

- **EPIC™ (Enhanced-Performance Implanted CMOS) Process**
- **2-V to 5.5-V V_{CC} Operation**
- **Typical V_{OLP} (Output Ground Bounce) <0.8 V at $V_{CC} = 3.3$ V, $T_A = 25^\circ\text{C}$**
- **Typical V_{OHV} (Output V_{OH} Undershoot) >2.3 V at $V_{CC} = 3.3$ V, $T_A = 25^\circ\text{C}$**
- **Outputs Are Disabled During Power Up and Power Down With Inputs Tied to GND**
- **Support Mixed-Mode Voltage Operation on All Ports**
- **Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II**
- **ESD Protection Exceeds JESD 22**
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
- **Package Options Include Plastic Small-Outline (D, NS), Shrink Small-Outline (DB), Thin Very Small-Outline (DGV), Thin Shrink Small-Outline (PW), and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and DIPs (J)**

SN54LV06A . . . J OR W PACKAGE
SN74LV06A . . . D, DB, DGV, NS, OR PW PACKAGE
(TOP VIEW)

SN54LV06A . . . FK PACKAGE
(TOP VIEW)

NC – No internal connection

description

These hex inverter buffers/drivers are designed for 2-V to 5.5-V V_{CC} operation.

The 'LV06A devices perform the Boolean function $Y = \bar{A}$ in positive logic.

The open-drain outputs require pullup resistors to perform correctly and can be connected to other open-drain outputs to implement active-low wired-OR or active-high wired-AND functions.

These devices are fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.

The SN54LV06A is characterized for operation over the full military temperature range of -55°C to 125°C . The SN74LV06A is characterized for operation from -40°C to 85°C .

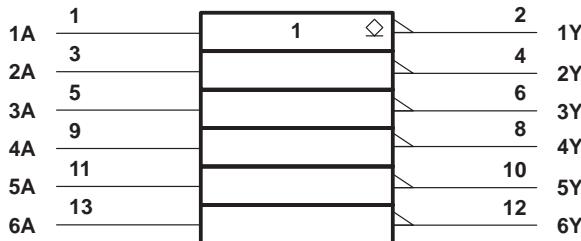
FUNCTION TABLE
(each buffer/driver)

INPUT A	OUTPUT Y
H	L
L	H

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 2000, Texas Instruments Incorporated

**SN54LV06A, SN74LV06A
HEX INVERTER BUFFERS/DRIVERS
WITH OPEN-DRAIN OUTPUTS**


SCES336C – MAY 2000 – REVISED AUGUST 2000

logic symbol†

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the D, DB, DGV, J, NS, PW, and W packages.

logic diagram, each inverter (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V_{CC}	–0.5 V to 7 V
Input voltage range, V_I (see Note 1)	–0.5 V to 7 V
Output voltage range, V_O (see Notes 1 and 2)	–0.5 V to V_{CC} + 0.5 V
Voltage range applied to any output in the power-off state, V_O (see Note 1)	–0.5 V to 7 V
Input clamp current, I_{IK} ($V_I < 0$)	–20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	–50 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	–35 mA
Continuous current through V_{CC} or GND	±50 mA
Package thermal impedance, θ_{JA} (see Note 3): D package	86°C/W
DB package	96°C/W
DGV package	127°C/W
NS package	76°C/W
PW package	113°C/W
Storage temperature range, T_{stg}	–65°C to 150°C

‡ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. This value is limited to 5.5 V maximum.
3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

		SN54LV06A		SN74LV06A		UNIT
		MIN	MAX	MIN	MAX	
V _{CC}	Supply voltage	2	5.5	2	5.5	V
V _{IH}	High-level input voltage	V _{CC} = 2 V	1.5	1.5		V
		V _{CC} = 2.3 V to 2.7 V	V _{CC} × 0.7	V _{CC} × 0.7		
		V _{CC} = 3 V to 3.6 V	V _{CC} × 0.7	V _{CC} × 0.7		
		V _{CC} = 4.5 V to 5.5 V	V _{CC} × 0.7	V _{CC} × 0.7		
V _{IL}	Low-level input voltage	V _{CC} = 2 V	0.5	0.5		V
		V _{CC} = 2.3 V to 2.7 V	V _{CC} × 0.3	V _{CC} × 0.3		
		V _{CC} = 3 V to 3.6 V	V _{CC} × 0.3	V _{CC} × 0.3		
		V _{CC} = 4.5 V to 5.5 V	V _{CC} × 0.3	V _{CC} × 0.3		
V _I	Input voltage	0	5.5	0	5.5	V
V _O	Output voltage	0	5.5	0	5.5	V
I _{OL}	Low-level output current	V _{CC} = 2 V	50	50	μA	mA
		V _{CC} = 2.3 V to 2.7 V	2	2		
		V _{CC} = 3 V to 3.6 V	8	8		
		V _{CC} = 4.5 V to 5.5 V	16	16		
Δt/ΔV	Input transition rise or fall rate	V _{CC} = 2.3 V to 2.7 V	0	200	0	ns/V
		V _{CC} = 3 V to 3.6 V	0	100	0	
		V _{CC} = 4.5 V to 5.5 V	0	20	0	
T _A	Operating free-air temperature	-55	125	-40	85	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	SN54LV06A			SN74LV06A			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
V _{OL}	I _{OL} = 50 μA	2 V to 5.5 V	0.1		0.1				V
	I _{OL} = 2 mA	2.3 V	0.4		0.4				
	I _{OL} = 8 mA	3 V	0.44		0.44				
	I _{OL} = 16 mA	4.5 V	0.55		0.55				
I _I	V _I = 5.5 V or GND	0 V to 5.5 V	±1		±1				μA
I _{OH}	V _I = V _{IL} , V _{OH} = V _{CC}	5.5 V	±2.5		±2.5				μA
I _{CC}	V _I = V _{CC} or GND, I _O = 0	5.5 V	20		20				μA
I _{off}	V _I or V _O = 0 to 5.5 V	0 V	5		5				μA
C _i	V _I = V _{CC} or GND	3.3 V	1.6		1.6				pF

