

**3.3V CMOS 12-BIT TO 24-BIT
MULTIPLEXED D-TYPE
LATCH WITH 3-STATE
OUTPUTS AND BUS-HOLD**

FEATURES:

- 0.5 MICRON CMOS Technology
- Typical $t_{sk(0)}$ (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
> 200V using machine model ($C = 200\text{pF}$, $R = 0$)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP,
and 0.40mm pitch TVSOP packages
- Extended commercial range of -40°C to $+85^\circ\text{C}$
- $V_{cc} = 3.3\text{V} \pm 0.3\text{V}$, Normal Range
- $V_{cc} = 2.7\text{V}$ to 3.6V , Extended Range
- $V_{cc} = 2.5\text{V} \pm 0.2\text{V}$
- CMOS power levels ($0.4\mu\text{W}$ typ. static)
- Rail-to-Rail output swing for increased noise margin

Drive Features for ALVCHR16260:

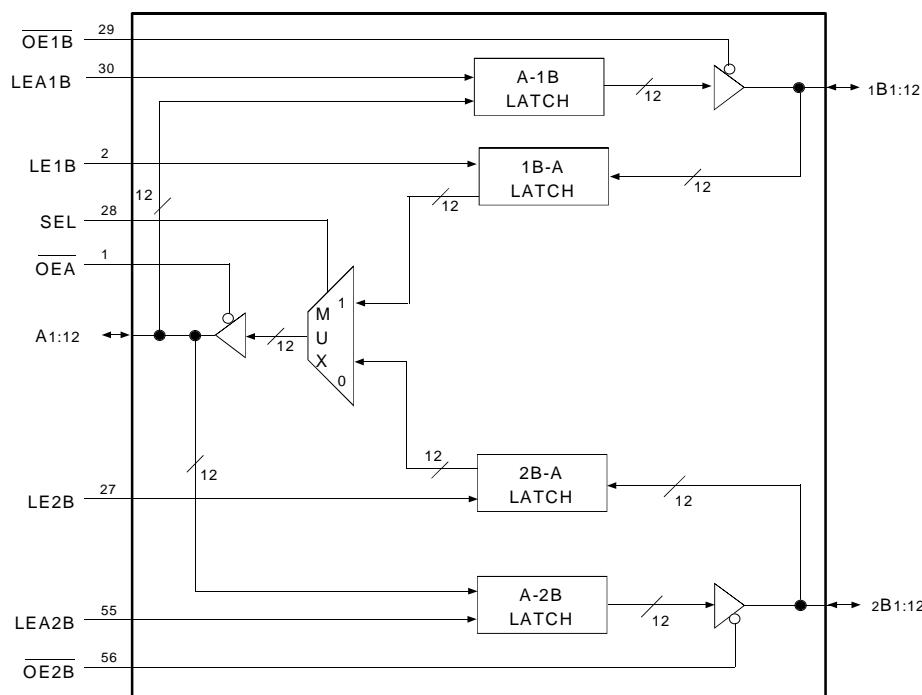
- Balanced Output Drivers: $\pm 12\text{mA}$
- Low switching noise

APPLICATIONS:

- 3.3V High Speed Systems
- 3.3V and lower voltage computing systems

DESCRIPTION:

This 12-bit to 24-bit multiplexed D-type latch is built using advanced dual metal technology. The ALVCHR16260 is used in


applications in which two separate data paths must be multiplexed onto, or demultiplexed from, a single data path. Typical applications include multiplexing and/or demultiplexing address and data information in microprocessor or bus-interface applications. This device also is useful in memory interleaving applications.

Three 12-bit I/O ports (A1-A12, 1B1-1B12, and 2B1-2B12) are available for address and/or data transfer. The output-enable (OE1B, OE2B, and OEA) inputs control the bus transceiver functions. The OE1B and OE2B control signals also allow bank control in the A-to-B direction. Address and/or data information can be stored using the internal storage latches. The latch-enable (LE1B, LE2B, LEA1B, and LEA2B) inputs are used to control data storage. When the latch-enable input is high, the latch is transparent. When the latch-enable input goes low, the data present at the inputs is latched and remains latched until the latch-enable input is returned high.

The ALVCHR16260 has series resistors in the device output structure which will significantly reduce line noise when used with light loads. This driver has been designed to drive $\pm 12\text{mA}$ at the designated threshold levels.

