



Is Now Part of



**ON Semiconductor®**

To learn more about ON Semiconductor, please visit our website at  
[www.onsemi.com](http://www.onsemi.com)

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (\_), the underscore (\_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (\_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at [www.onsemi.com](http://www.onsemi.com). Please email any questions regarding the system integration to [Fairchild\\_questions@onsemi.com](mailto:Fairchild_questions@onsemi.com).

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at [www.onsemi.com/site/pdf/Patent-Marking.pdf](http://www.onsemi.com/site/pdf/Patent-Marking.pdf). ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

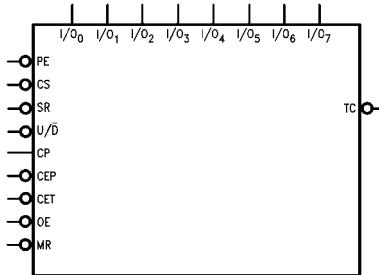
## 74F579

### 8-Bit Bidirectional Binary Counter with 3-STATE Outputs

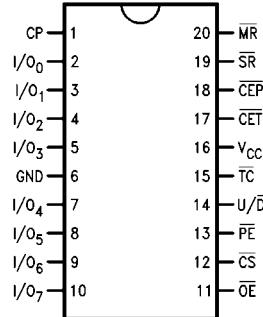
#### General Description

The 74F579 is a fully synchronous 8-stage up/down counter with multiplexed 3-STATE I/O ports for bus-oriented applications. It features a preset capability for programmable operation, carry lookahead for easy cascading and a U/D input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the rising edge of the clock.

#### Features


- Multiplexed 3-STATE I/O ports
- Built-in lookahead carry capability
- Count frequency 100 MHz typical
- Supply current 75 mA typical
- Guaranteed 4000V minimum ESD protection

#### Ordering Code:


| Order Number | Package Number | Package Description                                                        |
|--------------|----------------|----------------------------------------------------------------------------|
| 74F579SC     | M20B           | 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide |
| 74F579SJ     | M20D           | 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide              |
| 74F579PC     | N20A           | 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide      |

