

NUP4105MU

Low Capacitance ESD Protection Array for High Speed Data Lines Protection

The NUP4105MU transient voltage suppressor is designed to protect high speed data lines from ESD, EFT, and lighting.

Features

- Low Capacitance (5 pF Maximum Between I/O Lines and GND)
- ESD Rating of Class 3B (Exceeding 8 kV) per Human Body model and Class C (Exceeding 400 V) per Machine Model
- Protection for the Following IEC Standards:
IEC 61000-4-2 (ESD) Level 4 – 18 kV (Contact)
- This is a Pb-Free Device

Typical Applications

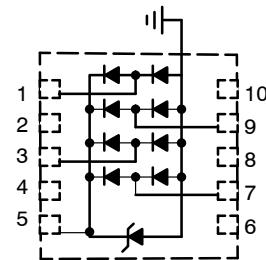
- High Speed Communication Line Protection
- USB 1.1 and 2.0 Power and Data Line Protection
- Digital Video Interface (DVI)
- Monitors and Flat Panel Displays
- T1/E1 and T3/E3

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Power Dissipation	P _{pk}	450	W
Maximum Peak Pulse Current 8 x 20 µS @ T _A = 25°C (Note 1)	I _{PP}	26	A
Operating Junction Temperature Range	T _J	-40 to +125	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Lead Solder Temperature – Maximum (10 Seconds)	T _L	260	°C
Human Body Model (HBM) Machine Model (MM) IEC 61000-4-2 Contact (ESD)	ESD	16000 400 18000	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Non-repetitive current pulse per Figure 1 (Pin 5 to GND Pad)



ON Semiconductor®

<http://onsemi.com>

LOW CAPACITANCE DIODE TVS ARRAY

PIN CONFIGURATION AND SCHEMATIC

UDFN10
CASE 517AN

MARKING DIAGRAM

4105 = Specific Device Code
AA = Assembly Location
Y = Year
W = Work Week
▪ = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NUP4105MUTAG	UDFN10 (Pb-Free)	3000/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_J=25^\circ\text{C}$ unless otherwise specified)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Reverse Working Voltage	V_{RWM}	(Note 2)			3.3	V
Breakdown Voltage	V_{BR}	$I_T=1 \text{ mA}$, (Note 3)	5.0	5.3		V
Reverse Leakage Current	I_R	$V_{RWM} = 3.3 \text{ V}$			5.0	μA
Clamping Voltage	V_C	$I_{PP} = 1 \text{ A}$ (Note 4)			6.2	V
Clamping Voltage	V_C	$I_{PP} = 10 \text{ A}$ (Note 4)			10	V
Clamping Voltage	V_C	$I_{PP} = 25 \text{ A}$ (Note 4)			14	V
Maximum Peak Pulse Current	I_{PP}	8x20 μs Waveform			26	A
Junction Capacitance	C_J	$V_R = 0 \text{ V}$, $f=1 \text{ MHz}$ between I/O Pins and GND		3.0	5.0	pF
Junction Capacitance	C_J	$V_R = 0 \text{ V}$, $f=1 \text{ MHz}$ between I/O Pins		1.5	3.0	pF

- TVS devices are normally selected according to the working peak reverse voltage (V_{RWM}), which should be equal or greater than the DC or continuous peak operating voltage level.
- V_{BR} is measured at pulse test current I_T .
- Non-repetitive current pulse per Figure 1 (Pin 5 to GND Pad)

TYPICAL PERFORMANCE CURVES

($T_J = 25^\circ\text{C}$ unless otherwise noted)

