

# 3 V DUAL DOWNCONVERTER AND PLL FREQUENCY SYNTHESIZER

# **UPB1005GS**

#### **FEATURES**

INTEGRATED RF BLOCK:
 RF & IF Downconverter + PLL frequency synthesizer

DOUBLE-CONVERSION: f1stlF = 61.380 MHz
 f2ndlF = 4.092 MHz

• ADJUSTABLE GAIN: 20 dB range MIN

• FIXED DIVISION PRESCALER

LOW POWER CONSUMPTION: 46.4 mA @ 3 V

LOW CURRENT CONSUMPTION:
 ICC = 46.4 mA TYP @ VCC = 3.0 V

• SMALL 30 PIN SSOP PACKAGE

• TAPE AND REEL PACKAGING AVAILABLE

#### DESCRIPTION

The UPB1005GS is a Silicon RFIC designed for low cost GPS receivers. The IC combines a double-conversion RF/IF downconverter block and a PLL frequency synthesizer on one chip. The device operates on a 3 V supply voltage and is housed in a small 30 pin SSOP package, resulting in low power consumption and reduced board space. The device is manufactured using the NESAT<sup>TM</sup>

III 20 GHz ft silicon bipolar process.

NEC's stringent quality assurance and test procedures ensure the highest reliability and performance.

#### **USAGE**

 CONSUMER USE GPS RECEIVER OF REFERENCE FREQUENCY 16.368 MHz, 2ND IF FREQUENCY 4.092 MHz.

LIDD400ECC

#### ELECTRICAL CHARACTERISTICS (TA = 25°C, Vcc = 3 V, unless otherwise specified)

|                 | PART NUMBER PACKAGE OUTLINE                                                                       | UPB1005GS<br>S30     |                     |       |     |  |
|-----------------|---------------------------------------------------------------------------------------------------|----------------------|---------------------|-------|-----|--|
| SYMBOLS         | PARAMETERS AND CONDITIONS U                                                                       |                      | MIN                 | TYP   | MAX |  |
| Icc             | Total Circuit Current, No Signals                                                                 | mA                   |                     | 46.4  |     |  |
| RF Downc        | onverter Block (fRFin = 1575.42 MHz, f1stLOin = 1636.80 MHz                                       | z, PLOin = -10       | dBm, $ZL = Zs = 50$ | Ω)    |     |  |
| ICC1            | Circuit Current 1, No Signals                                                                     | mA                   |                     | 10    |     |  |
| CGRF            | RF Conversion Gain, PRFin = -40 dBm                                                               | dB                   |                     | 15    |     |  |
| NFRF            | RF SSB Noise Figure, PRFin = -40 dBm                                                              | dB                   |                     | 12.5  |     |  |
| Po(sat)RF       | Maximum IF Output, PRFin = -10 dBm                                                                | dBm                  |                     | -5    |     |  |
| IF Downco       | nverter Block (f1stlFin = 61.38 MHz, f2ndLOin = 65.472 MHz,                                       | $Zs = 50 \Omega, ZL$ | = 2 kΩ)             |       |     |  |
| ICC2            | Circuit Current 2, No Signals                                                                     | mA                   |                     | 5.3   |     |  |
| CGIF            | IF Conversion Gain at Max. Gain, P1stlFin = -50 dBm                                               | dB                   |                     | 37    |     |  |
| NFif            | IF SSB Noise Figure at Max. Gain, P1stlFin = -50 dBm                                              | dB                   |                     | 15    |     |  |
| Po(sat)IF       | Maximum 2nd IF Output Level at Max. Gain,<br>P1stlFin = -20 dBm                                   | dBm                  |                     | 0     |     |  |
| Vgc             | Gain Control Voltage, Voltage at Max. Gain of CGIF                                                |                      |                     |       | 1.0 |  |
| Gcr             | Gain Control Range, P1stlFin = -20 dBm                                                            | dB                   | 20                  |       |     |  |
| 2nd IF Am       | Diffier (f2ndIF= 4.092 MHz, Zs = 50 $\Omega$ , ZL = 2 k $\Omega$ )                                |                      |                     |       | •   |  |
| Іссз            | Circuit Current 3, No Signals                                                                     | mA                   |                     | 2.4   |     |  |
| S <sub>21</sub> | Gain $ S_{21} $ , $Z_L = 1 M\Omega // 27 pF^1$                                                    | dB                   |                     | 37    |     |  |
| V2ndIFout       | Output Voltage Swing, $ZL = 1M\Omega // 27 pF^1$                                                  | mV <sub>P-P</sub>    | 600                 |       |     |  |
| PLL Synthe      | sizer Block                                                                                       |                      |                     |       |     |  |
| ICC4            | Circuit Current 4, PLL, All Blocks Operating                                                      | mA                   |                     | 28.7  |     |  |
| fpD             | Phase Comparison Frequency, PLL Loop MH                                                           |                      | 8.0                 | 8.184 | 8.4 |  |
| VREFin          | Reference Input Minimum Level, $ZL = 10 \text{ k}\Omega \text{ // } 20 \text{pF}^1 \text{ mVp-p}$ |                      | 200                 |       |     |  |
| VLP(H)          | Loop Filter Output Level (H)                                                                      | V                    | 2.8                 |       |     |  |
| VLP(L)          | Loop Filter Output Level (L)                                                                      | V                    |                     |       | 0.4 |  |
| VREFout         | Reference Output Swing, $Z_L = 1 M\Omega // 27 pF^1$                                              | VP-P                 | 1.0                 |       |     |  |