The ALVCHR16260 has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

Functional Block Diagram

EXTENDED COMMERCIAL TEMPERATURE RANGE

JULY 1999

PIN CONFIGURATION

OE _A	1	56	OE _{2B}
LE1B	2	55	LEA2B
2B ₃	3	54	2B ₄
GND	4	53	GND
2B ₂	5	52	2B ₅
2B ₁	6	51	2B ₆
V _{CC}	7	50	V _{CC}
A ₁	8	49	2B ₇
A ₂	9	48	2B ₈
A ₃	10	47	2B ₉
GND	11	46	GND
A ₄	12	45	2B ₁₀
A ₅	13	44	2B ₁₁
A ₆	14	43	2B ₁₂
A ₇	15	42	1B ₁₂
A ₈	16	41	1B ₁₁
A ₉	17	40	1B ₁₀
GND	18	39	GND
A ₁₀	19	38	1B ₉
A ₁₁	20	37	1B ₈
A ₁₂	21	36	1B ₇
V _{CC}	22	35	V _{CC}
1B ₁	23	34	1B ₆
1B ₂	24	33	1B ₅
GND	25	32	GND
1B ₃	26	31	1B ₄
LE2B	27	30	LEA1B
SEL	28	29	OE1B

SSOP/
TSSOP/TVSOP
TOP VIEW

ABSOLUTE MAXIMUM RATING (1)

Symbol	Description	Max.	Unit
V _{TERM} ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to + 4.6	V
V _{TERM} ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to V _{CC} + 0.5	V
T _{STG}	Storage Temperature	-65 to + 150	°C
I _{OUT}	DC Output Current	-50 to + 50	mA
I _{IK}	Continuous Clamp Current, V _I < 0 or V _I > V _{CC}	± 50	mA
I _{OK}	Continuous Clamp Current, V _O < 0	-50	mA
I _{CC}	Continuous Current through each V _{CC} or GND	±100	mA
I _{SS}			

NEW16link

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. V_{CC} terminals.
3. All terminals except V_{CC}.

CAPACITANCE (T_A = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Typ.	Max.	Unit
C _{IN}	Input Capacitance	V _{IN} = 0V	5	7	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	7	9	pF
C _{I/O}	I/O Port Capacitance	V _{IN} = 0V	7	9	pF

NEW16link

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	I/O	Description
Ax(1:12)	I/O	Bidirectional Data Port A. Usually connected to the CPU's Address/Data bus. ⁽¹⁾
1Bx(1:12)	I/O	Bidirectional Data Port 1B. Connected to the even path or even bank of memory. ⁽¹⁾
2Bx(1:12)	I/O	Bidirectional Data Port 2B. Connected to the odd path or odd bank of memory. ⁽¹⁾
LEA1B	I	Latch Enable Input for A-1B latch. The latch is open when LEA1B is HIGH. Data from the A port is latched on the HIGH to LOW transition of LEA1B.
LEA2B	I	Latch Enable Input for A-2B latch. The latch is open when LEA2B is HIGH. Data from the A port is latched on the HIGH to LOW transition of LEA2B.
LE1B	I	Latch Enable Input for 1B-A latch. The latch is open when LE1B is HIGH. Data from the 1B port is latched on the HIGH to LOW transition of LE1B.
LE2B	I	Latch Enable Input for 2B-A latch. The latch is open when LE2B is HIGH. Data from the 2B port is latched on the HIGH to LOW transition of LE2B.
SEL	I	1B or 2B Path Selection. When HIGH, SEL enables data transfer from 1B port to A port. When LOW, SEL enables data transfer from 2B port to A port.
OEA	I	Output Enable for A port (Active LOW)
OE1B	I	Output Enable for 1B port (Active LOW)
OE2B	I	Output Enable for 2B port (Active LOW)

NOTE:

1. These pins have "Bus-Hold." All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLES⁽¹⁾**B TO A ($\overline{OEB} = H$)**

Inputs						Outputs
1Bx	2Bx	SEL	LE1B	LE2B	\overline{OEA}	Ax
H	X	H	H	X	L	H
L	X	H	H	X	L	L
X	X	H	L	X	L	$A_0^{(2)}$
X	H	L	X	H	L	H
X	L	L	X	H	L	L
X	X	L	X	L	L	$A_0^{(2)}$
X	X	X	X	X	H	Z

NOTES:

1. H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
Z = High-Impedance
2. Output level before the indicated steady-state input conditions were established.