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

**SN54LV06A, SN74LV06A
HEX INVERTER BUFFERS/DRIVERS
WITH OPEN-DRAIN OUTPUTS**

SCES336C – MAY 2000 – REVISED AUGUST 2000

**switching characteristics over recommended operating free-air temperature range,
 $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (unless otherwise noted) (see Figure 1)**

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	$T_A = 25^\circ\text{C}$			SN54LV06A	SN74LV06A	UNIT
				MIN	TYP	MAX	MIN	MAX	
t_{PLH}	A	Y	$C_L = 15 \text{ pF}$	5.4*	10.4*	1*	13*	1	13
t_{PHL}	A	Y		7.2*	10.4*	1*	13*	1	13
t_{PLH}	A	Y	$C_L = 50 \text{ pF}$	9.7	15.2	1	18	1	18
t_{PHL}	A	Y		9.3	15.2	1	18	1	18

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

**switching characteristics over recommended operating free-air temperature range,
 $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 1)**

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	$T_A = 25^\circ\text{C}$			SN54LV06A	SN74LV06A	UNIT
				MIN	TYP	MAX	MIN	MAX	
t_{PLH}	A	Y	$C_L = 15 \text{ pF}$	4.1*	7.1*	1*	8.5*	1	8.5
t_{PHL}	A	Y		4.9*	7.1*	1*	8.5*	1	8.5
t_{PLH}	A	Y	$C_L = 50 \text{ pF}$	7.1	10.6	1	12	1	12
t_{PHL}	A	Y		6.4	10.6	1	12	1	12

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

**switching characteristics over recommended operating free-air temperature range,
 $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$ (unless otherwise noted) (see Figure 1)**

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	$T_A = 25^\circ\text{C}$			SN54LV06A	SN74LV06A	UNIT
				MIN	TYP	MAX	MIN	MAX	
t_{PLH}	A	Y	$C_L = 15 \text{ pF}$	3*	5.5*	1*	6.5*	1	6.5
t_{PHL}	A	Y		3.3*	5.5*	1*	6.5*	1	6.5
t_{PLH}	A	Y	$C_L = 50 \text{ pF}$	4.8	7.5	1	8.5	1	8.5
t_{PHL}	A	Y		4.4	7.5	1	8.5	1	8.5

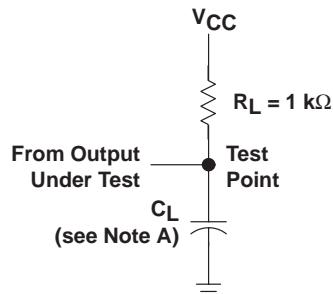
* On products compliant to MIL-PRF-38535, this parameter is not production tested.

noise characteristics, $V_{CC} = 3.3 \text{ V}$, $C_L = 50 \text{ pF}$, $T_A = 25^\circ\text{C}$ (see Note 5)

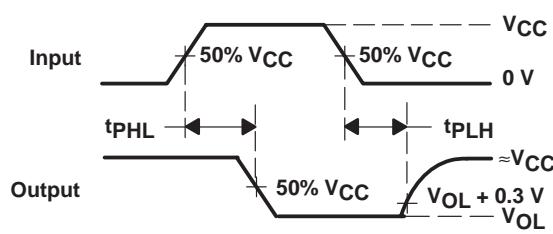
PARAMETER		SN74LV06A			UNIT
		MIN	TYP	MAX	
$V_{OL(P)}$	Quiet output, maximum dynamic V_{OL}		0.5	0.8	V
$V_{OL(V)}$	Quiet output, minimum dynamic V_{OL}		-0.1	-0.8	V
$V_{OH(V)}$	Quiet output, minimum dynamic V_{OH}		3.3		V
$V_{IH(D)}$	High-level dynamic input voltage		2.31		V
$V_{IL(D)}$	Low-level dynamic input voltage		0.99		V

NOTE 5: Characteristics are for surface-mount packages only.

operating characteristics, $T_A = 25^\circ\text{C}$


C_{pd}	Power dissipation capacitance	$C_L = 50 \text{ pF}$, $f = 10 \text{ MHz}$	3.3 V	2.6	pF
			5 V	4.7	

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.



POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR
 OPEN-DRAIN OUTPUTS

VOLTAGE WAVEFORMS
 PROPAGATION DELAY TIMES

NOTES: A. C_L includes probe and jig capacitance.
 B. All input pulses are supplied by generators having the following characteristics: $PRR \leq 1 \text{ MHz}$, $Z_O = 50 \Omega$, $t_r \leq 3 \text{ ns}$, $t_f \leq 3 \text{ ns}$.
 C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated