

MECHANICAL DATA

Dimensions in mm (inches)

SMD05

Underside View

PAD 1 = Base PAD 2 = Collector PAD = 3 – Emitter

PNP BIPOLAR TRANSISTOR IN A CERAMIC SURFACE MOUNT PACKAGE FOR HIGH-REL AND SPACE APPLICATIONS

DESCRIPTION

The 2N5151SMD05 and the 2N5153SMD05 are silicon epitaxial planar PNP transistors in a Ceramic Surface Mount Package for use in Switching and Linear applications.

The complementary NPN types are the 2N5152SMD05 and 2N5154SMD05 respectively

ABSOLUTE MAXIMUM RATINGS $T_{CASE} = 25^\circ\text{C}$ unless otherwise stated

V_{CBO}	Collector – Base Voltage	-100V
V_{CEO}	Collector – Emitter Voltage ($I_B = 0$)	-80V
V_{EBO}	Emitter – Base Voltage ($I_C = 0$)	-5.5V
I_C	Continuous Collector Current	-5A
$I_{C(PK)}$	Peak Collector Current	-10A
I_B	Base Current	-2.5A
P_{tot}	Total Dissipation at $T_{amb} = 25^\circ\text{C}$ $T_{case} = 25^\circ\text{C}$	1W 100W
T_{stg}	Operating and Storage Temperature Range	-65 to +200°C
T_j	Junction temperature	200°C

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

ELECTRICAL CHARACTERISTICS FOR 2N5151SMD05 ($T_{case} = 25^\circ C$ unless otherwise stated)

Parameter	Test Conditions	Min.	Typ.	Max.	Unit
I_{CES} Collector Cut Off Current	$V_{CE} = -60V$ $V_{BE} = 0$			-1	μA
	$V_{CE} = -100V$ $V_{BE} = 0$			-1	mA
I_{CEV} Collector Cut Off Current	$V_{CE} = -60V$ $T_{case} = 150^\circ C$			-500	μA
	$V_{BE} = 2V$				
I_{CEO} Collector Cut Off Current	$V_{CE} = -40V$ $I_B = 0$			-50	
I_{EBO} Emitter Cut Off Current	$V_{EB} = -4V$ $I_C = 0$			-1	μA
	$V_{EB} = -5.5V$ $I_C = 0$			-1	mA
$V_{CEO(sus)}$ Collector Emitter Saturation Voltage	$I_C = -100mA$ $I_B = 0$	80			V
$V_{CE(sat)}$ Collector Emitter Saturation Voltage	$I_C = -2.5A$ $I_B = -250mA$			-0.75	
	$I_C = -5A$ $I_B = -500mA$			-1.5	
$V_{BE(sat)}$ Base Emitter Saturation Voltage	$I_C = -2.5A$ $I_B = -250mA$			-1.45	
	$I_C = -5A$ $I_B = -500mA$			-2.2	
V_{BE} Base Emitter Voltage	$I_C = -2.5A$ $V_{CE} = -5V$			-1.45	
h_{FE} DC Current Gain	$I_C = -50mA$ $V_{CE} = -5V$	20			—
	$I_C = -2.5A$ $V_{CE} = -5V$	30		90	
	$I_C = -5A$ $V_{CE} = -5V$ $T_{case} = -55^\circ C$	20			
	$I_C = 2.5A$ $V_{CE} = -5V$	15			
C_{CBO} Collector Base Capacitance	$I_E = 0$ $V_{CB} = -10V$ $f = 1MHz$			250	pF
h_{FE} Small Signal Current Gain	$IC = -0.1A$ $VCE = -5V$ $f = 1KHz$	20			—
	$IC = -0.5A$ $VCE = -5V$ $f = 20MHz$	3			
t_{on} Turn On Time	$I_C = -5A$ $V_{CC} = 30V$ $I_{B1} = -0.5A$		0.5		μs
t_{off} Turn Off Time	$I_C = -5A$ $V_{CC} = 30V$ $I_{B1} = -I_{B2} = 0.5A$		1.3		μs

* Pulse test $t_p = 300\mu s$, $\delta < 2\%$

THERMAL DATA

$R_{thj-case}$	Thermal Resistance Junction-case	Max	1.75	$^\circ C/W$
$R_{thj-amb}$	Thermal Resistance Junction-ambient	Max	150	$^\circ C/W$

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

ELECTRICAL CHARACTERISTICS FOR 2N5153SMD05 ($T_{case} = 25^\circ C$ unless otherwise stated)

Parameter	Test Conditions	Min.	Typ.	Max.	Unit
I_{CES} Collector Cut Off Current	$V_{CE} = -60V$ $V_{BE} = 0$			-1	μA
	$V_{CE} = -100V$ $V_{BE} = 0$			-1	mA
I_{CEV} Collector Cut Off Current	$V_{CE} = -60V$ $T_{case} = 150^\circ C$			-500	μA
	$V_{BE} = 2V$				
I_{CEO} Collector Cut Off Current	$V_{CE} = -40V$ $I_B = 0$			-50	
I_{EBO} Emitter Cut Off Current	$V_{EB} = -4V$ $I_C = 0$			-1	μA
	$V_{EB} = -5.5V$ $I_C = 0$			-1	mA
$V_{CEO(SUS)}$ Collector Emitter Saturation Voltage	$I_C = -100mA$ $I_B = 0$	80			V
$V_{CE(sat)}$ Collector Emitter Saturation Voltage	$I_C = -2.5A$ $I_B = -250mA$			-0.75	
	$I_C = -5A$ $I_B = -500mA$			-1.5	
$V_{BE(sat)}$ Base Emitter Saturation Voltage	$I_C = -2.5A$ $I_B = -250mA$			-1.45	
	$I_C = -5A$ $I_B = -500mA$			-2.2	
V_{BE} Base Emitter Voltage	$I_C = -2.5A$ $V_{CE} = -5V$			-1.45	
h_{FE} DC Current Gain	$I_C = -50mA$ $V_{CE} = -5V$	50			—
	$I_C = -2.5A$ $V_{CE} = -5V$	70		200	
	$I_C = -5A$ $V_{CE} = -5V$ $T_{case} = -55^\circ C$	40			
	$I_C = 2.5A$ $V_{CE} = -5V$	35			
C_{CBO} Collector Base Capacitance	$I_E = 0$ $V_{CB} = -10V$ $f = 1MHz$			250	pF
h_{FE} Small Signal Current Gain	$I_C = -0.1A$ $V_{CE} = -5V$ $f = 1KHz$	20			—
	$I_C = -0.5A$ $V_{CE} = -5V$ $f = 20MHz$	3			
t_{on} Turn On Time	$I_C = -5A$ $V_{CC} = 30V$ $I_{B1} = -0.5A$		0.5		μs
t_{off} Turn Off Time	$I_C = -5A$ $V_{CC} = 30V$ $I_{B1} = -I_{B2} = 0.5A$		1.3		μs

* Pulse test $t_p = 300\mu s$, $\delta < 2\%$

THERMAL DATA

$R_{thj-case}$	Thermal Resistance Junction-case	Max	1.75	$^\circ C/W$
$R_{thj-amb}$	Thermal Resistance Junction-ambient	Max	150	$^\circ C/W$

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.