

3.3V CMOS 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O AND BUS-HOLD

IDT74LVCH16245A

FEATURES:

- Typical $t_{sk(0)}$ (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model ($C = 200pF$, $R = 0$)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP and 0.40mm pitch TVSOP packages
- Extended commercial range of -40°C to +85°C
- $V_{CC} = 3.3V \pm 0.3V$, Normal Range
- $V_{CC} = 2.7V$ to 3.6V, Extended Range
- CMOS power levels (0.4 μ W typ. static)
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

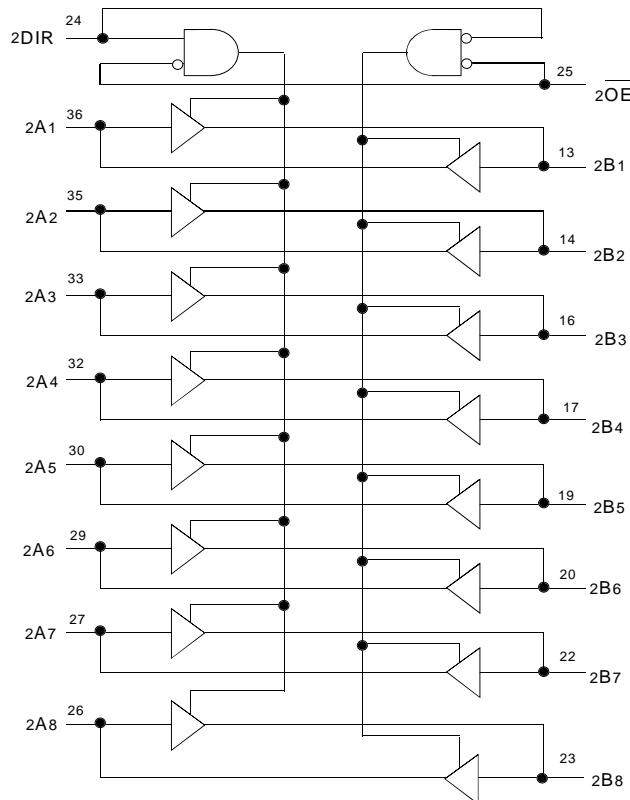
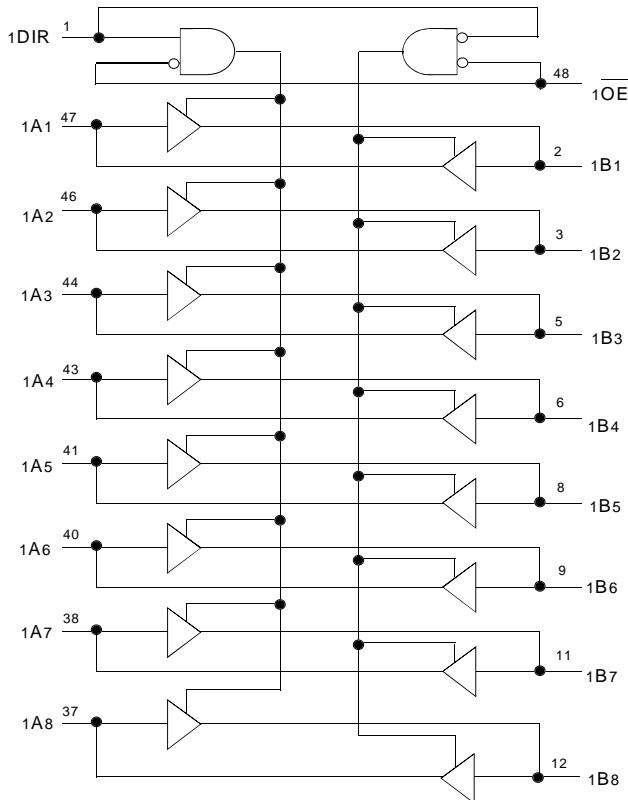
Drive Features for LVCH16245A:

- High Output Drivers: ± 24 mA
- Reduced system switching noise

APPLICATIONS:

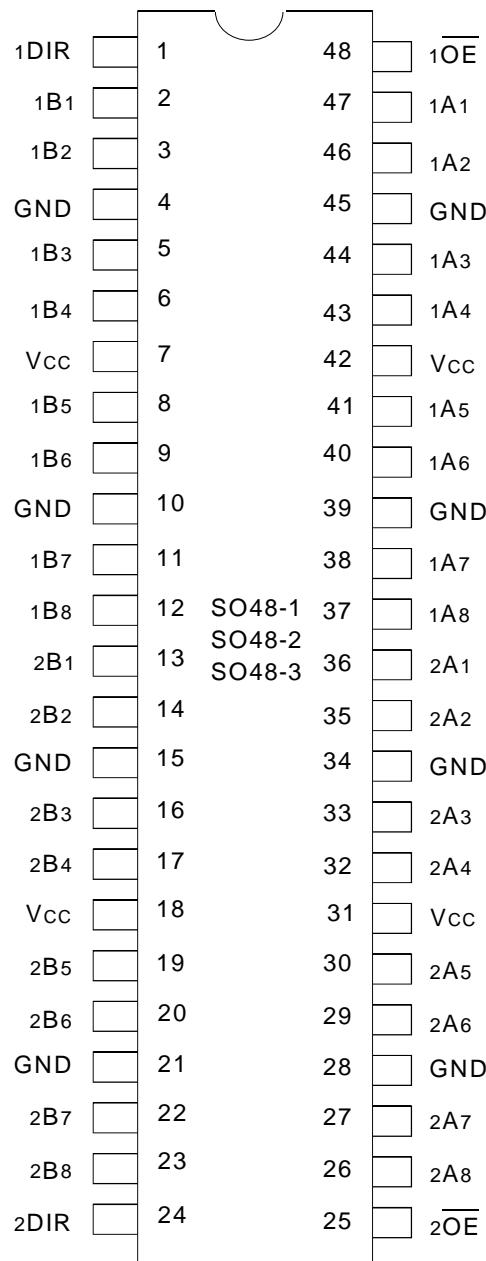
- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems

DESCRIPTION:



This 16-bit bus transceiver is built using advanced dual metal CMOS technology. This high-speed, low power transceiver is ideal for asynchronous communication between two busses (A and B). The Direction and Output Enable controls are designed to operate this device as either two independent 8-bit transceivers or one 16-bit transceiver. The direction control pin (DIR) controls the direction of data flow. The output enable pin (OE) overrides the direction control and disables both ports. All inputs are designed with hysteresis for improved noise margin.

All pins can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVCH16245A has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.


The LVCH16245A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

Functional Block Diagram

EXTENDED COMMERCIAL TEMPERATURE RANGE

MARCH 1999

PIN CONFIGURATION

SSOP/TSSOP/TVSOP
TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
TSTG	Storage Temperature	- 65 to +150	°C
I _{OUT}	DC Output Current	- 50 to +50	mA
I _{IK}	Continuous Clamp Current, V _I < 0 or V _O < 0	- 50	mA
I _{CC}	Continuous Current through each V _{CC} or GND	± 100	mA
I _{SS}			

LVC Link

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. V_{CC} terminals.
3. All terminals except V_{CC}.

CAPACITANCE (T_A = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Typ.	Max.	Unit
C _{IN}	Input Capacitance	V _{IN} = 0V	4.5	6	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	6.5	8	pF
C _{I/O}	I/O Port Capacitance	V _{IN} = 0V	6.5	8	pF

LVC Link

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
x _{OE}	Output Enable Input (Active LOW)
x _{DIR}	Direction Control Input
x _{Ax}	Side A Inputs or 3-State Outputs ⁽¹⁾
x _{Bx}	Side B Inputs or 3-State Outputs ⁽¹⁾

NOTE:

1. These pins have "Bus-hold". All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLE (each 8-bit section) (1)

Inputs		Outputs
x _{OE}	x _{DIR}	
L	L	B Data to A Bus
L	H	A Data to B Bus
H	X	Isolation

NOTE:

