

3 mm Square Low-Profile SMT Trimmer Potentiometers (Cermet, Open Frame Type)

Type: **EVM3W**

■ Features

- Low-profile 0.95 mm (1.1 mm max.)
- High reliability realized by cermet element
- Excellent mountability
- Conforms to JIS C5260-1:1999

■ Recommended Applications

- Audio/visual, office, and communication equipment
- General electronic equipment

■ Explanation of Part Numbers

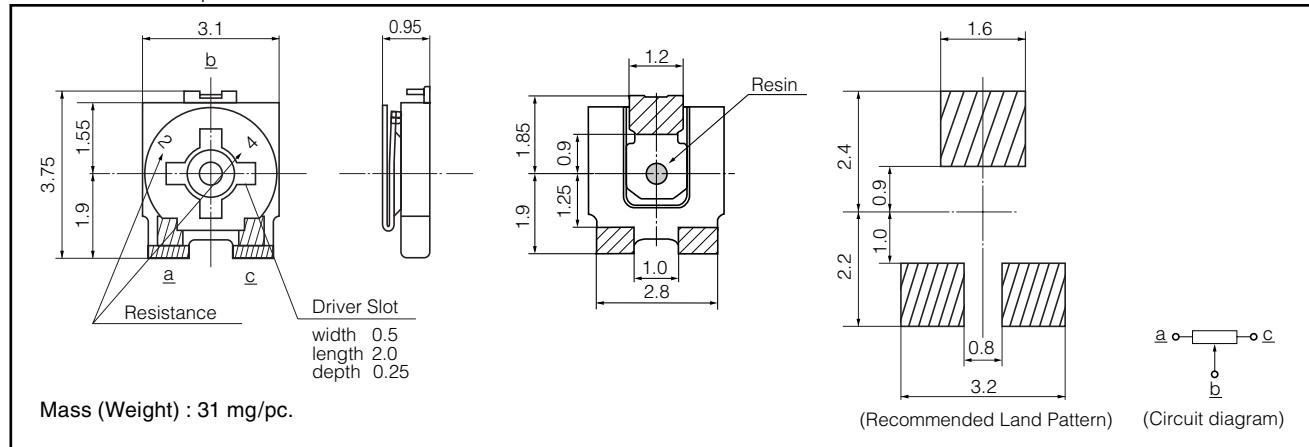
1	2	3	4	5	6	7	8	9	10	11	12
E	V	M	3	W	S	X	8	0	B	5	2
Product Code		Type/Structure			Packaging			Taper & Resistance			12
									Example : B52=500 Ω		

*For part number details, refer to page ER137.

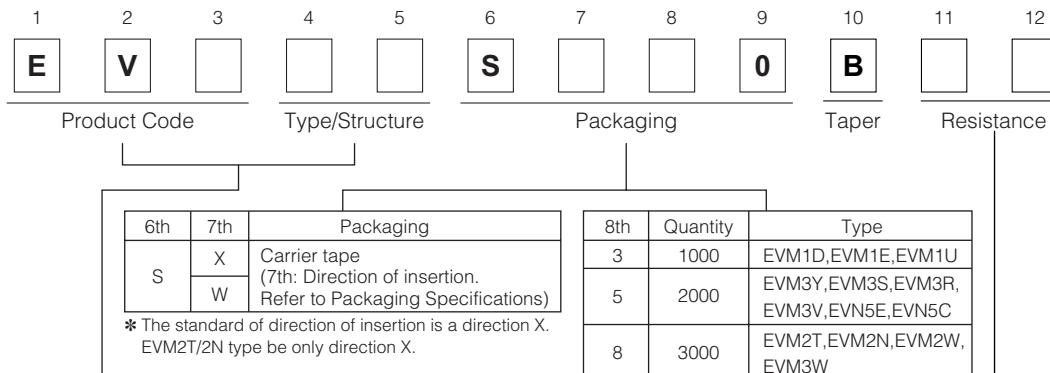
■ Specifications

Total Resistance Value	100 Ω to 1 M Ω
Resistance Tolerance	$\pm 25\%$
Power Rating	0.15 W
Maximum Operating Voltage	50 V
Rotation Torque	2 to 20 mN·m
Temperature Coefficient of Resistance	$\pm 250 \times 10^{-6}/^{\circ}\text{C}$

■ Minimum Quantity/Packing Unit


Part Number	Taping		
	Quantity per reel	Packaging quantity	Dia. of reel (mm)
EVM3W	3000	15000	$\phi 178$

The standard packaging methods for a reel is $\phi 178$.


Please contact us, if you would like different packaging methods. (Bulk, Reel of $\phi 330$, Reel of $\phi 380$)

■ Dimensions in mm (not to scale)

- 3-terminal/Low-profile

■ Explanation of Part Numbers

Classification	Type	Symbol(1th to 5th)
Cermet	2 mm Open	EVM2T, EVM2N, EVM2W (low-profile)
	3 mm Open	EVM3Y, EVM3S EVM3R, EVM3W(low-profile) EVM3V(with rotation stopper)
	4 mm Open	EVM1D, EVM1E EVM1U
Carbon	3 mm Dustproof	EVN5E(with rotation stopper) EVN5C

Symbol	Resistance	EVM2T EVM2N EVM2W EVM3Y EVM3S EVM3W EVM3V EVM1D EVM1E EVM1U	EVM3R	EVN5E EVN5C
12	100 Ω	○	—	—
C2	150 Ω	○	—	—
22	200 Ω	○	—	○
E2	220 Ω	○	—	○
32	300 Ω	○	—	○
Y2	330 Ω	○	—	○
Q2	470 Ω	○	—	○
52	500 Ω	○	○	○
S2	680 Ω	○	○	○
13	1 k Ω	○	○	○
C3	1.5 k Ω	○	○	○
23	2 k Ω	○	○	○
E3	2.2 k Ω	○	○	○
33	3 k Ω	○	○	○
Y3	3.3 k Ω	○	○	○
Q3	4.7 k Ω	○	○	○
53	5 k Ω	○	○	○
S3	6.8 k Ω	○	○	○
14	10 k Ω	○	○	○
C4	15 k Ω	○	○	○
24	20 k Ω	○	○	○
E4	22 k Ω	○	○	○
34	30 k Ω	○	○	○
Y4	33 k Ω	○	○	○
Q4	47 k Ω	○	○	○
54	50 k Ω	○	○	○
S4	68 k Ω	○	○	○
15	100 k Ω	○	○	○
C5	150 k Ω	○	○	○
25	200 k Ω	○	○	○
E5	220 k Ω	○	○	○
35	300 k Ω	○	○	○
Y5	330 k Ω	○	○	○
Q5	470 k Ω	○	○	○
55	500 k Ω	○	○	○
S5	680 k Ω	○	○	○
16	1 M Ω	○	○	○

11th	12th	11th	Significant number
		C	1.5
		E	2.2
		Y	3.3
		Q	4.7
		S	6.8

When significant number is odd, letters are assigned as shown above.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Panasonic:

[EVM-2TSX80B12](#) [EVM-2TSX80B13](#) [EVM-2TSX80B14](#) [EVM-2TSX80B15](#) [EVM-2TSX80B16](#) [EVM-2TSX80B22](#)
[EVM-2TSX80B23](#) [EVM-2TSX80B24](#) [EVM-2TSX80B25](#) [EVM-2TSX80B52](#) [EVM-2TSX80B53](#) [EVM-2TSX80B54](#) [EVM-2TSX80B55](#) [EVM-2WSX80B32](#) [EVM-3VSX50B55](#) [EVM-3WSX80B25](#) [EVM-3WSX80B55](#)