		18					
	UP050△200J-○	RoHS		20					
	UP050△220J-○	RoHS		22					
	UP050△240J-○	RoHS	UJ SL	24					
	UP050△270J-○	RoHS		27					
	UP050△300J-○	RoHS		30					
	UP050SL330J-○	RoHS	SL	33	±5%	Q≥500	10000MΩ min		
	UP050SL360J-○	RoHS		36					
	UP050SL390J-○	RoHS		39					
	UP050SL430J-○	RoHS		43					
	UP050SL470J-○	RoHS		47					
	UP050SL510J-○	RoHS		51					
	UP050SL560J-○	RoHS		56					
	UP050SL620J-○	RoHS		62					
	UP050SL680J-○	RoHS		68					

形名の△には温度特性、○にはリード形状分類記号が入ります。

△Please specify the temperature characteristics code and ○ lead configuration code.

[積層025タイプ Multilayer 025 Type]

Class 1

定格電圧 Rated Voltage (DC)	形名 Ordering code	EHS (Environmental Hazardous Substances)	温度特性 Temperature characteristics	公称 静電容量 Capacitance [pF]	容量 許容差 Capacitance tolerance	Q or tan δ	絶縁抵抗 Insulation resistance	
50V	UP025△010D-○ Z	RoHS	CH	1.0	±0.5pF	Q≥400+20C	10000MΩ min	
	UP025△1R2D-○ Z	RoHS		1.2				
	UP025△1R5D-○ Z	RoHS		1.5				
	UP025△1R8D-○ Z	RoHS		1.8				
	UP025△2R2D-○ Z	RoHS		2.2				
	UP025△2R7D-○ Z	RoHS		2.7				
	UP025△3R3D-○ Z	RoHS		3.3				
	UP025△3R9D-○ Z	RoHS		3.9				
	UP025△4R7D-○ Z	RoHS		4.7				
	UP025△5R6K-○ Z	RoHS		5.6				
	UP025△6R8K-○ Z	RoHS	SL	6.8	±10%	Q≥400+20C		
	UP025△8R2K-○ Z	RoHS		8.2				
	UP025△100J-○ Z	RoHS		10				
	UP025△120J-○ Z	RoHS		12				
	UP025△150J-○ Z	RoHS		15				
	UP025△180J-○ Z	RoHS		18				
	UP025△220J-○ Z	RoHS		22				
	UP025△270J-○ Z	RoHS		27				
	UP025△330J-○ Z	RoHS		33				
	UP025△390J-○ Z	RoHS		39				
	UP025△470J-○ Z	RoHS	CH	47	±5%	Q≥1000		
	UP025△560J-○ Z	RoHS		56				
	UP025△680J-○ Z	RoHS		68				
	UP025△820J-○ Z	RoHS		82				
	UP025CH101J-○ Z	RoHS		100				
	UP025CH151J-○ Z	RoHS		150				
	UP025CH221J-○ Z	RoHS		220				
	UP025CH331J-○ Z	RoHS		330				
	UP025CH471J-○ Z	RoHS		470				
	UP025CH681J-○ Z	RoHS		680				
	UP025CH102J-○ Z	RoHS		1000				

形名の△には温度特性、○にはリード形状分類記号が入ります。

△Please specify the temperature characteristics code and ○ lead configuration code.

アイテム一覧 PART NUMBERS

[積層015タイプ Multilayer 015type]

Class 2

定格電圧 Rated Voltage (DC)	形名 Ordering Code	EHS (Environmental Hazardous Substances)	温度特性 Temperature characteristics	公称 静電容量 Capacitance [pF]	容量 許容差 Capacitance tolerance	Q or tan δ	絶縁抵抗 Insulation resistance
25V	TP015 B103K-○ Z	RoHS	B	10000	±10%	$\tan \delta \leq 3.5\%$	5000MΩ min
16V	EP015 B104K-○ Z	RoHS		100000			
50V	UP015 F103Z-○ Z	RoHS	F	10000	+80% -20%	$\tan \delta \leq 7.5\%$	1000MΩ min
16V	EP015 F104Z-○ Z	RoHS		100000			

形名の△には温度特性、○にはリード形状分類記号が入ります。

△Please specify the temperature characteristics code and ○ lead configuration code.

[積層025タイプ Multilayer 025 Type]

Class 2

定格電圧 Rated Voltage (DC)	形名 Ordering code	EHS (Environmental Hazardous Substances)	温度特性 Temperature characteristics	公称 静電容量 Capacitance [pF]	容量 許容差 Capacitance tolerance	Q or tan δ	絶縁抵抗 Insulation resistance
50V	UP025 B101K-○ Z	RoHS	B	100	±10%	$\tan \delta \leq 3.5\%$	5000MΩ min
	UP025 B121K-○ Z	RoHS		120			
	UP025 B151K-○ Z	RoHS		150			
	UP025 B181K-○ Z	RoHS		180			
	UP025 B221K-○ Z	RoHS		220			
	UP025 B271K-○ Z	RoHS		270			
	UP025 B331K-○ Z	RoHS		330			
	UP025 B391K-○ Z	RoHS		390			
	UP025 B471K-○ Z	RoHS		470			
	UP025 B561K-○ Z	RoHS		560			
	UP025 B681K-○ Z	RoHS		680			
	UP025 B821K-○ Z	RoHS		820			
	UP025 B102K-○ Z	RoHS		1000			
	UP025 B122K-○ Z	RoHS		1200			
	UP025 B152K-○ Z	RoHS		1500			
	UP025 B222K-○ Z	RoHS		2200			
	UP025 B332K-○ Z	RoHS		3300			
	UP025 B472K-○ Z	RoHS		4700			
	UP025 B682K-○ Z	RoHS		6800			
	UP025 B103K-○ Z	RoHS		10000			
	UP025 B153K-○ Z	RoHS		15000			
	UP025 B223K-○ Z	RoHS		22000			
	UP025 B333K-○ Z	RoHS		33000			
	UP025 B473K-○ Z	RoHS		47000			
	UP025 B683K-○ Z	RoHS		68000			
	UP025 B104K-○ Z	RoHS		100000			
50V	UP025 F103Z-○ Z	RoHS	F	10000	+80% -20%	$\tan \delta \leq 7.5\%$	1000MΩ min
	UP025 F223Z-○ Z	RoHS		22000			
	UP025 F473Z-○ Z	RoHS		47000			
	UP025 F104Z-○ Z	RoHS		100000			
16V	EP025 B122M-○ J	RoHS	B	1200	±20%	$\tan \delta \leq 3.5\%$	5000MΩ min
	EP025 B152M-○ J	RoHS		1500			
	EP025 B182M-○ J	RoHS		1800			
	EP025 B222M-○ J	RoHS		2200			
	EP025 B272M-○ J	RoHS		2700			
	EP025 B332M-○ J	RoHS		3300			
	EP025 B392M-○ J	RoHS		3900			
	EP025 B472M-○ J	RoHS		4700			
	EP025 B562M-○ J	RoHS		5600			
	EP025 B682M-○ J	RoHS		6800			
	EP025 B822M-○ J	RoHS		8200			
	EP025 B103M-○ J	RoHS		10000			
	EP025 B123M-○ J	RoHS		12000			
	EP025 B153M-○ J	RoHS		15000			
	EP025 B183M-○ J	RoHS		18000			
	EP025 B223M-○ J	RoHS		22000			
25V	TP025 F103Z-○ J	RoHS	F	10000	+80% -20%	$\tan \delta \leq 7.5\%$	1000MΩ min
	TP025 F223Z-○ J	RoHS		22000			
	TP025 F473Z-○ J	RoHS		47000			

形名の△には温度特性、○にはリード形状分類記号が入ります。

△Please specify the temperature characteristics code and ○ lead configuration code.

[積層タイプ Multilayer type]

Class 1

定格電圧 Rated Voltage (DC)	形名 Ordering code	EHS (Environmental Hazardous Substances)	温度特性 Temperature characteristics	公称 静電容量 Capacitance [pF]	容量 許容差 Capacitance tolerance	Q or tan δ	絶縁抵抗 Insulation resistance
★	UP050CH220J-○ Z	RoHS	CH	22	± 5%	Q≥400+20C	10000MΩmin
★	UP050CH240J-○ Z	RoHS		24			
★	UP050CH270J-○ Z	RoHS		27			
★	UP050CH300J-○ Z	RoHS		30			
★	UP050CH330J-○ Z	RoHS		33			
★	UP050CH360J-○ Z	RoHS		36			
★	UP050CH390J-○ Z	RoHS		39			
★	UP050CH430J-○ Z	RoHS		43			
★	UP050CH470J-○ Z	RoHS		47			
★	UP050CH510J-○ Z	RoHS		51			
★	UP050CH560J-○ Z	RoHS		56			
★	UP050CH620J-○ Z	RoHS		62			
★	UP050CH680J-○ Z	RoHS		68			
★	UP050CH750J-○ Z	RoHS		75			
★	UP050CH820J-○ Z	RoHS		82			
★	UP050CH910J-○ Z	RoHS		91			
50V	UP050CH101J-○ Z	RoHS		100			
★	UP050CH111J-○ Z	RoHS		110			
★	UP050CH121J-○ Z	RoHS		120			
★	UP050CH131J-○ Z	RoHS		130			
★	UP050CH151J-○ Z	RoHS		150			
★	UP050CH161J-○ Z	RoHS		160			
★	UP050CH181J-○ Z	RoHS		180			
★	UP050CH201J-○ Z	RoHS		200			
★	UP050CH221J-○ Z	RoHS		220			
★	UP050CH241J-○ Z	RoHS		240			
★	UP050CH271J-○ Z	RoHS		270			
★	UP050CH301J-○ Z	RoHS		300			
★	UP050CH331J-○ Z	RoHS		330			
★	UP050CH361J-○ Z	RoHS		360			
★	UP050CH391J-○ Z	RoHS		390			
★	UP050CH431J-○ Z	RoHS		430			
★	UP050CH471J-○ Z	RoHS		470			
★	UP050CH511J-○ Z	RoHS		510			
★	UP050CH561J-○ Z	RoHS		560			
★	UP050CH621J-○ Z	RoHS		620			
★	UP050CH681J-○ Z	RoHS		680			
★	UP050CH751J-○ Z	RoHS		750			
★	UP050CH821J-○ Z	RoHS		820			
★	UP050CH911J-○ Z	RoHS		910			
	UP050CH102J-○ Z	RoHS		1000			