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

#### Logic Symbol



#### Connection Diagram



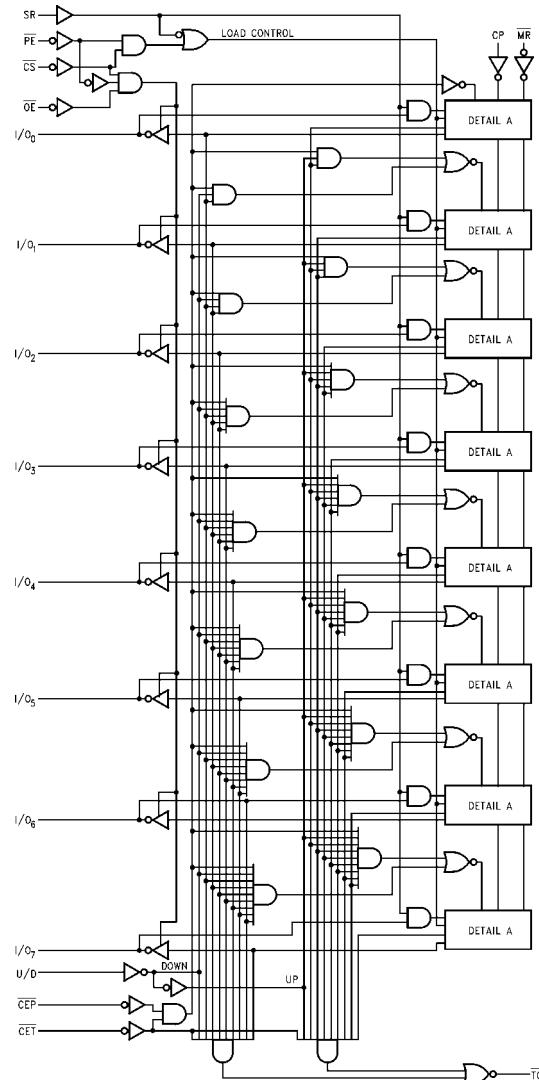
## Unit Loading/Fan Out

| Pin Names        | Description                              | U.L.<br>HIGH/LOW   | Input $I_{IH}/I_{IL}$<br>Output $I_{OH}/I_{OL}$ |
|------------------|------------------------------------------|--------------------|-------------------------------------------------|
| $I/O_0-I/O_7$    | Data Inputs or 3-STATE Outputs           | 3.5/0.333<br>75/15 | 70 $\mu$ A/0.2 mA<br>-3 mA/24 mA                |
| $\overline{PE}$  | Parallel Enable Input (Active LOW)       | 0.25/0.333         | 5 $\mu$ A/0.2 mA                                |
| $\overline{U/D}$ | Up-Down Count Control Input              | 0.25/0.333         | 5 $\mu$ A/0.2 mA                                |
| $\overline{MR}$  | Master Reset Input (Active LOW)          | 0.25/0.333         | 5 $\mu$ A/0.2 mA                                |
| $\overline{SR}$  | Synchronous Reset Input (Active LOW)     | 0.25/0.333         | 5 $\mu$ A/0.2 mA                                |
| $\overline{CEP}$ | Count Enable Parallel Input (Active LOW) | 0.25/0.333         | 5 $\mu$ A/0.2 mA                                |
| $\overline{CET}$ | Count Enable Trickle Input (Active LOW)  | 0.25/0.333         | 5 $\mu$ A/0.2 mA                                |
| $\overline{CS}$  | Chip Select Input Active (Active LOW)    | 0.25/0.333         | 5 $\mu$ A/0.2 mA                                |
| $\overline{OE}$  | Output Enable Input (Active LOW)         | 0.25/0.333         | 5 $\mu$ A/0.2 mA                                |
| $CP$             | Clock Pulse Input (Active Rising Edge)   | 0.25/0.333         | 5 $\mu$ A/0.2 mA                                |
| $\overline{TC}$  | Terminal Count Output (Active LOW)       | 25/12.5            | -1 mA/5 mA                                      |

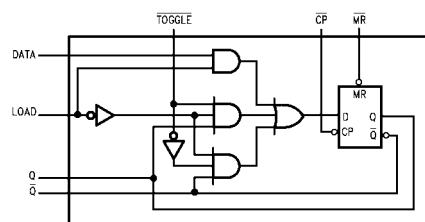
## Function Table

| MR | $\overline{SR}$ | CS       | PE | CEP | CET | $\overline{U/D}$ | $\overline{OE}$ | CP         | Function                                                                   |
|----|-----------------|----------|----|-----|-----|------------------|-----------------|------------|----------------------------------------------------------------------------|
| X  | X               | H        | X  | X   | X   | X                | X               | X          | I/O <sub>a</sub> to I/O <sub>h</sub> in High Z ( $\overline{PE}$ Disabled) |
| X  | X               | L        | H  | X   | X   | X                | H               | X          | I/O <sub>a</sub> to I/O <sub>h</sub> in High Z                             |
| X  | X               | L        | H  | X   | X   | X                | L               | X          | Flip-Flop Outputs Appear on I/O Lines                                      |
| L  | X               | X        | X  | X   | X   | X                | X               | X          | Asynchronous Reset for all Flip-Flops                                      |
| H  | L               | X        | X  | X   | X   | X                | X               | $\swarrow$ | Synchronous Reset for all Flip-Flops                                       |
| H  | H               | L        | L  | X   | X   | X                | X               | $\swarrow$ | Parallel Load all Flip-Flops                                               |
| H  | H               | (Not LL) | H  | X   | X   | X                | X               | $\swarrow$ | Hold                                                                       |
| H  | H               | (Not LL) | X  | H   | X   | X                | $\swarrow$      |            | Hold ( $\overline{TC}$ Held HIGH)                                          |
| H  | H               | (Not LL) | L  | L   | H   | X                | $\swarrow$      |            | Count Up                                                                   |
| H  | H               | (Not LL) | L  | L   | L   | X                | $\swarrow$      |            | Count Down                                                                 |

H = HIGH Voltage Level


L = LOW Voltage Level

X = Immaterial


$\swarrow$  = LOW to HIGH Clock Transition

Not LL = CS and PE should never both be LOW voltage level at the same time.