1. H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$

Symbol	Parameter	Test Conditions		Min.	Typ. ⁽¹⁾	Max.	Unit
V_{IH}	Input HIGH Voltage Level	$V_{CC} = 2.3\text{V}$ to 2.7V		1.7	—	—	V
		$V_{CC} = 2.7\text{V}$ to 3.6V		2	—	—	
V_{IL}	Input LOW Voltage Level	$V_{CC} = 2.3\text{V}$ to 2.7V		—	—	0.7	V
		$V_{CC} = 2.7\text{V}$ to 3.6V		—	—	0.8	
I_{IH} I_{IL}	Input Leakage Current	$V_{CC} = 3.6\text{V}$	$V_I = 0$ to 5.5V	—	—	± 5	μA
I_{OZH} I_{OZL}	High Impedance Output Current (3-State Output pins)	$V_{CC} = 3.6\text{V}$	$V_O = 0$ to 5.5V	—	—	± 10	μA
I_{OFF}	Input/Output Power Off Leakage	$V_{CC} = 0\text{V}$, V_{IN} or $V_O \leq 5.5\text{V}$		—	—	± 50	μA
V_{IK}	Clamp Diode Voltage	$V_{CC} = 2.3\text{V}$, $I_{IN} = -18\text{mA}$		—	-0.7	-1.2	V
V_H	Input Hysteresis	$V_{CC} = 3.3\text{V}$		—	100	—	mV
I_{CCL} I_{CCH} I_{CCZ}	Quiescent Power Supply Current	$V_{CC} = 3.6\text{V}$	$V_{IN} = \text{GND}$ or V_{CC}	—	—	10	μA
			$3.6 \leq V_{IN} \leq 5.5\text{V}$ ⁽²⁾	—	—	10	
ΔI_{CC}	Quiescent Power Supply Current Variation	One input at $V_{CC} - 0.6\text{V}$ other inputs at V_{CC} or GND		—	—	500	μA

LVC Link

NOTES:

1. Typical values are at $V_{CC} = 3.3\text{V}$, $+25^{\circ}\text{C}$ ambient.

2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
I_{BHH} I_{BHL}	Bus-Hold Input Sustain Current	$V_{CC} = 3.0\text{V}$	$V_I = 2.0\text{V}$	-75	—	—	μA
			$V_I = 0.8\text{V}$	75	—	—	
I_{BHH} I_{BHL}	Bus-Hold Input Sustain Current	$V_{CC} = 2.3\text{V}$	$V_I = 1.7\text{V}$	—	—	—	μA
			$V_I = 0.7\text{V}$	—	—	—	
I_{BHHO} I_{BHLO}	Bus-Hold Input Overdrive Current	$V_{CC} = 3.6\text{V}$	$V_I = 0$ to 3.6V	—	—	± 500	μA
				—	—	± 500	

NOTES:

1. Pins with Bus-hold are identified in the pin description.

2. Typical values are at $V_{CC} = 3.3\text{V}$, $+25^{\circ}\text{C}$ ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = 2.3V to 3.6V	I _{OH} = - 0.1mA	V _{CC} - 0.2	—	V
		V _{CC} = 2.3V	I _{OH} = - 6mA	2	—	
		V _{CC} = 2.3V	I _{OH} = - 12mA	1.7	—	
		V _{CC} = 2.7V		2.2	—	
		V _{CC} = 3.0V		2.4	—	
		V _{CC} = 3.0V	I _{OH} = - 24mA	2.2	—	
V _{OL}	Output LOW Voltage	V _{CC} = 2.3V to 3.6V	I _{OL} = 0.1mA	—	0.2	V
		V _{CC} = 2.3V	I _{OL} = 6mA	—	0.4	
			I _{OL} = 12mA	—	0.7	
		V _{CC} = 2.7V	I _{OL} = 12mA	—	0.4	
		V _{CC} = 3.0V	I _{OL} = 24mA	—	0.55	

LVC Link

NOTE:

1. V_{IH} and V_{IL} must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate V_{CC} range. T_A = - 40°C to +85°C.

OPERATING CHARACTERISTICS, V_{CC} = 3.3V ± 0.3V, T_A = 25°C

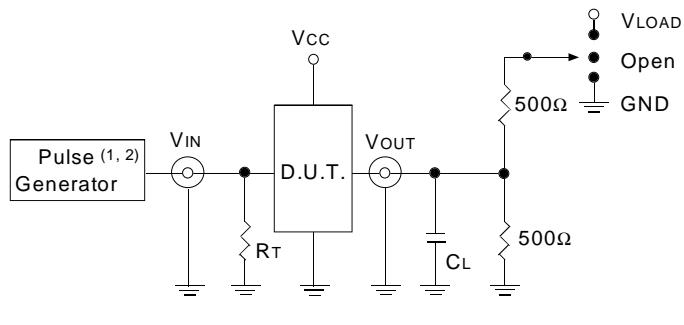
Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per Transceiver Outputs enabled	C _L = 0, f = 10MHz	40	pF
	Power Dissipation Capacitance per Transceiver Outputs disabled		4	pF