形名の△には温度特性、○にはリード形状分類記号が入ります。 ★：オプション対応

△Please specify the temperature characteristics code and ○ lead configuration code.

★ : Option

[単層タイプ Monolithic type]

Class 2

※単層タイプの製品につきましては、生産終息予定ですので詳細につきましては最寄の弊社営業窓口までお問い合わせ下さい。

※Since the production of monolithic layer products is scheduled to be discontinued, please contact your nearest sales office if you require any detailed information.

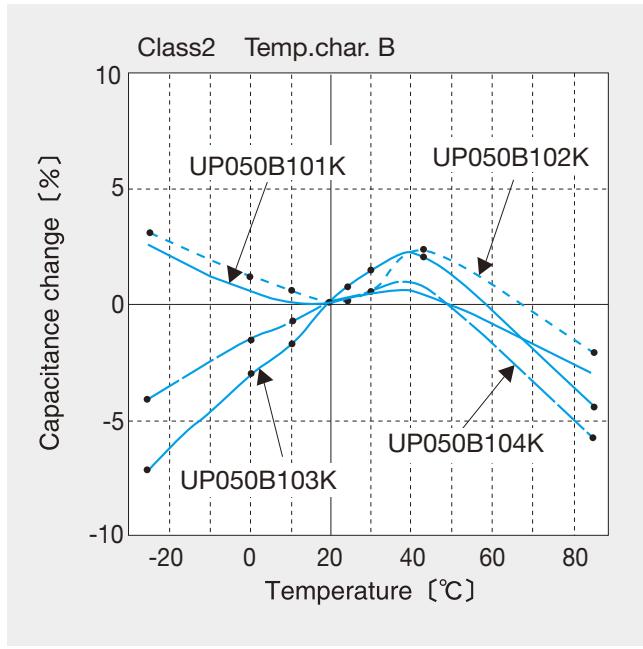
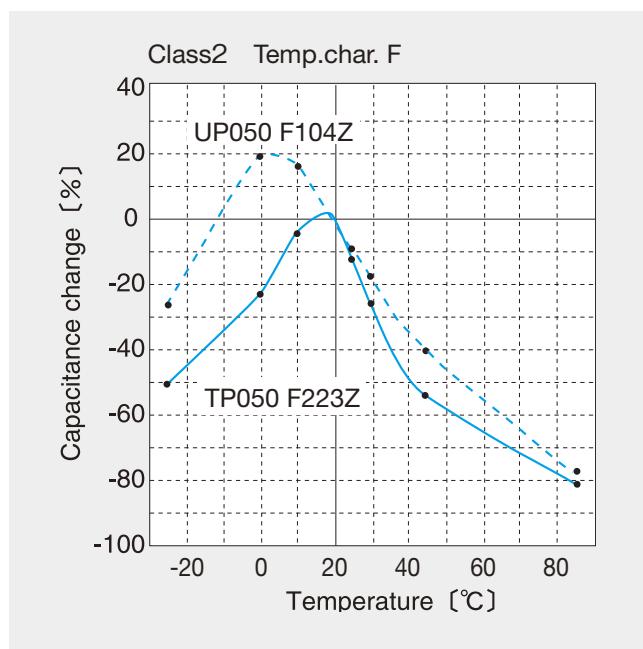
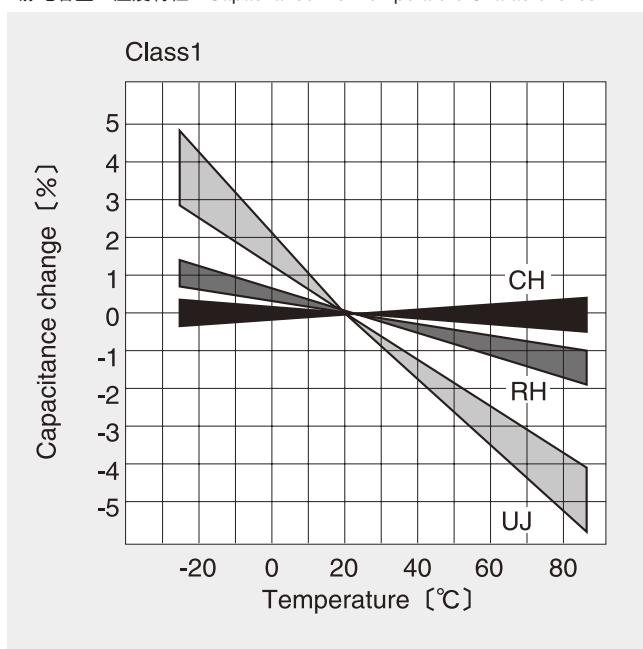
定格電圧 Rated Voltage (DC)	形名 Ordering code	EHS (Environmental Hazardous Substances)	温度特性 Temperature characteristics	公称 静電容量 Capacitance (pF)	容量 許容差 Capacitance tolerance	Q or tan δ	絶縁抵抗 Insulation resistance
50V	UP050 B750K-○	RoHS	B	75	±10%	tan δ ≤1.5%	10000MΩ min
	UP050 B820K-○	RoHS		82			
	UP050 B910K-○	RoHS		91			
	UP050 B101K-○	RoHS		100			
	UP050 B121K-○	RoHS		120			
	UP050 B151K-○	RoHS		150			
	UP050 B181K-○	RoHS		180			
	UP050 B221K-○	RoHS		220			
	UP050 B271K-○	RoHS		270			
	UP050 B331K-○	RoHS		330			
	UP050 B391K-○	RoHS		390	±20%	tan δ ≤2.5%	1000MΩ min
	UP050 B471K-○	RoHS		470			
	UP050 B561K-○	RoHS		560			
	UP050 B681K-○	RoHS		680			
	UP050 B821K-○	RoHS		820			
	UP050 B102K-○	RoHS		1000			
25V	TP050 F103Z-○	RoHS	F	10000	± ⁸⁰ ₂₀ %	tan δ ≤7.5%	1000MΩ min
	TP050 F223Z-○	RoHS		22000			

形名の□には容量許容差、○にはリード形状分類記号が入ります。

□Please specify the capacitance tolerance code and ○ lead configuration code.

[積層タイプ Multilayer type]