## Logic Diagrams



Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.



V<sub>CC</sub> = Pin 16

GND = Pin 6

( ) = Pin Numbers

Detail A

**Absolute Maximum Ratings**(Note 1)

|                                      |                               |
|--------------------------------------|-------------------------------|
| Storage Temperature                  | –65°C to +150°C               |
| Ambient Temperature under Bias       | –55°C to +125°C               |
| Junction Temperature under Bias      | –55°C to +150°C               |
| $V_{CC}$ Pin Potential to Ground Pin | –0.5V to +7.0V                |
| Input Voltage (Note 2)               | –0.5V to +7.0V                |
| Input Current (Note 2)               | –30 mA to +5.0 mA             |
| Voltage Applied to Output            |                               |
| in HIGH State (with $V_{CC} = 0V$ )  |                               |
| Standard Output                      | –0.5V to $V_{CC}$             |
| 3-STATE Output                       | –0.5V to +5.5V                |
| Current Applied to Output            |                               |
| in LOW State (Max)                   | twice the rated $I_{OL}$ (mA) |
| ESD Last Passing Voltage (Min)       | 4000V                         |

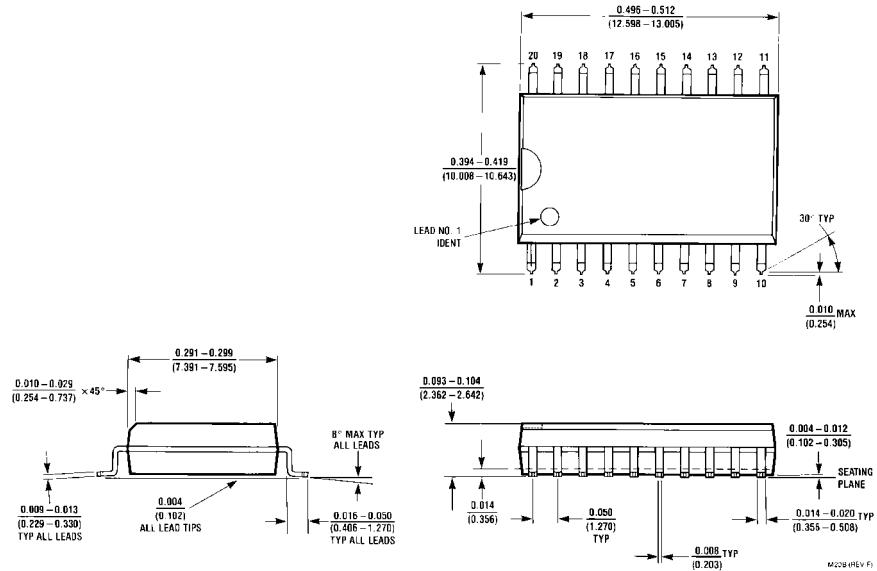
**Recommended Operating Conditions**

|                              |                |
|------------------------------|----------------|
| Free Air Ambient Temperature | 0°C to +70°C   |
| Supply Voltage               | +4.5V to +5.5V |