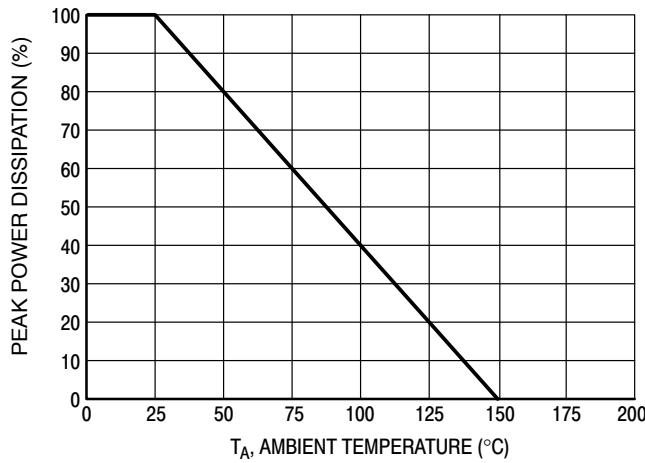


Figure 1. Pulse Derating Curve

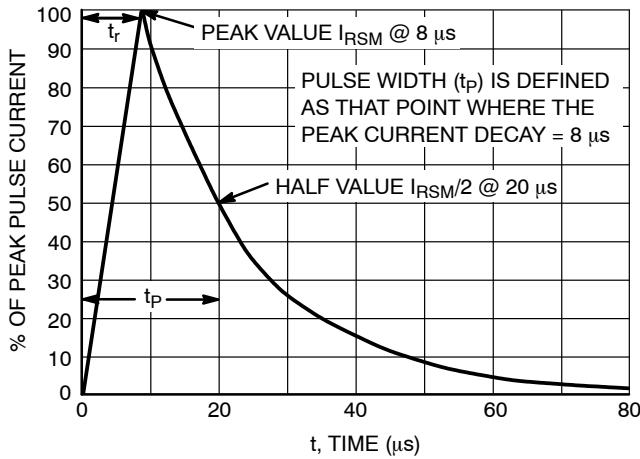
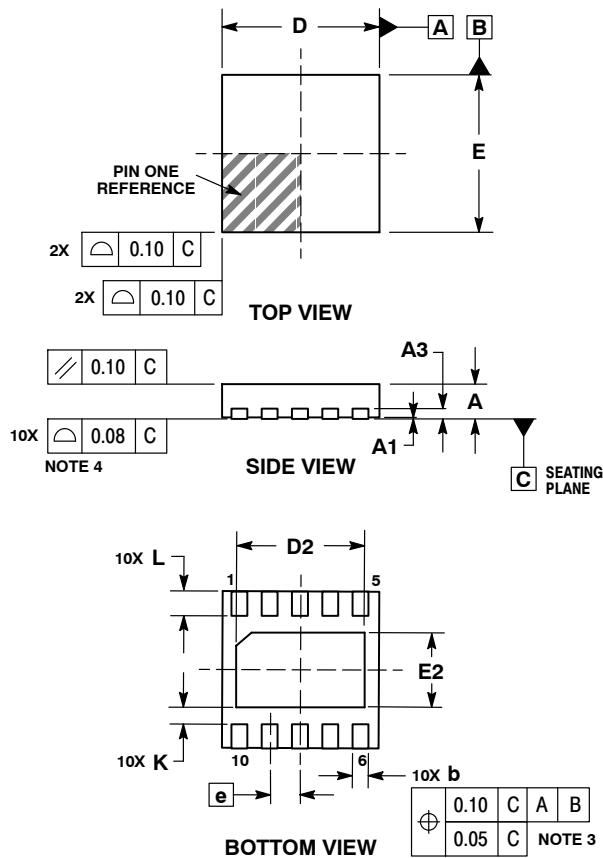
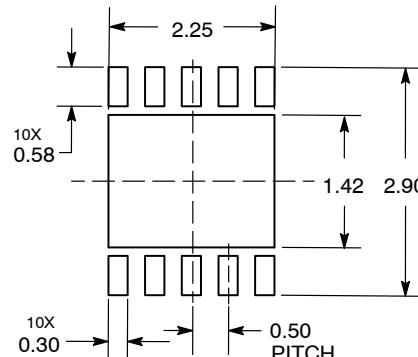



Figure 2. 8x20 μs Pulse Waveform

PACKAGE DIMENSIONS


UDFN10 2.6x2.6, 0.5P
CASE 517AN-01
ISSUE O

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.45	0.55
A1	0.00	0.05
A3	0.127 REF	
b	0.20	0.30
D	2.60 BSC	
D2	2.00	2.25
E	2.60 BSC	
E2	1.11	1.36
e	0.50 BSC	
K	0.20	---
L	0.30	0.40

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.comOrder Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
Sales Representative