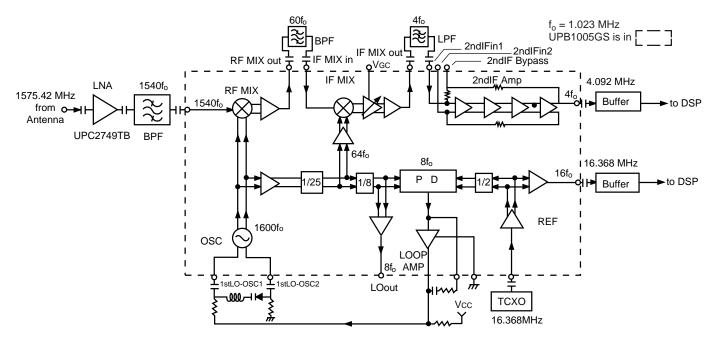
#### Note:

1. Impedance of measurement equipment.

## ABSOLUTE MAXIMUM RATINGS<sup>1</sup> (TA = 25°C)

|         |                                |       | , ,         |
|---------|--------------------------------|-------|-------------|
| SYMBOLS | PARAMETERS                     | UNITS | RATINGS     |
| Vcc     | Supply Voltage                 | V     | 3.6         |
| Icc     | Total Circuit Current          | mA    | 62          |
| Pb      | Power Dissipation <sup>2</sup> | mW    | 433         |
| Тор     | Operating Temperature          | °C    | -40 to +85  |
| Тѕтс    | Storage Temperature            | °C    | -55 to +150 |

#### Notes:


- 1. Operation in excess of any one of these parameters may result in permanent damage.
- 2. Mounted on a 50 x 50 x 1.6 mm double-sided copper clad epoxy glass PWB ( $T_A = +85^{\circ}C$ ).

# RECOMMENDED OPERATING CONDITIONS

| SYMBOLS PARAMETERS    |                                  | UNITS | MIN    | TYP     | MAX    |
|-----------------------|----------------------------------|-------|--------|---------|--------|
| Vcc                   | Supply Voltage                   | V     | 2.7    | 3.0     | 3.3    |
| Тор                   | Operating Temperature            | °C    | -40    | +25     | +85    |
| fRFin                 | RF Input Frequency               | MHz   |        | 1575.42 |        |
| f1stLOin              | 1st LO Oscillating<br>Frequency  | MHz   | 1616.8 | 1636.8  | 1656.8 |
| f1stIFIN              | 1st IF Input Frequency           | MHz   |        | 61.38   |        |
| f2ndLOin              | 2nd LO Input Frequency           | MHz   |        | 65.472  |        |
| f2ndIFin<br>f2ndIFout | 2nd IF Input/Output<br>Frequency | MHz   |        | 4.092   |        |
| fTCXOin<br>fTCXOout   | Reference Input/Output Frequency | MHz   |        | 16.368  |        |

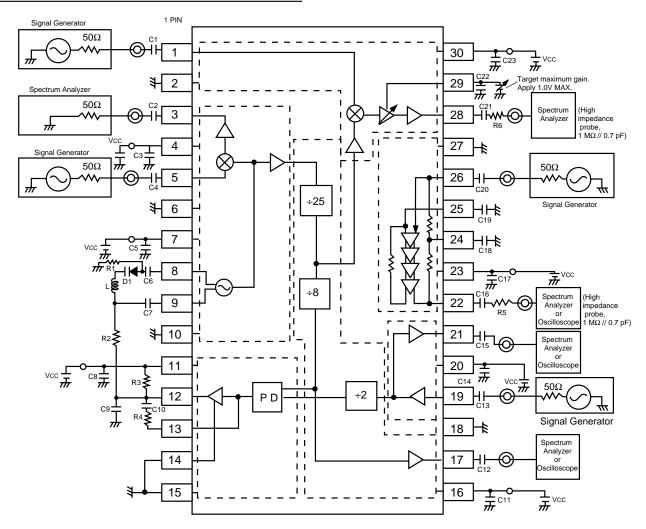
### **APPLICATION EXAMPLE**

#### **GPS Receiver RF Block**



Note: This diagram schematically shows only the UPB1005's internal functions on the system. This diagram does not represent the actual application circuit.