**Note 1:** Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

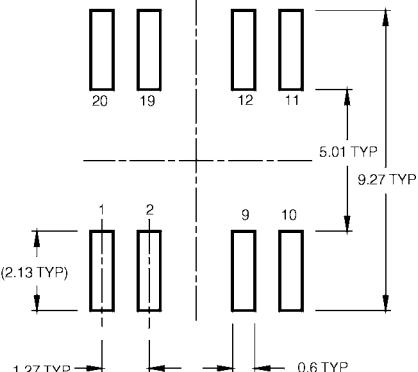
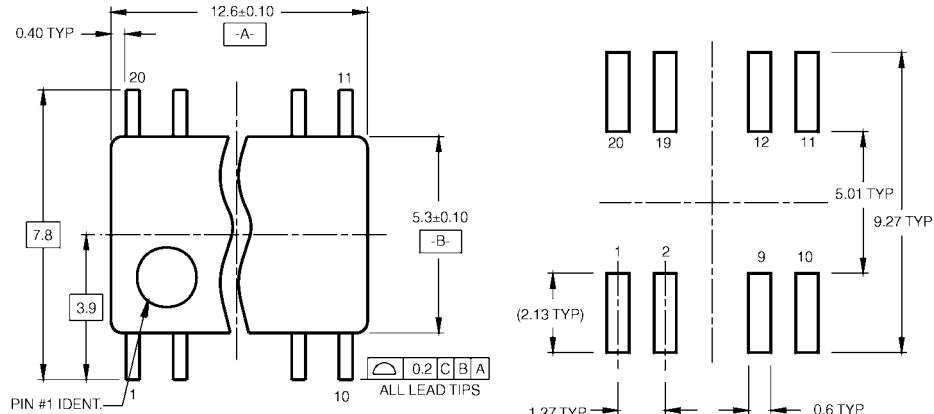
**Note 2:** Either voltage limit or current limit is sufficient to protect inputs.

**DC Electrical Characteristics**

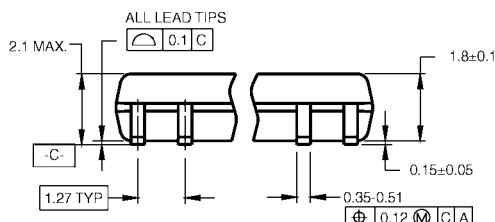

| Symbol             | Parameter                          | Min          | Typ  | Max  | Units   | $V_{CC}$ | Conditions                                                         |
|--------------------|------------------------------------|--------------|------|------|---------|----------|--------------------------------------------------------------------|
| $V_{IH}$           | Input HIGH Voltage                 | 2.0          |      |      | V       |          | Recognized as a HIGH Signal                                        |
| $V_{IL}$           | Input LOW Voltage                  |              | 0.8  |      | V       |          | Recognized as a LOW Signal                                         |
| $V_{CD}$           | Input Clamp Diode Voltage          |              | –1.2 |      | V       | Min      | $I_{IN} = –18$ mA                                                  |
| $V_{OH}$           | Output HIGH Voltage                | 10% $V_{CC}$ | 2.4  |      | V       | Min      | $I_{OH} = –3$ mA                                                   |
|                    |                                    | 5% $V_{CC}$  | 2.7  |      |         |          |                                                                    |
| $V_{OL}$           | Output LOW Voltage                 | 10% $V_{CC}$ | 0.5  |      | V       | Min      | $I_{OL} = 20$ mA ( $\overline{TC}$ ), $I_{OL} = 24$ mA ( $I/O_n$ ) |
|                    |                                    | 5% $V_{CC}$  | 0.5  |      |         |          | $I_{OL} = 20$ mA ( $\overline{TC}$ ), $I_{OL} = 24$ mA ( $I/O_n$ ) |
| $I_{IH}$           | Input HIGH Current                 |              |      | 5.0  | $\mu$ A | Max      | $V_{IN} = 2.7$ V (Non-I/O Pins)                                    |
| $I_{BVI}$          | Input HIGH Current Breakdown Test  |              |      | 7.0  | $\mu$ A | Max      | $V_{IN} = 7.0$ V (Non-I/O Pins)                                    |
| $I_{BVIT}$         | Input HIGH Current Breakdown (I/O) |              |      | 0.5  | mA      | Max      | $V_{IN} = 5.5$ V ( $I/O_n$ )                                       |
| $I_{CEX}$          | Output HIGH Leakage Current        |              |      | 50   | $\mu$ A | Max      | $V_{OUT} = V_{CC}$                                                 |
| $V_{ID}$           | Input Leakage Test                 | 4.75         |      |      | V       | 0.0      | $I_{ID} = 1.9$ $\mu$ A<br>All Other Pins Grounded                  |
| $I_{OD}$           | Output Leakage Circuit Control     |              |      | 3.75 | $\mu$ A | 0.0      | $V_{IOD} = 150$ mV<br>All Other Pins Grounded                      |
| $I_{ZZ}$           | Bus Drainage Test                  |              |      | 500  | $\mu$ A | 0.0      | $V_{OUT} = 5.25$ V                                                 |
| $I_{IL}$           | Input LOW Current                  |              |      | –0.2 | mA      | Max      | $V_{IN} = 0.5$ V (Non-I/O Pins)                                    |
| $I_{IH} & I_{OZH}$ | Output Leakage Current             |              |      | 70   | $\mu$ A | Max      | $V_{OUT} = 2.7$ V ( $I/O_n$ )                                      |
| $I_{IL} & I_{OZL}$ | Output Leakage Current             |              |      | –200 | $\mu$ A | Max      | $V_{OUT} = 0.5$ V ( $I/O_n$ )                                      |
| $I_{OS}$           | Output Short-Circuit Current       | –60          | –150 |      | mA      | Max      | $V_{OUT} = 0$ V                                                    |
| $I_{CCH}$          | Power Supply Current               | 70           | 110  |      | mA      | Max      | $V_O =$ HIGH                                                       |
| $I_{CCL}$          | Power Supply Current               | 85           | 120  |      | mA      | Max      | $V_O =$ LOW                                                        |
| $I_{CCZ}$          | Power Supply Current               | 85           | 125  |      | mA      | Max      | $V_O =$ HIGH Z                                                     |