SWITCHING CHARACTERISTICS (1)

Symbol	Parameter	V _{CC} = 2.7V		V _{CC} = 3.3V ± 0.3V		Unit
		Min.	Max.	Min.	Max.	
t _{PLH}	Propagation Delay xAx to xBx, xBx to xAx	—	4.7	1	4	ns
t _{PHL}	Output Enable Time x _{OE} to xAx or xBx	—	6.7	1.5	5.5	ns
t _{PZH}	Output Disable Time x _{OE} to xAx or xBx	—	7.1	1.5	6.6	ns
t _{PLZ}	Output Skew ⁽²⁾	—	—	—	1	ns
tsk(o)		—	—	—	—	ns

NOTES:

1. See test circuits and waveforms. T_A = - 40°C to + 85°C.
2. Skew between any two outputs of the same package and switching in the same direction.


TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$V_{CC(1)} = 3.3V \pm 0.3V$	$V_{CC(1)} = 2.7V$	$V_{CC(2)} = 2.5V \pm 0.2V$	Unit
V_{LOAD}	6	6	$2 \times V_{CC}$	V
V_{IH}	2.7	2.7	V_{CC}	V
V_T	1.5	1.5	$V_{CC} / 2$	V
V_{LZ}	300	300	150	mV
V_{HZ}	300	300	150	mV
C_L	50	50	30	pF

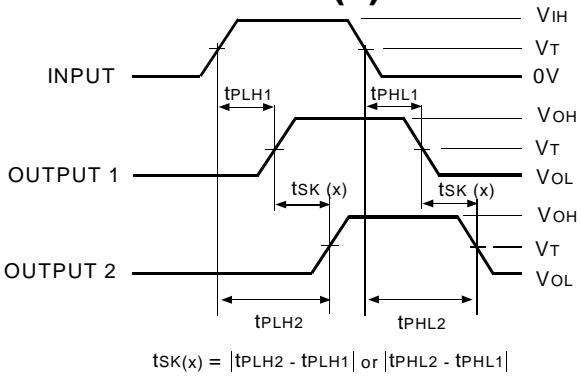
LVC Link

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

C_L = Load capacitance: includes jig and probe capacitance.
 R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator.

NOTE:

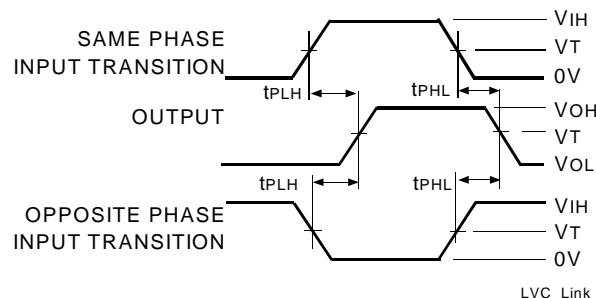

1. Pulse Generator for All Pulses: Rate $\leq 10\text{MHz}$; $t_f \leq 2.5\text{ns}$; $t_r \leq 2.5\text{ns}$.
2. Pulse Generator for All Pulses: Rate $\leq 10\text{MHz}$; $t_f \leq 2\text{ns}$; $t_r \leq 2\text{ns}$.

SWITCH POSITION

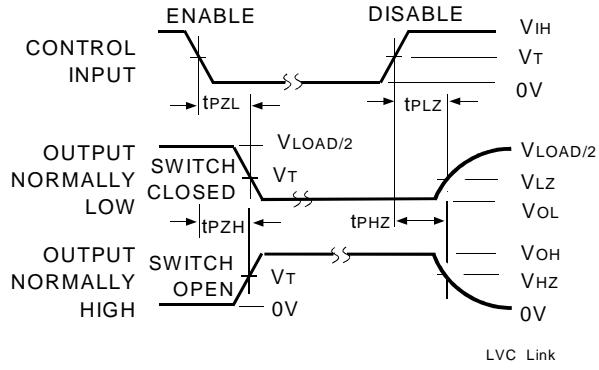
Test	Switch
Open Drain	V_{LOAD}
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open