Class 2

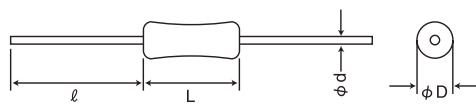



定格電圧 Rated Voltage (DC)	形名 Ordering code	EHS (Environmental Hazardous Substances)	温度特性 Temperature characteristics	公称 静電容量 Capacitance [pF]	容量 許容差 Capacitance tolerance	Q or tan δ	絶縁抵抗 Insulation resistance
50V	★ UP050 B122K-○ Z	RoHS	B	1200	±10%	tan δ ≤3.5%	5000MΩ min
	UP050 B152K-○ Z	RoHS		1500			
	★ UP050 B182K-○ Z	RoHS		1800			
	UP050 B222K-○ Z	RoHS		2200			
	★ UP050 B272K-○ Z	RoHS		2700			
	UP050 B332K-○ Z	RoHS		3300			
	★ UP050 B392K-○ Z	RoHS		3900			
	UP050 B472K-○ Z	RoHS		4700			
	★ UP050 B562K-○ Z	RoHS		5600			
	UP050 B682K-○ Z	RoHS		6800			
	★ UP050 B822K-○ Z	RoHS		8200			
	UP050 B103K-○ Z	RoHS		10000			
	★ UP050 B123K-○ Z	RoHS		12000			
	UP050 B153K-○ Z	RoHS		15000			
	★ UP050 B183K-○ Z	RoHS		18000			
	UP050 B223K-○ Z	RoHS		22000			
	★ UP050 B273K-○ Z	RoHS		27000			
	UP050 B333K-○ Z	RoHS		33000			
	★ UP050 B393K-○ Z	RoHS		39000			
	UP050 B473K-○ Z	RoHS		47000			
	★ UP050 B563K-○ Z	RoHS		56000			
	UP050 B683K-○ Z	RoHS		68000			
	★ UP050 B823K-○ Z	RoHS		82000			
	UP050 B104K-○ Z	RoHS		100000			
	UP050 B224K-○ Z	RoHS		220000			
	UP050 B474K-○ Z	RoHS		470000			
16V	EP050 B105K-○ Z	RoHS	F	1000000	+80 % -20 %	tan δ ≤7.5%	1000MΩ min
	EP050 B225K-○ Z	RoHS		2200000			
	EP050 B475K-○ Z	RoHS		4700000			
	EP050 B106K-○ Z	RoHS		10000000			
50V	UP050 F103Z-○ Z	RoHS	F	10000	tan δ ≤7.5%	1000MΩ min	tan δ ≤12.5%
	UP050 F223Z-○ Z	RoHS		22000			
	UP050 F473Z-○ Z	RoHS		47000			
	UP050 F104Z-○ Z	RoHS		100000			
	UP050 F224Z-○ Z	RoHS		220000			
	UP050 F474Z-○ Z	RoHS		470000			
	UP050 F105Z-○ Z	RoHS		1000000			
16V	EP050 F225Z-○ Z	RoHS	B	2200000	tan δ ≤10.0%	500MΩ min	tan δ ≤15%
10V	LP050 F475Z-○ Z	RoHS		4700000			
	LP050 F106Z-○ Z	RoHS		10000000			
50V	UP075 B105K-○	RoHS	B	1000000	tan δ ≤5.0%	100MΩ min	tan δ ≤12.5%
35V	GP075 B225K-○	RoHS		2200000			
	GP075 B475K-○	RoHS		4700000			
	TP075 B106K-○	RoHS		10000000			
35V	GP075 F106Z-○	RoHS	F	10000000	+80 % -20 %	tan δ ≤17.5%	25MΩ min

形名の△には温度特性、○にはリード形状分類記号が入ります。 ★ : オプション対応

△Please specify the temperature characteristics code and ○ lead configuration code.

★ : Option

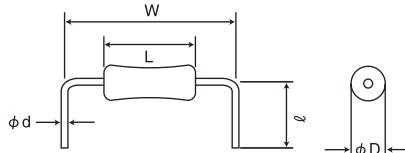
・静電容量一温度特性 Capacitance -vs- Temperature Characteristics



①最小受注単位数 Minimum Quantity

形式 Type	リード形状記号 Lead configuration code	最小受注単位数(PCS) Minimum Quantity	
		袋づめ Bulk	テーピング Taping
積層形 Multilayer type (075, 050, 025, 015)	A-(26mm幅) 1.024 inch wide	—	2000(075type) 3000(050type) 5000(015,025type)
	B-(52mm幅) 2.047 inches wide	—	2000(075type) 3000(050type) 5000(015,025type)
	NA	1000	—
	KE (075type) KF (015,025,050type)	3000, 4000 (015,025 type)	—
単層形 Monolithic type (050)	A-(26mm幅) 1.024 inch wide	—	4000
	B-(52mm幅) 2.047 inches wide	—	4000
	NA	1000	—
	KF	3000	—

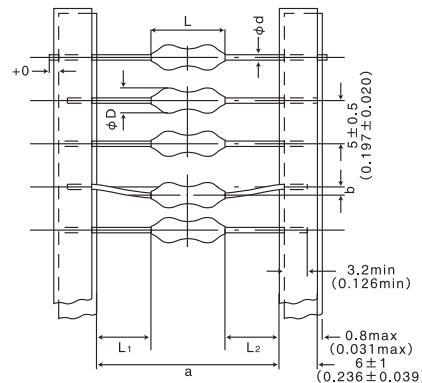
②製品単品形状 Dimensions of Bulk Products


・NA形状 NA configuration

形式 Type	寸法 Dimensions (mm)			
	φD	L	φd	l
積層形 015 Multilayer type	2.5max (0.098)	3.0max (0.118)	0.45±0.05 (0.018±0.002)	20.0min (0.787)
積層形 025 Multilayer type	2.0max (0.079)	2.3max (0.09)	0.45±0.05 (0.018±0.002)	20.0min (0.787)
積層形 050 Multilayer type	2.2max (0.087)	3.2max (0.126)	0.45±0.05 (0.018±0.002)	20.0min (0.787)
積層形 075 Multilayer type	3.2max (0.126)	4.2max (0.165)	0.55±0.05 (0.022±0.002)	20.0min (0.787)
単層形 050 Monolithic type	1.9max (0.075)	3.5max (0.138)	0.45±0.05 (0.018±0.002)	20.0min (0.787)

Unit : mm (inch)

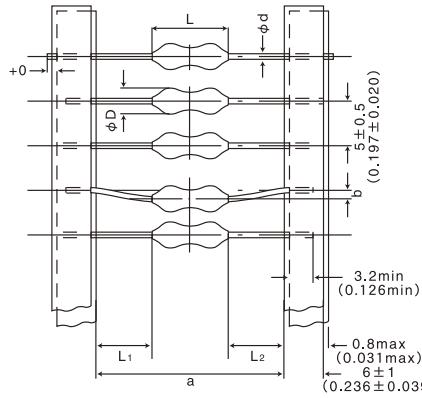
・KF/KE形状 KF/KE configuration



形式 Type	リード形状記号 Lead configuration code	寸法 Dimensions (mm)				
		φD	L	W	φd	l
積層形 015 Multilayer type	KF	2.5max (0.098max)	3.0max (0.118max)	5.0±0.5 (0.197±0.020)	0.45±0.05 (0.018±0.002)	6.5±0.5 (0.256±0.020)
積層形 025 Multilayer type	KF	2.0max (0.079max)	2.3max (0.09max)	5.0±0.5 (0.197±0.020)	0.45±0.05 (0.018±0.002)	6.5±0.5 (0.256±0.020)
積層形 050 Multilayer type	KF	2.2max (0.087max)	3.2max (0.126max)	5.0±0.5 (0.197±0.020)	0.45±0.05 (0.018±0.002)	6.5±0.5 (0.256±0.020)
積層形 075 Multilayer type	KE	3.2max (0.126max)	4.2max (0.165max)	7.5±0.5 (0.295±0.020)	0.55±0.05 (0.022±0.002)	6.5±0.5 (0.256±0.020)
単層形 050 Monolithic type	KF	1.9max (0.075max)	3.5max (0.138max)	5.0±0.5 (0.197±0.020)	0.45±0.05 (0.018±0.002)	6.5±0.5 (0.256±0.020)

Unit : mm (inch)

③テーピング寸法 Taping Dimensions


A-(a : 26mm幅)形状 (a : 1.024 inch wide) configuration

形式 Type	寸法 Dimensions					
	φD	L	a	b	L ₁ -L ₂	φd
積層形 015 Multilayer type	2.5max (0.098)	3.0max (0.118)	—	—	—	0.45±0.05 (0.018±0.002)
積層形 025 Multilayer type	2.0max (0.079)	2.3max (0.09)	—	—	—	0.45±0.05 (0.018±0.002)
積層形 050 Multilayer type	2.2max (0.087)	3.2max (0.126)	—	—	—	0.45±0.05 (0.018±0.002)
積層形 075 Multilayer type	3.2max (0.126)	4.2max (0.165)	—	—	—	0.55±0.05 (0.022±0.002)
単層形 050 Monolithic type	1.9max (0.075)	3.5max (0.138)	—	—	—	0.45±0.05 (0.018±0.002)

Unit : mm (inch)

B-(a : 52mm幅)形状 (a : 2.047 inches wide) configuration

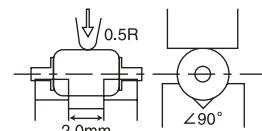
形式 Type	寸法 Dimensions					
	φD	L	a	b	L ₁ -L ₂	φd
積層形 015 Multilayer type	2.5max (0.098max)	3.0max (0.118max)	—	—	—	0.45±0.05 (0.018±0.002)
積層形 025 Multilayer type	2.0max (0.079max)	2.3max (0.09max)	—	—	—	0.45±0.05 (0.018±0.002)
積層形 050 Multilayer type	2.2max (0.087max)	3.2max (0.126max)	—	—	—	0.45±0.05 (0.018±0.002)
積層形 075 Multilayer type	3.2max (0.126max)	4.2max (0.165max)	—	—	—	0.55±0.05 (0.022±0.002)
単層形 050 Monolithic type	1.9max (0.075max)	3.5max (0.138max)	—	—	—	0.45±0.05 (0.018±0.002)

Unit : mm (inch)

※075Typeはラジアルテープリングもオプション対応可能。

AXIAL LEADED CERAMIC CAPACITORS

Item		Specified Value			Test Methods and Remarks	
		Temperature Compensating(Class1) Multilayer type	High Permittivity(Class2) Multilayer type(Characteristics:B)	Multilayer type(Characteristics:F)		
1. Operating Temperature Range		-25~+85°C				
2. Storage Temperature Range		-25~+85°C				
3. Rated Voltage		50VDC	16VDC, 25VDC, 35VDC, 50VDC	10VDC, 16VDC, 25VDC, 35VDC, 50VDC		
4. Withstanding Voltage	Between terminals	No abnormality			Applied voltage: Rated Voltage×3 (Class 1) Rated Voltage×2.5 (Class 2) Duration: 1 to 5 sec. Charge/discharge current: 50mA max. (Class 1,2)	
	Between terminals and body	No abnormality			Metal globule method Applied voltage: Rated Voltage×2.5 Duration: 1 to 5 sec. Charge/Discharge current : 50mA max.	
5. Insulation Resistance		10000MΩ min.	Rated Ivoltage:16VDC B: 100000pF :1000MΩ min 1000000pF :100MΩ min 2200000pF :50MΩ min 4700000pF~10000000pF :20MΩ min 1200pF~22000pF (Item:△J) :5000MΩ min	Rated Ivoltage:10VDC F: 4700000pF :50MΩ min 10000000pF :25MΩ min	Applied voltage: Rated voltage Duration : 60±5 sec.	
			Rated Ivoltage:25VDC B: 10000pF :5000MΩ min 10000000pF :20MΩ min	Rated voltage:25VDC F: 10000pF~47000pF (Item:△J) :1000MΩ min		
			Rated Ivoltage:35VDC B: 2200000pF :50MΩ min 4700000pF :20MΩ min	Rated voltage:35VDC F: 10000000pF :25MΩ min		
			Rated Ivoltage:50VDC B: 100pF~39000pF :5000MΩ min 47000pF~100000pF :1000MΩ min 22000pF :500MΩ min 470000pF :200MΩ min 1000000pF :100MΩ min	Rated voltage:50VDC F: 10000pF~100000pF :1000MΩ min 22000pF~47000pF :500MΩ min 1000000pF :250MΩ min		
6. Capacitance :		±0.5pF ± 5% ± 10%	Rated Ivoltage:16VDC B: ±10%,±20% (Item:△J)	Rated Ivoltage:10VDC F: +80% -20%	Measuring frequency 1MHz±10% (Class 1: C≤1000pF) 1kHz±10% (Class 1: C>1000pF) 1kHz±10% (Class 2)	
			Rated Ivoltage:25VDC B: ±10%	Rated Ivoltage:16VDC F: +80% -20%	Measuring voltage 1.0±0.5Vrms (Class 1: C≤1000pF) 1.0±0.2Vrms (Class 1: C>1000pF) 1.0±0.2Vrms (Class 2)	
			Rated Ivoltage:35VDC B: ±10%	Rated Ivoltage:25VDC F: +80% -20%	Measuring temperature: 20°C Bias application: None	
7. Q or Tangent of Loss Angle		30pF or under : Q≥400+20C 33pF or over : Q≥1000 C:Nominal Capacitance :[pF]	Rated Ivoltage:16VDC B: 1200pF~22000pF (Item:△J) :3.5% max 10000pF :5.0% max 1000000pF :5.0% max 2200000pF~4700000pF :7.5% max 10000000pF :12.5% max	Rated Ivoltage:10VDC F: 4700000pF~10000000pF :17.5% max		
			Rated Ivoltage:25VDC B: 10000pF :3.5% max 10000000pF :12.5% max	Rated Ivoltage:16VDC F: 10000pF :10.0% max 220000pF :15.0% max		
			Rated Ivoltage:35VDC B: 2200000pF~4700000pF :7.5% max	Rated Ivoltage:25VDC F: 10000000pF :7.5% max		
			Rated Ivoltage:50VDC B: 100pF~39000pF :3.5% max 47000pF~100000pF :5.0% max	Rated Ivoltage:35VDC F: 10000000pF :17.5% max		
8. Capacitance : Change due to Temperature or Rate of Capacitance Change		CH : 0±60 SL : -350~+1000 [ppm/°C]	Rated Ivoltage:16VDC B: ±10%	Rated Ivoltage:10VDC F: +30% -85%	Measurement of capacitance at 20°C and 85°C, -25°C shall be made to calculate temperature characteristic by the following equation. (Class 1) $\frac{(C_{85}-C_{20})}{C_{20} \times \Delta T} \times 10^6 \quad (\text{ppm/}^{\circ}\text{C})$	
			Rated Ivoltage:25VDC B: ±10%	Rated Ivoltage:16VDC F: +30% -85%		
			Rated Ivoltage:35VDC B: ±10%	Rated Ivoltage:25VDC F: +30% -85%		
			Rated Ivoltage:50VDC B: ±10%	Rated Ivoltage:35VDC F: +30% -85%		
				Rated Ivoltage:50VDC F: +30% -85%	Change of maximum capacitance deviation in step 1 to 5 (Class 2) Temperature at step 1: 20°C Temperature at step 4: 85°C Temperature at step 2: -25°C Temperature at step 5: 20°C Temperature at step 3: 20°C (Reference temperature)	


Withstanding voltage is also referred to as "voltage proof" under IEC specifications.

AXIAL LEADED CERAMIC CAPACITORS

Item	Specified Value	Test Methods and Remarks	
9. Terminal Strength	Temperature Compensating (Class1) Multilayer type	High Permittivity (Class2) Multilayer type (Characteristics:B)	Apply the stated tensile force progressively in the direction to draw terminal.
	No abnormalities, such as cuts or looseness of terminals.	Multilayer type (Characteristics:F)	
10. Resistance to Vibration	Appearance : No significant abnormality Withstanding Voltage : No abnormality Capacitance : Within $\pm 5\%$ 4.7pF or under : Within $\pm 0.5\%$ 5.6pF~8.2pF : Within $\pm 10\%$ 10pF or over : Within $\pm 5\%$ Q: 30pF or under : Q $\geq 400 + 20C$ 33pF or over : Q ≥ 1000 Insulation resistance : 10000M Ω min. C:Nominal Capacitance : [pF]	Appearance : No significant abnormality Withstanding Voltage : No abnormality Capacitance : Within $\pm 10\%$ 1200pF~22000pF (Item△J) : Within $\pm 20\%$ 100000pF~10000000pF : Within $\pm 10\%$ tan δ : 1200pF~22000pF (Item△J) : 3.5% max 10000pF : 5.0% max 100000pF : 5.0% max 220000pF~470000pF : 7.5% max 1000000pF : 12.5% max Insulation Resistance: 1200pF~22000pF (Item△J) : 5000M Ω min 10000pF : 1000M Ω min 100000pF : 100M Ω min 220000pF : 50M Ω min 470000pF~10000000pF : 20M Ω min Rated Voltage: 16VDC B Capacitance : Within $\pm 10\%$ tan δ : 1000pF : 3.5% max 1000000pF : 12.5% max Insulation Resistance: 1000pF : 5000M Ω min 1000000pF : 20M Ω min Rated Voltage: 25VDC B Capacitance : Within $\pm 10\%$ tan δ : 220000pF~470000pF : 7.5% max Insulation Resistance: 220000pF : 50M Ω min 470000pF : 20M Ω min Rated Voltage: 35VDC B Capacitance : Within $\pm 10\%$ tan δ : 100pF~39000pF : 3.5% max 47000pF~1000000pF : 5.0% max Insulation Resistance: 100pF~39000pF : 5000M Ω min 47000pF~100000pF : 1000M Ω min 220000pF : 50M Ω min 470000pF : 20M Ω min 1000000pF : 100M Ω min Rated Voltage: 50VDC B Capacitance : Within $\pm 10\%$ tan δ : 100pF~39000pF : 5.0% max 47000pF~100000pF : 10.0% max 220000pF : 15.0% max Insulation Resistance: 100pF~39000pF : 1000M Ω min 47000pF~100000pF : 500M Ω min 220000pF : 250M Ω min	Suspend a mass at the end the terminal, incline the body through angle of 90° and return it to initial position. This operation is done over a period of 5 sec. Then second bend in the opposite direction shall be made. Number of bends : 2 times
	No abnormalities, such as cuts or looseness of terminals.	Multilayer type (Characteristics:F)	
11. Bending Strength	Nominal wire diameter [mm] 0.45	Tensile force [N] 19.6	Duratio [s] 5
12. Bending Strength	Nominal wire diameter [mm] 0.45	Bending force [N] 2.45	Mass weight [kg] 0.25
13. Insulation Resistance	According to JIS C 5102 clause 8.2 Vibration type: A Directions: 2 hrs each in X, Y and Z directions Total: 6 hrs Frequency range: 10 to 55 to 10Hz (1min) Amplitude: 1.5 mm Mounting method: Soldering onto the PC board	Rated Voltage: 10VDC F Capacitance : Within $^{+80}_{-20}\%$ tan δ : 4700000pF~10000000pF : 17.5% max Insulation Resistance: 470000pF : 50M Ω min 1000000pF : 25M Ω min Rated Voltage: 16VDC F Capacitance : Within $^{+80}_{-20}\%$ tan δ : 10000pF : 10.0% max 220000pF : 15.0% max Insulation Resistance: 10000pF : 1000M Ω min 220000pF : 125M Ω min Rated Voltage: 25VDC F Capacitance : Within $^{+80}_{-20}\%$ tan δ : 10000pF~47000pF (Item△J) : 7.5% max Insulation Resistance: 10000pF~47000pF (Item△J) : 1000M Ω min Rated Voltage: 35VDC F Capacitance : Within $^{+80}_{-20}\%$ tan δ : 10000000pF : 17.5% max Insulation Resistance: 10000000pF : 25M Ω min Rated Voltage: 50VDC F Capacitance : Within $^{+80}_{-20}\%$ tan δ : 10000pF~39000pF : 7.5% max 220000pF~470000pF : 10.0% max 1000000pF : 15.0% max Insulation Resistance: 10000pF~39000pF : 1000M Ω min 220000pF~470000pF : 500M Ω min 1000000pF : 250M Ω min	

Withstanding voltage is also referred to as "voltage proof" under IEC specifications.