## AC Electrical Characteristics

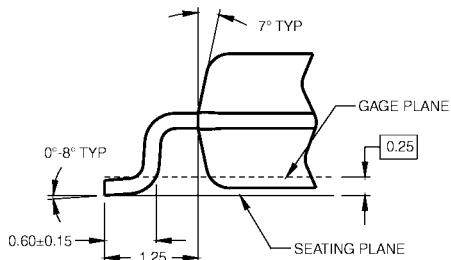
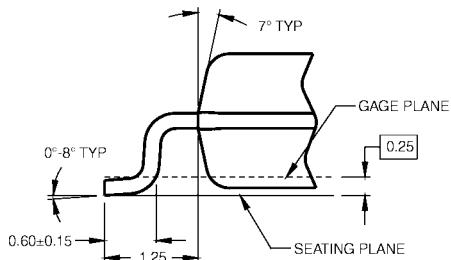
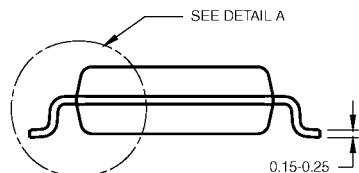
| Symbol    | Parameter                                                         | $T_A = +25^\circ C$ |            |             | $T_A = 0^\circ C$ to $+70^\circ C$ |              | Units |  |
|-----------|-------------------------------------------------------------------|---------------------|------------|-------------|------------------------------------|--------------|-------|--|
|           |                                                                   | $V_{CC} = +5.0V$    |            |             | $V_{CC} = +5.0V$                   |              |       |  |
|           |                                                                   | Min                 | Typ        | Max         | Min                                | Max          |       |  |
| $t_{MAX}$ | Maximum Clock Frequency                                           | 70                  | 85         | 80          |                                    |              |       |  |
| $t_{PLH}$ | Propagation Delay<br>CP to $I/O_n$                                | 3.0<br>5.0          | 5.0<br>8.0 | 7.5<br>11.5 | 3.0<br>5.0                         | 8.0<br>11.5  | ns    |  |
| $t_{PLH}$ | Propagation Delay<br>CP to $\overline{TC}$                        | 5.0                 | 7.5<br>7.0 | 11.5        | 5.0                                | 12.0         | ns    |  |
| $t_{PLH}$ | Propagation Delay<br>$U/\overline{D}$ to $TC$                     | 4.5<br>4.5          | 7.0<br>8.0 | 9.0<br>9.5  | 4.5<br>4.5                         | 10.0<br>10.0 | ns    |  |
| $t_{PLH}$ | Propagation Delay<br>$\overline{CEP}$ or $\overline{CET}$ to $TC$ | 2.5<br>3.5          | 3.8<br>6.0 | 6.0<br>8.0  | 2.5<br>3.5                         | 6.5<br>8.5   | ns    |  |
| $t_{PHL}$ | Propagation Delay<br>$MR$ to $I/O_n$                              | 5.0                 | 7.5        | 10.0        | 5.0                                | 10.0         | ns    |  |
| $t_{PHL}$ | Propagation Delay<br>$MR$ to $TC$                                 | 6.5                 | 10.0       | 13.0        | 6.5                                | 13.5         | ns    |  |
| $t_{PZH}$ | Output Enable Time<br>$CS$ or $PE$ to $I/O$                       | 3.0<br>5.5          | 5.0<br>8.0 | 8.5<br>10.5 | 3.0<br>5.5                         | 9.0<br>11.5  | ns    |  |
| $t_{PHZ}$ | Output Disable Time<br>$CS$ or $PE$ to $I/O$                      | 2.0<br>2.0          | 5.0<br>4.5 | 8.5<br>8.0  | 2.0<br>2.0                         | 9.0<br>8.5   | ns    |  |
| $t_{PZH}$ | Output Enable Time<br>$OE$ to $I/O_n$                             | 3.0<br>5.0          | 5.0<br>8.0 | 8.0<br>11.0 | 3.0<br>5.0                         | 8.5<br>12.0  | ns    |  |
| $t_{PHZ}$ | Output Disable Time<br>$OE$ to $I/O_n$                            | 2.0<br>2.0          | 4.0<br>4.0 | 6.5<br>6.0  | 2.0<br>2.0                         | 6.5<br>6.5   | ns    |  |