A TO B ($\overline{OEB} = H$)

Inputs						Outputs
Ax	LEA1B	LEA2B	$\overline{OE1B}$	$\overline{OE2B}$	1Bx	2Bx
H	H	H	L	L	H	H
L	H	H	L	L	L	L
H	H	L	L	L	H	$2B_0^{(2)}$
L	H	L	L	L	L	$2B_0^{(2)}$
H	L	H	L	L	$1B_0^{(2)}$	H
L	L	H	L	L	$1B_0^{(2)}$	L
X	L	L	L	L	$1B_0^{(2)}$	$2B_0^{(2)}$
X	X	X	H	H	Z	Z
X	X	X	L	H	Active	Z
X	X	X	H	L	Z	Active
X	X	X	L	L	Active	Active

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$

Symbol	Parameter	Test Conditions		Min.	Typ. ⁽¹⁾	Max.	Unit
V _{IH}	Input HIGH Voltage Level	V _{CC} = 2.3V to 2.7V		1.7	—	—	V
		V _{CC} = 2.7V to 3.6V		2	—	—	
V _{IL}	Input LOW Voltage Level	V _{CC} = 2.3V to 2.7V		—	—	0.7	V
		V _{CC} = 2.7V to 3.6V		—	—	0.8	
I _{IH}	Input HIGH Current	V _{CC} = 3.6V	V _I = V _{CC}	—	—	± 5	μA
I _{IL}	Input LOW Current	V _{CC} = 3.6V	V _I = GND	—	—	± 5	
I _{OZH}	High Impedance Output Current (3-State Output pins)	V _{CC} = 3.6V	V _O = V _{CC}	—	—	± 10	μA
I _{OZL}			V _O = GND	—	—	± 10	μA
V _{IK}	Clamp Diode Voltage	V _{CC} = 2.3V, I _{IN} = -18mA		—	—0.7	—1.2	V
V _H	Input Hysteresis	V _{CC} = 3.3V		—	100	—	mV
I _{ICL}	Quiescent Power Supply Current	V _{CC} = 3.6V		—	0.1	40	μA
I _{ICCH}		V _{IN} = GND or V _{CC}		—	—	—	
ΔI_{CC}	Quiescent Power Supply Current Variation	One input at V _{CC} = 0.6V, other inputs at V _{CC} or GND		—	—	750	μA

NEW16link

NOTE:

1. Typical values are at V_{CC} = 3.3V, $+25^{\circ}\text{C}$ ambient.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
I _{BHH}	Bus-Hold Input Sustain Current	V _{CC} = 3.0V	V _I = 2.0V	—75	—	—	μA
			V _I = 0.8V	75	—	—	
I _{BHL}	Bus-Hold Input Sustain Current	V _{CC} = 2.3V	V _I = 1.7V	—45	—	—	μA
			V _I = 0.7V	45	—	—	
I _{BHHO}	Bus-Hold Input Overdrive Current	V _{CC} = 3.6V	V _I = 0 to 3.6V	—	—	± 500	μA
I _{BHLO}				—	—	—	

NOTES:

1. Pins with Bus-hold are identified in the pin description.
2. Typical values are at V_{CC} = 3.3V, $+25^{\circ}\text{C}$ ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
VOH	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc - 0.2	—	V
		Vcc = 2.3V	IOH = - 4mA	1.9	—	
			IOH = - 6mA	1.7	—	
		Vcc = 2.7V	IOH = - 4mA	2.2	—	
			IOH = - 8mA	2	—	
		Vcc = 3.0V	IOH = - 6mA	2.4	—	
			IOH = - 12mA	2	—	
VOL	Output LOW Voltage	Vcc = 2.3V to 3.6V	IOL = 0.1mA	—	0.2	V
		Vcc = 2.3V	IOL = 4mA	—	0.4	
			IOL = 6mA	—	0.55	
		Vcc = 2.7V	IOL = 4mA	—	0.4	
			IOL = 8mA	—	0.6	
		Vcc = 3.0V	IOL = 6mA	—	0.55	
			IOL = 12mA	—	0.8	