AXIAL LEADED CERAMIC CAPACITORS

Item	Specified Value			Test Methods and Remarks
	Temerature Compensating(Class1)	High Permittivity(Class2)		
Multilayer type	Multilayer type (Characteristics:B)	Multilayer type (Characteristics:F)		
11. Free Fall	<p>Appearance : No significant abnormality Withstanding Voltage : No abnormality Capacitance : 4.7pF or under : Within $\pm 0.5\%$ 5.6pF~8.2pF : Within $\pm 10\%$ 10pF or over : Within $\pm 5\%$</p> <p>Q: 30pF or under : $Q \geq 400+20C$ 33pF or over : $Q \geq 1000$</p> <p>Insulation resistance : 10000MΩ min.</p> <p>C:Nominal Capacitance : [pF]</p>	<p>Appearance : No significant abnormality Withstanding Voltage : No abnormality Rated Voltage:16VDC B Capacitance : 1200pF~22000pF (Item△J) : Within $\pm 20\%$ 10000pF~10000000pF : Within $\pm 10\%$ $\tan\delta$: 1200pF~22000pF (Item△J) : 3.5% max 10000pF : 5.0% max 100000pF : 5.0% max 220000pF~470000pF : 7.5% max 1000000pF : 12.5% max Insulation Resistance: 1200pF~22000pF (Item△J) : 5000MΩ min 10000pF : 1000MΩ min 100000pF : 100MΩ min 220000pF : 50MΩ min 470000pF~10000000pF : 20MΩ min Rated Voltage:25VDC B Capacitance : Within $\pm 10\%$ $\tan\delta$: 10000pF : 3.5% max 1000000pF : 12.5% max Insulation Resistance: 10000pF : 5000MΩ min 1000000pF : 20MΩ min Rated Voltage:35VDC B Capacitance : Within $\pm 10\%$ $\tan\delta$: 220000pF~470000pF : 7.5% max Insulation Resistance: 220000pF : 50MΩ min 470000pF : 20MΩ min Rated Voltage:50VDC B Capacitance : Within $\pm 10\%$ $\tan\delta$: 100pF~39000pF : 3.5% max 47000pF~1000000pF : 5.0% max Insulation Resistance: 100pF~39000pF : 5000MΩ min 47000pF~100000pF : 1000MΩ min 220000pF : 500MΩ min 47000pF : 200MΩ min 1000000pF : 100MΩ min</p>	<p>Appearance : No significant abnormality Withstanding Voltage : No abnormality Rated Voltage:10VDC F Capacitance : Within $\pm 20\%$ $\tan\delta$: 470000pF~10000000pF : 17.5% max Insulation Resistance: 470000pF : 50MΩ min 1000000pF : 25MΩ min Rated Voltage:16VDC F Capacitance : Within $\pm 20\%$ $\tan\delta$: 10000pF : 10.0% max 220000pF : 15.0% max Insulation Resistance: 10000pF : 1000MΩ min 220000pF : 125MΩ min Rated Voltage:25VDC F Capacitance : Within $\pm 20\%$ $\tan\delta$: 10000pF~47000pF (Item△J) : 7.5% max Insulation Resistance: 10000pF~47000pF (Item△J) : 1000MΩ min Rated Voltage:35VDC F Capacitance : Within $\pm 20\%$ $\tan\delta$: 10000000pF : 17.5% max Insulation Resistance: 10000000pF : 25MΩ min Rated Voltage:50VDC F Capacitance : Within $\pm 20\%$ $\tan\delta$: 10000pF~100000pF : 7.5% max 220000pF~470000pF : 10.0% max 1000000pF : 15.0% max Insulation Resistance: 10000pF~100000pF : 1000MΩ min 220000pF~470000pF : 500MΩ min 1000000pF : 250MΩ min</p>	<p>Drop Test: Free fall Impact material: Floor Height: 1 m Total number of drops: 5 times</p>
12. Body Strength	No abnormality such as damage.			<p>Applied force: 19.6N Duration: 5 sec. Speed: Shall attain to specified force in 2 sec.</p> <p>1.5mm (025type)</p>
13. Solderability	At least 75% of lead surface is covered with new solder.			<p>Solder temperature: 230$\pm 5^\circ\text{C}$ Duration: 2± 0.5 sec. (This test may be applicable after 6 months storage.)</p>

Withstanding voltage is also referred to as "voltage proof" under IEC specifications.