## AC Operating Requirements

| Symbol    | Parameter                                                       | $T_A = +25^\circ C$ |     |     | $T_A = 0^\circ C$ to $+70^\circ C$ |     | Units |  |
|-----------|-----------------------------------------------------------------|---------------------|-----|-----|------------------------------------|-----|-------|--|
|           |                                                                 | $V_{CC} = +5.0V$    |     |     | $V_{CC} = +5.0V$                   |     |       |  |
|           |                                                                 | Min                 | Typ | Max | Min                                | Max |       |  |
| $t_S(H)$  | Setup Time<br>$I/O_n$ to $CP$                                   | 4.0                 |     | 4.0 |                                    | 4.0 | ns    |  |
| $t_H(H)$  | Hold Time<br>$I/O_n$ to $CP$                                    | 0.0                 |     | 0.0 |                                    | 0.0 | ns    |  |
| $t_S(H)$  | Setup Time<br>$\overline{PE}$ , $CS$ or $\overline{SR}$ to $CP$ | 9.5                 |     | 9.5 |                                    | 9.5 | ns    |  |
| $t_H(H)$  | Hold Time<br>$\overline{PE}$ , $CS$ or $\overline{SR}$ to $CP$  | 0.0                 |     | 0.0 |                                    | 0.0 | ns    |  |
| $t_S(H)$  | Setup Time<br>$CET$ or $\overline{CET}$ to $CP$                 | 6.5                 |     | 6.5 |                                    | 6.5 | ns    |  |
| $t_H(H)$  | Hold Time<br>$CET$ or $\overline{CET}$ to $CP$                  | 0.0                 |     | 0.0 |                                    | 0.0 | ns    |  |
| $t_S(H)$  | Setup Time<br>$U/\overline{D}$ to $CP$                          | 9.0                 |     | 9.5 |                                    | 9.5 | ns    |  |
| $t_H(H)$  | Hold Time<br>$U/\overline{D}$ to $CP$                           | 0.0                 |     | 0.0 |                                    | 0.0 | ns    |  |
| $t_W(H)$  | Clock Pulse Width<br>HIGH or LOW                                | 4.5                 |     | 4.5 |                                    | 4.5 | ns    |  |
| $t_W(L)$  | MR Pulse Width                                                  | 3.0                 |     | 3.0 |                                    | 3.0 | ns    |  |
| $t_{REC}$ | Recovery Time<br>$MR$ to $CP$                                   | 4.0                 |     | 4.0 |                                    | 4.0 | ns    |  |