LVC Link

OUTPUT SKEW - $t_{SK}(x)$

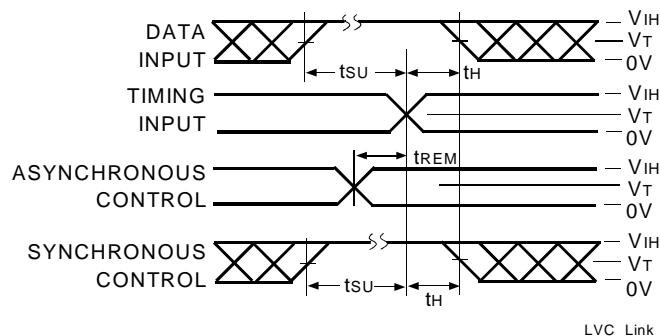


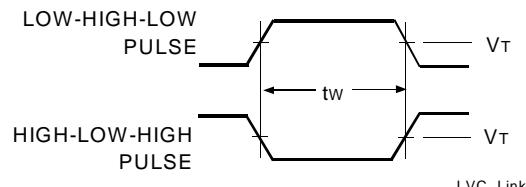
LVC Link


NOTES:

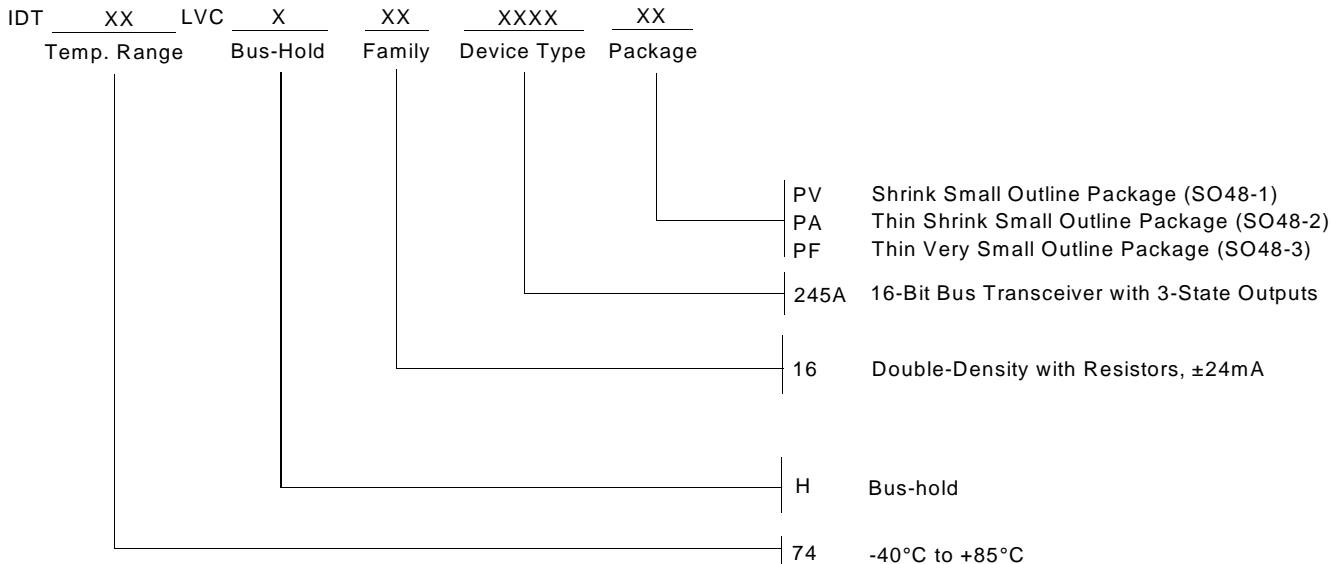
1. For $tsk(o)$ OUTPUT1 and OUTPUT2 are any two outputs.
2. For $tsk(b)$ OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY


ENABLE AND DISABLE TIMES


NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way
Santa Clara, CA 95054

for SALES:

800-345-7015 or 408-727-6116
fax: 408-492-8674
www.idt.com*

**To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2.
The IDT logo is a registered trademark of Integrated Device Technology, Inc.*