AXIAL LEADED CERAMIC CAPACITORS

Item	Specified Value			Test Methods and Remarks																		
	Temerature Compensating(Class1)		High Permittivity(Class2)																			
	Multilayer type	Multilayer type (Characteristics:B)	Multilayer type (Characteristics:F)																			
14. Soldering	<p>Appearance : No significant abnormality Withstanding Voltage : No abnormality</p> <p>Capacitance change : 8.2pF or under :Within $\pm 0.25\%$ 10pF or over :Within $\pm 2.5\%$ Q: 30pF or under: Q\geq400+20C</p> <p>33pF or over: Q\geq1000</p> <p>Insulation resistance: 10000MΩ min.</p> <p>C:Nominal Capacitance :[pF]</p>	<p>Appearance : No significant abnormality Withstanding Voltage : No abnormality</p> <p>Rated Voltage:16VDC B Capacitance change : 1200pF~22000pF(Item\triangle) : Within $\pm 7.5\%$ 10000pF : Within $\pm 10.0\%$ 100000pF~1000000pF : Within $\pm 10.0\%$ tanδ: 1200pF~22000pF(Item\triangle) : 3.5% max 10000pF : 5.0% max 100000pF : 5.0% max 220000pF~470000pF : 7.5% max 100000pF~1000000pF : 12.5% max</p> <p>Insulation Resistance: 1200pF~22000pF(Item\triangle) : 5000MΩ min 10000pF : 1000MΩ min 100000pF : 100MΩ min 220000pF : 50MΩ min 1000000pF : 20MΩ min</p> <p>Rated Voltage:25VDC B Capacitance change : 10000pF : Within $\pm 7.5\%$ 100000pF : Within $\pm 10.0\%$ tanδ: 10000pF : 3.5% max 100000pF : 12.5% max</p> <p>Insulation Resistance: 10000pF : 5000MΩ min 100000pF : 20MΩ min</p> <p>Rated Voltage:35VDC B Capacitance change : 220000pF~470000pF : Within $\pm 10.0\%$ Insulation Resistance: 220000pF : 50MΩ min 470000pF : 20MΩ min</p> <p>Rated Voltage:50VDC B Capacitance change : 100pF~39000pF : Within $\pm 7.5\%$ 47000pF~1000000pF : Within $\pm 10.0\%$ tanδ: 100pF~39000pF : 3.5% max 47000pF~1000000pF : 5.0% max</p> <p>Insulation Resistance: 100pF~39000pF : 5000MΩ min 47000pF~1000000pF : 1000MΩ min 220000pF : 500MΩ min 470000pF : 200MΩ min 1000000pF : 100MΩ min</p>	<p>Appearance : No significant abnormality Withstanding Voltage : No abnormality</p> <p>Rated Voltage:10VDC F Capacitance change : 470000pF~1000000pF : Within $\pm 20.0\%$ tanδ: 470000pF : 17.5% max</p> <p>Insulation Resistance: 470000pF : 50MΩ min 1000000pF : 25MΩ min</p> <p>Rated Voltage:16VDC F Capacitance change : tanδ: 1000000pF~470000pF(Item\triangle) : 7.5% max</p> <p>Insulation Resistance: 1000000pF~470000pF(Item\triangle) : 1000MΩ min</p> <p>Rated Voltage:25VDC F Capacitance change : tanδ: 1000000pF~1000000pF : 7.5% max</p> <p>Insulation Resistance: 1000000pF~1000000pF : 25MΩ min</p> <p>Rated Voltage:35VDC F Capacitance change : tanδ: 1000000pF~1000000pF : 7.5% max</p> <p>Insulation Resistance: 1000000pF~1000000pF : 1000MΩ min 220000pF~470000pF : 500MΩ min 1000000pF~470000pF : 250MΩ min</p>	<p>Solder temperature: 270± 5 °C Duration: 5± 0.5 sec. Immersed conditions: Inserted into the PC board (with t=1.6mm, hole=1.0mm diameter) Preconditioning: 1 hr of preconditioning at 150± 10 °C followed by 48± 4 hrs of recovery under the standard condition. Recovery: Recovery for the following period under the standard condition after the test. 24± 2 hrs (Class 1) 48± 4 hrs (Class 2)</p>																		
15. Resistance to Solvent	No significant abnormality in appearance and legible marking.			According to JIS C 5102 clause 8.7.4. Type of test: Method 1 Solvent temperature: 20 to 25°C Duration: 30 ± 5 sec. Solvent Type: A in Table 23, Isopropyl alcohol																		
16. Thermal Shock	<p>Appearance : No significant abnormality Withstanding Voltage : No abnormality</p> <p>Capacitance change : 8.2pF or under :Within $\pm 0.5\%$ 10pF or over :Within $\pm 5.0\%$ Q: 8.2pF or under Q\geq200+10C :10pF~30pF Q\geq275+2.5C 33pF or over: Q\geq350</p> <p>Insulation resistance: 1000MΩ min.</p> <p>C:Nominal Capacitance [pF]</p>	<p>Appearance : No significant abnormality Withstanding Voltage : No abnormality</p> <p>Rated Voltage:16VDC B Capacitance change : 1200pF~22000pF(Item\triangle) : Within $\pm 12.5\%$ 10000pF : Within $\pm 15.0\%$ 100000pF~1000000pF : Within $\pm 15.0\%$ tanδ: 1200pF~22000pF(Item\triangle) : 5.0% max 10000pF : 7.5% max 100000pF : 7.5% max 220000pF~470000pF : 10.0% max 1000000pF~1000000pF : 15.0% max</p> <p>Insulation Resistance: 1200pF~22000pF(Item\triangle) : 1000MΩ min 10000pF : 500MΩ min 100000pF : 50MΩ min 220000pF : 25MΩ min 470000pF~1000000pF : 5MΩ min</p> <p>Rated Voltage:25VDC B Capacitance change : 10000pF : Within $\pm 12.5\%$ 100000pF : Within $\pm 15.0\%$ tanδ: 10000pF : 5.0% max 100000pF : 15.0% max</p> <p>Insulation Resistance: 10000pF : 1000MΩ min 100000pF : 5MΩ min</p> <p>Rated Voltage:35VDC B Capacitance change : 220000pF~470000pF : Within $\pm 15.0\%$ Insulation Resistance: 220000pF : 25MΩ min 470000pF : 5MΩ min</p> <p>Rated Voltage:50VDC B Capacitance change : 100pF~39000pF : Within $\pm 12.5\%$ 47000pF~1000000pF : Within $\pm 15.0\%$ tanδ: 100pF~39000pF : 5.0% max 47000pF~1000000pF : 7.5% max</p> <p>Insulation Resistance: 100pF~39000pF : 1000MΩ min 47000pF~1000000pF : 500MΩ min 220000pF : 250MΩ min 470000pF : 50MΩ min</p>	<p>Appearance : No significant abnormality Withstanding Voltage : No abnormality</p> <p>Rated Voltage:10VDC F Capacitance change : 470000pF~1000000pF : Within $\pm 30.0\%$ tanδ: 470000pF~1000000pF : 20.0% max</p> <p>Insulation Resistance: 470000pF~1000000pF : 10MΩ min 1000000pF~470000pF : 5MΩ min</p> <p>Rated Voltage:16VDC F Capacitance change : tanδ: 1000000pF~470000pF(Item\triangle) : 15.0% max</p> <p>Insulation Resistance: 1000000pF~470000pF(Item\triangle) : 500MΩ min</p> <p>Rated Voltage:25VDC F Capacitance change : tanδ: 1000000pF~1000000pF : 15.0% max</p> <p>Insulation Resistance: 1000000pF~1000000pF : 25MΩ min</p> <p>Rated Voltage:35VDC F Capacitance change : tanδ: 1000000pF~1000000pF : 15.0% max</p> <p>Insulation Resistance: 1000000pF~1000000pF : 50MΩ min</p> <p>Rated Voltage:50VDC F Capacitance change : tanδ: 1000000pF~1000000pF : 12.5% max</p> <p>Insulation Resistance: 1000000pF~1000000pF : 50MΩ min</p>	<p>Conditions for 1 cycle</p> <table border="1"> <thead> <tr> <th>Step</th> <th>Temperature [°C]</th> <th>Duration [min]</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>Room temperature</td> <td>Within 3</td> </tr> <tr> <td>2</td> <td>-25± 3</td> <td>30± 3</td> </tr> <tr> <td>3</td> <td>Room temperature</td> <td>Within 3</td> </tr> <tr> <td>4</td> <td>+85± 3</td> <td>30± 3</td> </tr> <tr> <td>5</td> <td>Room temperature</td> <td>Within 3</td> </tr> </tbody> </table> <p>Number of cycles: 5 Preconditioning: 1 hr of preconditioning at 150± 10 °C followed by 48± 4 hrs of recovery under the standard condition. Recovery: Recovery for the following period under the standard condition after the removal from test chamber. 24± 2 hrs (Class 1) 48± 4 hrs (Class 2)</p>	Step	Temperature [°C]	Duration [min]	1	Room temperature	Within 3	2	-25 ± 3	30 ± 3	3	Room temperature	Within 3	4	+85 ± 3	30 ± 3	5	Room temperature	Within 3
Step	Temperature [°C]	Duration [min]																				
1	Room temperature	Within 3																				
2	-25 ± 3	30 ± 3																				
3	Room temperature	Within 3																				
4	+85 ± 3	30 ± 3																				
5	Room temperature	Within 3																				

Withstanding voltage is also referred to as "voltage proof" under IEC specifications.

Thermal Shock is also referred to as "rapid change of temperature" under IEC specifications.