**Physical Dimensions** inches (millimeters) unless otherwise noted

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide  
Package Number M20B




## Physical Dimensions inches (millimeters) unless otherwise noted (Continued)



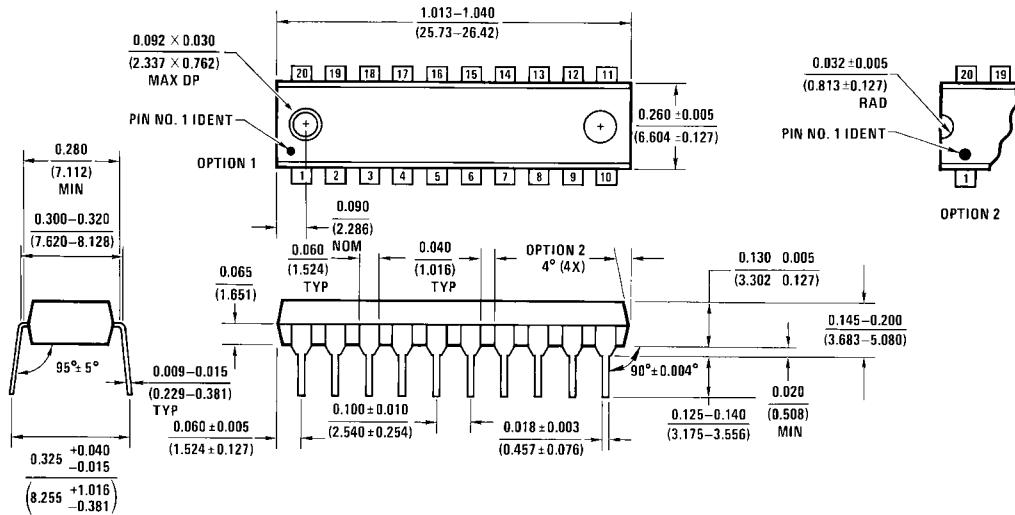
### LAND PATTERN RECOMMENDATION



DIMENSIONS ARE IN MILLIMETERS



#### NOTES:


- A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

M20DRevB1

### DETAIL A

20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide  
Package Number M20D

**Physical Dimensions** inches (millimeters) unless otherwise noted (Continued)



N20A (REV G)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide  
Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

**LIFE SUPPORT POLICY**

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

[www.fairchildsemi.com](http://www.fairchildsemi.com)

ON Semiconductor and  are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at [www.onsemi.com/site/pdf/Patent-Marking.pdf](http://www.onsemi.com/site/pdf/Patent-Marking.pdf). ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
**Phone:** 303-675-2175 or 800-344-3860 Toll Free USA/Canada  
**Fax:** 303-675-2176 or 800-344-3867 Toll Free USA/Canada  
**Email:** [orderlit@onsemi.com](mailto:orderlit@onsemi.com)

**N. American Technical Support:** 800-282-9855 Toll Free  
USA/Canada

**Europe, Middle East and Africa Technical Support:**  
Phone: 421 33 790 2910  
**Japan Customer Focus Center**  
Phone: 81-3-5817-1050

**ON Semiconductor Website:** [www.onsemi.com](http://www.onsemi.com)

**Order Literature:** <http://www.onsemi.com/orderlit>

For additional information, please contact your local  
Sales Representative