NOTE:

1. VIH and Vil must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = -40°C to +85°C.

OPERATING CHARACTERISTICS, TA = 25°C

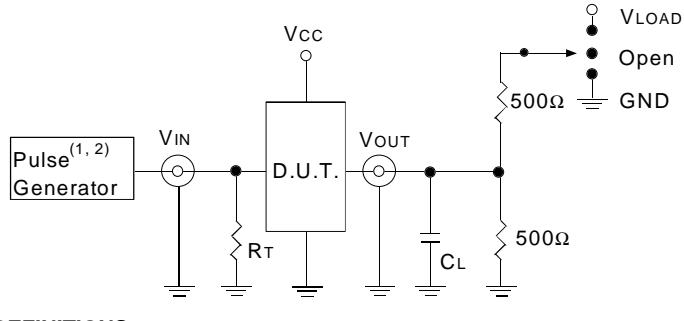
Symbol	Parameter	Test Conditions	Vcc = 2.5V ± 0.2V	Vcc = 3.3V ± 0.3V	Unit
			Typical	Typical	
CPD	Power Dissipation Capacitance Outputs enabled	CL = 0pF, f = 10Mhz	37	41	pF
	Power Dissipation Capacitance Outputs disabled		4	7	

SWITCHING CHARACTERISTICS⁽¹⁾

Symbol	Parameter	V _{CC} = 2.5V ± 0.2V		V _{CC} = 2.7V		V _{CC} = 3.3V ± 0.3V		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
t _{PLH}	Propagation Delay Ax to 1Bx or Ax to 2Bx	1	5.9	—	5.8	1.2	4.9	ns
t _{PHL}	Propagation Delay 1Bx to Ax or 2Bx to Ax	1	5.9	—	5.8	1.2	4.9	ns
t _{PLH}	Propagation Delay LExB to Ax	1	6.1	—	5.9	1	5	ns
t _{PHL}	Propagation Delay LEA1B to 1Bx or LEA2B to 2Bx	1	6.1	—	5.9	1	5	ns
t _{PLH}	Propagation Delay SEL to Ax	1	7.4	—	7.1	1.1	6.1	ns
t _{PZH}	Output Enable Time OEA to Ax, OE1B to 1Bx, or OE2B to 2Bx	1	7.2	—	7.1	1	6	ns
t _{PHZ}	Output Disable Time OEA to Ax, OE1B to 1Bx, or OE2B to 2Bx	1	6.2	—	5.5	1.3	5.1	ns
t _{su}	Setup Time, data before LE1B, LE2B, LEA1B, LEA2B	1.4	—	1.1	—	1.1	—	ns
t _h	Hold Time, data after LE1B, LE2B, LEA1B, LEA2B	1.6	—	1.9	—	1.5	—	ns
t _w	Pulse Width, LE1B, LE2B, LEA1B, or LEA2B HIGH	3.3	—	3.3	—	3.3	—	ns
t _{sk(0)}	Output Skew ⁽²⁾	—	—	—	—	—	500	ps

NOTES:

1. See test circuits and waveforms. TA = -40°C to +85°C.
2. Skew between any two outputs of the same package and switching in the same direction.


TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$V_{CC(1)} = 3.3V \pm 0.3V$	$V_{CC(1)} = 2.7V$	$V_{CC(2)} = 2.5V \pm 0.2V$	Unit
V_{LOAD}	6	6	$2 \times V_{CC}$	V
V_{IH}	2.7	2.7	V_{CC}	V
V_T	1.5	1.5	$V_{CC} / 2$	V
V_{LZ}	300	300	150	mV
V_{HZ}	300	300	150	mV
C_L	50	50	30	pF

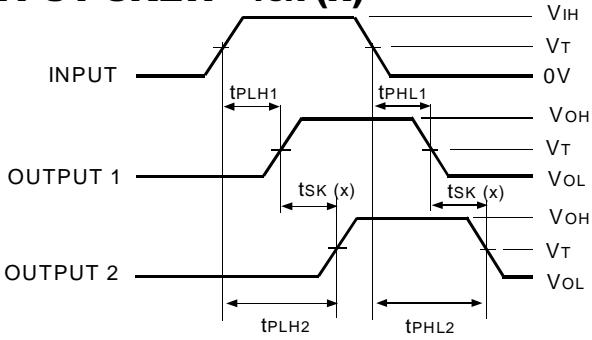
NEW16link

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.
 RT = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator.