AXIAL LEADED CERAMIC CAPACITORS

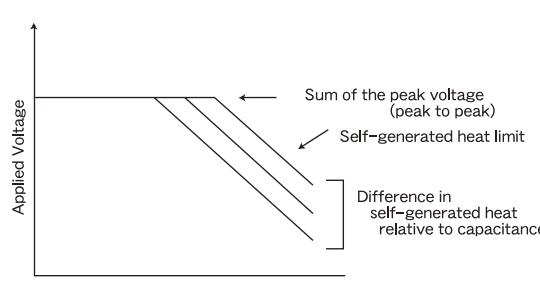
Item	Specified Value			Test Methods and Remarks
	Temerature Compensating(Class1)		High Permittivity(Class2)	
	Multilayer type	Multilayer type (Characteristics:B)	Multilayer type (Characteristics:F)	
17. Damp Heat (steady state)	<p>Appearance : No significant abnormality Withstanding Voltage : No abnormality</p> <p>Capacitance change : 8.2pF or under :Within $\pm 0.5\%$ 10pF or over :Within $\pm 5.0\%$ Q: :8.2pF or under $Q \geq 200+10C$:10pF~30pF $Q \geq 275+2.5C$ 33pF or over: $Q \geq 350$</p> <p>Insulation resistance: 1000MΩ min.</p> <p>C:Nominal Capacitance [pF]</p>	<p>Appearance : No significant abnormality Withstanding Voltage : No abnormality</p> <p>Rated Voltage:16VDC B Capacitance change : 1200pF~22000pF (Item△J) : Within $\pm 12.5\%$ 10000pF : Within $\pm 15.0\%$ 100000pF~1000000pF : Within $\pm 15.0\%$ tanδ: 1200pF~22000pF (Item△J) : 5.0% max 10000pF : 7.5% max 100000pF : 7.5% max 220000pF~470000pF : 10.0% max 1000000pF : 15.0% max</p> <p>Insulation Resistance: 1200pF~22000pF (Item△J) : 1000MΩ min 10000pF : 500MΩ min 100000pF : 50MΩ min 220000pF : 25MΩ min 470000pF~1000000pF : 5MΩ min</p> <p>Rated Voltage:25VDC B Capacitance change : 10000pF : Within $\pm 12.5\%$ 1000000pF : Within $\pm 15.0\%$ tanδ: 10000pF : 5.0% max 1000000pF : 15.0% max</p> <p>Insulation Resistance: 10000pF : 1000MΩ min 1000000pF : 5MΩ min</p> <p>Rated Voltage:35VDC B Capacitance change : Within $\pm 15.0\%$ tanδ: 220000pF~470000pF : 10.0% max</p> <p>Insulation Resistance: 220000pF : 25MΩ min 470000pF : 5MΩ min</p> <p>Rated Voltage:50VDC B Capacitance change : 100pF~39000pF : Within $\pm 12.5\%$ 47000pF~1000000pF : Within $\pm 15.0\%$ tanδ: 100pF~39000pF : 5.0% max 47000pF~1000000pF : 7.5% max</p> <p>Insulation Resistance: 100pF~39000pF : 1000MΩ min 47000pF~1000000pF : 50MΩ min 220000pF : 25MΩ min 470000pF : 10MΩ min 1000000pF : 5MΩ min</p>	<p>Appearance : No significant abnormality Withstanding Voltage : No abnormality</p> <p>Rated Voltage:10VDC F Capacitance change: Within $\pm 30.0\%$ tanδ: 470000pF~1000000pF : 20.0% max</p> <p>Insulation Resistance: 470000pF~1000000pF : 10MΩ min 1000000pF : 5MΩ min</p> <p>Rated Voltage:16VDC F Capacitance change: Within $\pm 30.0\%$ tanδ: 10000pF~47000pF (Item△J) : 15.0% max 220000pF~47000pF : 17.5% max</p> <p>Insulation Resistance: 10000pF~47000pF (Item△J) : 500MΩ min</p> <p>Rated Voltage:25VDC F Capacitance change: Within $\pm 30.0\%$ tanδ: 10000pF~47000pF (Item△J) : 12.5% max</p> <p>Insulation Resistance: 10000pF~47000pF (Item△J) : 500MΩ min</p> <p>Rated Voltage:35VDC F Capacitance change: Within $\pm 30.0\%$ tanδ: 1000000pF : 20.0% max</p> <p>Insulation Resistance: 1000000pF : 5MΩ min</p> <p>Rated Voltage:50VDC F Capacitance change : 10000pF~1000000pF : Within $\pm 30\%$ tanδ: 10000pF~47000pF : 12.5% max 220000pF~47000pF : 15.0% max 1000000pF : 17.5% max</p> <p>Insulation Resistance: 10000pF~47000pF : 500MΩ min 220000pF~47000pF : 250MΩ min 1000000pF : 50MΩ min</p>	<p>Temperature: 40± 2°C Humidity: 90 to 95 % RH Duration: 500$^{+24}_{-0}$ hrs Preconditioning: 1 hr of preconditioning at 150$^{+0}_{-10}$ °C followed by 48± 4 hrs of recovery under the standard condition. Recovery: 24± 2 hrs of recovery under the standard condition after the removal from test chamber. (Class 1)</p> <p>: 1 hr of preconditioning at 150$^{+10}_{-0}$ °C followed by 48± 4 hrs of recovery under the standard condition after the removal from chamber. (Class 2)</p>
18. Loading under Damp Heat	<p>Appearance : No significant abnormality Withstanding Voltage : No abnormality</p> <p>Capacitance change : 8.2pF or under :Within $\pm 0.75\%$ 10pF or over :Within $\pm 7.5\%$ Q: 30pF or under: $Q \geq 100+10/3^{\circ}C$ 33pF or over: $Q \geq 200$</p> <p>Insulation resistance: 500MΩ min.</p> <p>C:Nominal Capacitance [pF]</p>	<p>Appearance : No significant abnormality Withstanding Voltage : No abnormality</p> <p>Rated Voltage:16VDC B Capacitance change : 1200pF~22000pF (Item△J) : Within $\pm 12.5\%$ 10000pF : Within $\pm 15.0\%$ 100000pF~1000000pF : Within $\pm 22.5\%$ tanδ: 1200pF~22000pF (Item△J) : 5.0% max 10000pF : 7.5% max 100000pF : 7.5% max 220000pF : 5MΩ min 470000pF~1000000pF : 2.5MΩ min</p> <p>Insulation Resistance: 1200pF~22000pF (Item△J) : 500MΩ min 10000pF : 250MΩ min 100000pF : 12.5MΩ min 220000pF : 5MΩ min 470000pF~1000000pF : 2.5MΩ min</p> <p>Rated Voltage:25VDC B Capacitance change : 10000pF : Within $\pm 12.5\%$ 1000000pF : Within $\pm 22.5\%$ tanδ: 10000pF : 5.0% max 1000000pF : 22.5% max</p> <p>Insulation Resistance: 10000pF : 500MΩ min 1000000pF : 2.5MΩ min</p> <p>Rated Voltage:35VDC B Capacitance change : 220000pF~470000pF : Within $\pm 15.0\%$ 470000pF~1000000pF : Within $\pm 22.5\%$ tanδ: 220000pF~470000pF : 10.0% max</p> <p>Insulation Resistance: 220000pF~470000pF : 5MΩ min 470000pF~1000000pF : 2.5MΩ min</p> <p>Rated Voltage:50VDC B Capacitance change : 100pF~39000pF : Within $\pm 12.5\%$ 47000pF~1000000pF : Within $\pm 15.0\%$ tanδ: 100pF~39000pF : 5.0% max 47000pF~1000000pF : 7.5% max</p> <p>Insulation Resistance: 100pF~39000pF : 1000MΩ min 47000pF~1000000pF : 50MΩ min 220000pF : 25MΩ min 470000pF~1000000pF : 12.5MΩ min</p>	<p>Appearance : No significant abnormality Withstanding Voltage : No abnormality</p> <p>Rated Voltage:10VDC F Capacitance change: Within $\pm 30.0\%$ tanδ: 470000pF~1000000pF : 20.0% max</p> <p>Insulation Resistance: 470000pF~1000000pF : 5MΩ min</p> <p>Rated Voltage:16VDC F Capacitance change: Within $\pm 30.0\%$ tanδ: 470000pF~1000000pF : 15.0% max 1000000pF : 2.5MΩ min</p> <p>Insulation Resistance: 1000000pF : 5MΩ min</p> <p>Rated Voltage:25VDC F Capacitance change: Within $\pm 30.0\%$ tanδ: 1000000pF~47000pF (Item△J) : 12.5% max</p> <p>Insulation Resistance: 1000000pF~47000pF (Item△J) : 250MΩ min</p> <p>Rated Voltage:35VDC F Capacitance change: Within $\pm 30.0\%$ tanδ: 1000000pF~47000pF (Item△J) : 12.5% max</p> <p>Insulation Resistance: 1000000pF~47000pF (Item△J) : 250MΩ min</p> <p>Rated Voltage:50VDC F Capacitance change : 10000pF~1000000pF : Within $\pm 30\%$ tanδ: 10000pF~47000pF : 12.5% max 220000pF~47000pF : 15.0% max 1000000pF : 17.5% max</p> <p>Insulation Resistance: 10000pF~47000pF : 500MΩ min 220000pF~47000pF : 250MΩ min 1000000pF : 50MΩ min</p>	<p>Temperature: 40± 2°C Humidity: 90 to 95 % RH Duration: 500$^{+24}_{-0}$ hrs Applied voltage: Rated voltage Preconditioning: 1 hr of preconditioning at 150$^{+0}_{-10}$ °C followed by 48± 4 hrs of recovery under the standard condition. Recovery: 24± 2 hrs of recovery under the standard condition after the removal from test chamber. (Class 1)</p> <p>: 1 hr of preconditioning at 150$^{+10}_{-0}$ °C followed by 48± 4 hrs of recovery under the standard condition after the removal from chamber. (Class 2)</p>

Withstanding voltage is also referred to as "voltage proof" under IEC specifications.

AXIAL LEADED CERAMIC CAPACITORS

Item	Specified Value			Test Methods and Remarks
	Temerature Compensating(Class1)		High Permittivity(Class2)	
	Multilayer type	Multilayer type (Characteristics:B)	Multilayer type (Characteristics:F)	
19. High Temperature Lading Test	Appearance : No significant abnormality Withstanding Voltage : No abnormality	Appearance : No significant abnormality Withstanding Voltage : No abnormality	Appearance : No significant abnormality Withstanding Voltage : No abnormality	Temperature: 85 ± 3 °C Duration: 1000 ± 48 hrs Applied voltage: Rated voltage $\times 2$ (Class 1) (Class 2) Rated voltage $\times 1.5$ (Class 2: B $220000pF \sim 1000000pF$) Preconditioning: 1 hr of preconditioning at 150 ± 10 °C followed by 48 ± 4 hrs of recovery under the standard condition. Recovery: 24 ± 2 hrs of recovery under the standard condition after the removal from test chamber. (Class1) : 1 hr of preconditioning at 150 ± 10 °C followed by 48 ± 4 hrs of recovery under the standard condition after the removal from chamber. (Class 2)
	Capacitance change : 8.2pF or under :Within $\pm 0.3\%$ 10pF or over :Within $\pm 3.0\%$ Q: :8.2pF or under : :10pF 30pF : :33pF or over: Q $\geq 200+10C$ Insulation resistance: 1000MΩ min. C:Nominal Capacitance [pF]	Rated Voltage:16VDC B Capacitance change : 1200pF~22000pF (Item△J) : Within $\pm 12.5\%$ 100000pF : Within $\pm 15.0\%$ 100000pF~220000pF : Within $\pm 15.0\%$ 470000pF~1000000pF : Within $\pm 22.5\%$ tanδ: 1200pF~22000pF (Item△J) : 5.0% max 100000pF : 7.5% max 100000pF : 7.5% max 220000pF~470000pF : 10.0% max 1000000pF : 22.5% max Insulation Resistance: 1200pF~22000pF (Item△J) : 1000MΩ min 100000pF : 500MΩ min 100000pF : 50MΩ min 220000pF : 25MΩ min 470000pF~1000000pF : 5MΩ min Rated Voltage:25VDC B Capacitance change : 10000pF : Within $\pm 12.5\%$ 10000000pF : Within $\pm 22.5\%$ tanδ: 10000pF : 5.0% max 10000000pF : 22.5% max Insulation Resistance: 10000pF : 1000MΩ min 10000000pF : 5MΩ min Rated Voltage:35VDC B Capacitance change : 220000pF : Within $\pm 15.0\%$ 470000pF : Within $\pm 22.5\%$ tanδ: 220000pF~470000pF : 10.0% max Insulation Resistance: 220000pF : 25MΩ min 470000pF : 5MΩ min Rated Voltage:50VDC B Capacitance change : 100pF~39000pF : Within $\pm 12.5\%$ 47000pF~1000000pF : Within $\pm 15.0\%$ tanδ: 100pF~39000pF : 5.0% max 47000pF~1000000pF : 7.5% max Insulation Resistance: 100pF~39000pF : 1000MΩ min 47000pF~1000000pF : 500MΩ min 220000pF : 250MΩ min 470000pF : 100MΩ min 1000000pF : 50MΩ min	Rated Voltage:10VDC F Capacitance change : Within $\pm 30.0\%$ tanδ: 470000pF~1000000pF : 20.0% max 100000pF : 10MΩ min 100000pF : 5MΩ min Rated Voltage:16VDC F Capacitance change : Within $\pm 30.0\%$ tanδ: 100000pF~470000pF (Item△J) : 10.0% max 10000pF~470000pF (Item△J) : 500MΩ min Rated Voltage:35VDC F Capacitance change : Within $\pm 30.0\%$ tanδ: 10000000pF : 20.0% max 10000000pF : 5MΩ min Rated Voltage:50VDC F Capacitance change : Within $\pm 30.0\%$ tanδ: 10000pF~100000pF : 10.0% max 220000pF~470000pF : 12.5% max 10000000pF : 17.5% max Insulation Resistance: 10000pF~100000pF : 500MΩ min 220000pF~470000pF : 250MΩ min 10000000pF : 50MΩ min	

Note on standard condition: "standard condition" referred to herein is defined as follows:


5 to 35°C of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results:

In order to provide correlation data, the test shall be conducted under condition of 20 ± 2 °C of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition."

Withstanding voltage is also referred to as "voltage proof" under IEC specifications.

Precautions on the use of Axial Leaded Ceramic Capacitors

Stages	Precautions	Technical considerations
1. Circuit Design	<p>◆ Verification of operating environment, electrical rating and performance</p> <p>1. A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any capacitors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications.</p> <p>◆ Verification of Rated voltage (DC rated voltage)</p> <p>1. The operating voltage for capacitors must always be lower than their rated values.</p> <p>If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages should be lower than the rated value of the capacitor chosen. For a circuit where both an AC and a pulse voltage may be present, the sum of their peak voltages should also be lower than the capacitor's rated voltage.</p> <p>2. Even if the applied voltage is lower than the rated value, the reliability of capacitors might be reduced if either a high frequency AC voltage or a pulse voltage having rapid rise time is present in the circuit.</p> <p>◆ Self-generated heat (Verification of Temperature)</p> <p>1. If the capacitors specified only for DC use are used in AC or pulse circuits, the AC or a pulse current can generate heat inside the capacitor so the self-generated temperature rise should be limited to within 20°C. The surface temperature measured should include this self-temperature rise. Therefore, it is required to limit capacitor surface temperature including self-generated heat should not exceed the maximum operating temperature of +85°C.</p> <p>◆ Operating Environment precautions</p> <p>1. Capacitors should not be used in the following environments:</p> <p>(1) Environmental conditions to avoid</p> <ol style="list-style-type: none"> exposure to water or salt water. exposure to moisture or condensation. exposure to corrosive gases (such as hydrogen sulfide, sulfuric acid, chlorine, and ammonia) 	<p>1-1. When an AC or a pulse voltage is applied to capacitors specified for DC use, even if the voltage is less than the rated voltage, the AC current or pulse current running through the capacitor will cause the capacitor to self-generate heat because of the loss characteristics.</p> <p>The amount of heat generated depends on the dielectric materials used, capacitance, applied voltage, frequency, voltage waveform, etc. The surface temperature changes due to emitted heat which differs by capacitor shape or mounting method.</p> <p>Please contact Taiyo Yuden with any questions regarding emitted heat levels in your particular application. It is recommended the temperature rise be measured in the actual circuit to be used.</p> <p>1-2. For capacitors, the voltage and frequency relationship is generally determined by peak voltage at low frequencies, and by self-generated heat at high frequencies. (Refer to the following curve.)</p>
2. PCB Design	<p>1. When capacitors are mounted onto a PC board, hole dimensions on the board should match the lead pitch of the component, if not it will cause breakage of the terminals or cracking of terminal roots covered with resin as excess stress travels through the terminal legs. As a result, humidity resistance performance would be lost and may lead to a reduction in insulation resistance and cause a withstand voltage failure.</p>	
3. Considerations for automatic insertion	<p>◆ Adjustment Automatic Insertion machines (leaded components)</p> <p>1. When inserting capacitors in a PC board by auto-insertion machines the impact load imposed on the capacitors should be minimized to prevent the leads from chucking or clinching.</p>	<p>1. When installing products, care should be taken not to apply distortion stress as it may deform the products.</p> <p>2. Our company recommends the method to place the lead with fewer loads that join the product.</p>

Precautions on the use of Axial Leaded Ceramic Capacitors

Stages	Precautions	Technical considerations
4. Soldering	<p>◆ Selection of Flux</p> <ol style="list-style-type: none"> When soldering capacitors on the board, flux should be applied thinly and evenly. Flux used should be with less than or equal to 0.1 wt% (equivalent to Chroline) of halogenated content. Flux having a strong acidity content should not be applied. When using water-soluble flux, special care should be taken to properly clean the boards. <p>◆ Wave Soldering</p> <ol style="list-style-type: none"> Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions. Do not immerse the entire capacitor in the flux during the soldering operation. Only solder the lead wires on the bottom of the board. <p>◆ Recommended conditions for using a soldering iron:</p> <ul style="list-style-type: none"> Put the soldering iron on the land-pattern. Soldering iron's temperature - below 350°C Duration - 3 seconds or less Numbers of times - 1 times The soldering iron should not directly touch the capacitor. 	<p>1. Flux is used to increase solderability in wave soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system.</p> <p>2. With too much halogenated substance (Chlorine, etc.) content is used to activate the flux, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the capacitors.</p> <p>3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of capacitors in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux.</p> <p>1. If capacitors are used beyond the range of the recommended conditions, heat stresses may cause cracks inside the capacitors, and consequently degrade the reliability of the capacitors.</p> <p>2. When the capacitors are dipped in solder, some soldered parts of the capacitor may melt due to solder heat and cause short-circuits or cracking of the ceramic material. Deterioration of the resin coating may lower insulation resistance and cause a reduction of withstand voltage.</p> <p>1. If products are used beyond the range of the recommended conditions, heat stress may deform the products, and consequently degrade the reliability of the products.</p>
5. Cleaning	<p>◆ Board cleaning</p> <ol style="list-style-type: none"> When cleaning the mounted PC boards, make sure that cleaning conditions are consistent with prescribed usage conditions. 	<p>1. The resin material used for the outer coating of capacitors is occasionally a wax substance for moisture resistance which can easily be dissolved by some solutions. So before cleaning, special care should be taken to test the component's vulnerability to the solutions used.</p> <p>When using water-soluble flux please clean the PCB with purified water sufficiently and dry thoroughly at the end of the process. Insufficient washing or drying could lower the reliability of the capacitors.</p>
6. Post-cleaning-process	<p>◆ Application of resin molding, etc. to the PCB and components.</p> <ol style="list-style-type: none"> Please contact your local Taiyo Yuden sales office before performing resin coating or molding on mounted capacitors. Please verify on the actual application that the coating process will not adversely affect the component quality. 	<p>1-1. The thermal expansion and coefficient of contraction of the molded resin are not necessarily matched with those of the capacitor. The capacitors may be exposed to stresses due to thermal expansion and contraction during and after hardening. This may lower the specified characteristics and insulation resistance or cause reduced withstand voltage by cracking the ceramic or separating the coated resin from the ceramics.</p> <p>1-2. With some types of mold resins, the resin's decomposition gas or reaction gas may remain inside the resin during the hardening period or while left under normal conditions, causing a deterioration of the capacitor's performance.</p> <p>1-3. Some mold resins may have poor moisture proofing properties. Please verify the contents of the resins before they are applied.</p> <p>1-4. Please contact Taiyo Yuden before using if the hardening process temperature of the mold resins is higher than the operating temperature of the capacitors.</p>
7. Handling	<p>◆ Mechanical considerations</p> <ol style="list-style-type: none"> Be careful not to subject the capacitors to excessive mechanical shocks. Withstanding voltage failure may result. If ceramic capacitors are dropped onto the floor or a hard surface they should not be used. 	<p>1. Because the capacitor is made of ceramic, mechanical shocks applied to the board may damage or crack the capacitors.</p> <p>2. Ceramic capacitors which are dropped onto the floor or a hard surface may develop defects and have a higher risk of failure over time.</p>
8. Storage conditions	<p>◆ Storage</p> <ol style="list-style-type: none"> To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions: Ambient temperature Below 40 °C Humidity Below 70% RH. Products should be used within 6 months after delivery. After the above period, the solderability should be checked before using the capacitors. Capacitors should not be kept in an environment filled with decomposition gases such as (sulfurous hydrogen, sulfurous acid, chlorine, ammonia, etc.) Capacitors should not be kept in a location where they may be exposed to moisture, condensation or direct sunlight. 	<p>1. Under high temperature/high humidity conditions, the decrease in solderability due to the oxidation of terminal electrodes and deterioration of taping and packaging characteristics may be accelerated.</p>