NOTES:

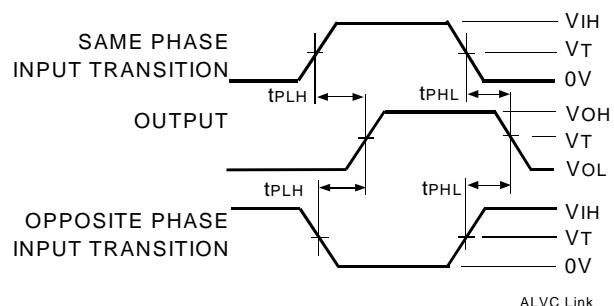

1. Pulse Generator for All Pulses: Rate $\leq 10\text{MHz}$; t_F $\leq 2.5\text{ns}$; t_R $\leq 2.5\text{ns}$.
2. Pulse Generator for All Pulses: Rate $\leq 10\text{MHz}$; t_F $\leq 2\text{ns}$; t_R $\leq 2\text{ns}$.

SWITCH POSITION

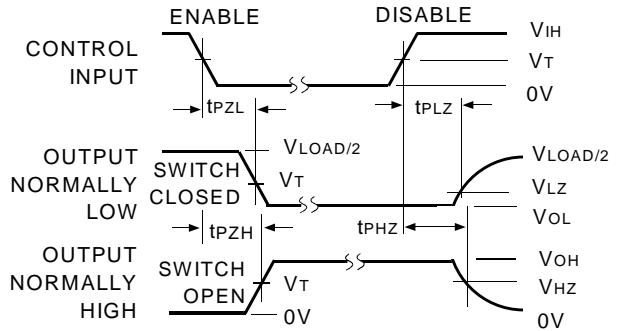
Test	Switch
Open Drain	V_{LOAD}
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open

NEW16link

OUTPUT SKEW - TSK (x)

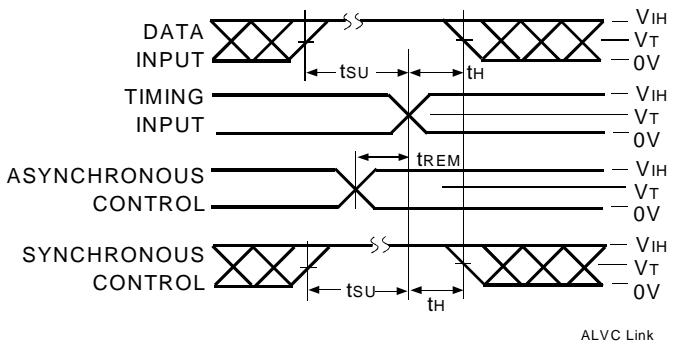

$$tsk(x) = |t_{PLH2} - t_{PLH1}| \text{ or } |t_{PHL2} - t_{PHL1}|$$

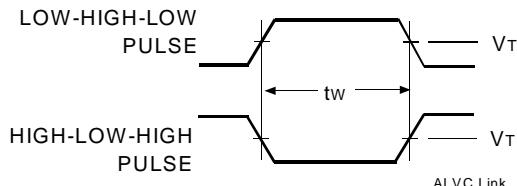
ALVC Link


NOTES:

1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY


ENABLE AND DISABLE TIMES


NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

ORDERING INFORMATION

IDT	XX	ALVC	X	XX	XXX	XX	
Temp. Range		Bus-Hold		Family	Device Type	Package	
						PV	Shrink Small Outline Package (SO56-1)
						PA	Thin Shrink Small Outline Package (SO56-2)
						PF	Thin Very Small Outline Package (SO56-3)
					260		12-Bit to 24-Bit Multiplexed D-Type Latch with 3-State Outputs
					R16		Double-Density with Resistors, $\pm 12\text{mA}$
					H		Bus-Hold
					74		-40°C to $+85^\circ\text{C}$

CORPORATE HEADQUARTERS

2975 Stender Way
Santa Clara, CA 95054

for SALES:

800-345-7015 or 408-727-6116
fax: 408-492-8674
www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2.
The IDT logo is a registered trademark of Integrated Device Technology, Inc.