# **PIN FUNCTIONS**


| Pin No. | Symbol               | Applied<br>Voltage<br>(V)   | Pin<br>Voltage<br>(V)                      | Function and Application                                                                                                              | Internal Equivalent Circuit |
|---------|----------------------|-----------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 3       | RF MIXout            | _                           | 1.68                                       | Output pin of RF mixer. 1st IF filter must be inserted between pin 1 & 3.                                                             | 4<br>1st LO                 |
| 4       | Vcc (RF MIX)         | 2.7 to 3.3                  | _                                          | Supply voltage pin of RF mixer block. This pin must be decoupled with a capacitor (~1000 pF).                                         | -05C                        |
| 5       | RF MIXin             |                             | 1.20                                       | Input pin of RF mixer.<br>1 575.42 MHz band pass filter<br>must be inserted between pin 5 and<br>external LNA.                        |                             |
| 6       | GND (RF MIX)         | 0                           | _                                          | Ground pin of RF mixer.                                                                                                               |                             |
| 7       | Vcc<br>(1stLO-OSC)   | 2.7 to 3.3                  | _                                          | Supply voltage pin of differential amplifier for 1st LO oscillator circuit.                                                           | 7 VCC                       |
| 8       | 1stLO-OSC1           | _                           | 1.75                                       | Pins 8 & 9 are each base pins of<br>the differential amplifier for 1st LO                                                             | Prescaler                   |
| 9       | 1stLO-OSC2           | _                           | 1.75                                       | oscillator. These pins should be equipped with LC and varactor circuit to oscillate at 1636.8 MHz as VCO.                             | 8 9 1                       |
| 10      | GND<br>(1stLO-OSC)   | GND                         | _                                          | Ground pin of differential amplifier for 1st LO oscillator circuit.                                                                   | 10                          |
| 11      | Vcc (phase detector) | 2.7 to 3.3                  | _                                          | Supply voltage pin of phase detector and active loop filter.                                                                          |                             |
| 12      | PD-Vout3             | Pull-up<br>with<br>resistor | -                                          | Pins of active loop filter for tuning voltage output. The active transistors configured with                                          | (1)                         |
| 13      | PD-Vout2             | _                           | Output in accordance with phase difference | darlington pair are built on-chip. Pin 14 should be connected to ground. Pin 12 to 13 should be equipped with external RC in order to | 13<br>PD 12                 |
| 14      | PD-Vout1             | GND                         | -                                          | adjust damping factor and cutoff frequency. This tuning voltage output must be connected to varactor diode of 1st LO-OSC.             | 15 (14)                     |
| 15      | GND (phase detector) | GND                         | _                                          | Ground pin of phase detector and active loop filter.                                                                                  |                             |
| 16      | Vcc (divider block)  | 2.7 to 3.3                  | _                                          | Supply voltage pin of prescalers.                                                                                                     | 16 IF PD PD                 |
| 17      | LOout                |                             | 1.98                                       | Monitor pin of comparison frequency at phase detector.                                                                                | 1st LO                      |
| 18      | GND (divider block)  | GND                         | _                                          | Ground pin of prescalers and LOout amplifier.                                                                                         | ® Ref.                      |

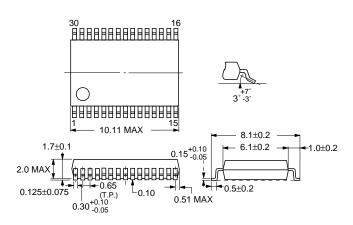
# **PIN FUNCTIONS**

| Pin No. | Symbol                | Applied<br>Voltage<br>(V) | Pin<br>Voltage<br>(V) | Function and Application                                                                                                                                                        | Internal Equivalent Circuit |
|---------|-----------------------|---------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 19      | REFin                 | _                         | 1.97                  | Input pin of reference frequency. This pin should be equipped with external TCXO of 16.368 MHz.                                                                                 | 20                          |
| 20      | Vcc (reference block) | 2.7 to 3.3                | _                     | Supply voltage pin of input/output amplifiers in reference block.                                                                                                               | (21)                        |
| 21      | REFout                | _                         | 1.75                  | Output pin of reference frequency. The frequency from pin 19 can be measured at 1 V <sub>p-p</sub> swing.                                                                       | (19) PD                     |
| 22      | 2ndlFout              | _                         | 1.65                  | Output pin of 2nd IF amplifier. This output is a 4.092 MHz clipped sinewave. This pin should be equipped with external inverter to adjust level to next stage on user's system. | (23)                        |
| 23      | Vcc<br>(2ndIF AMP)    | 2.7 to 3.3                | _                     | Supply voltage pin of 2nd IF amplifier.                                                                                                                                         | 24                          |
| 24      | 2ndIF bypass          | _                         | 2.25                  | Bypass pin of 2nd IF amplifier input 1. This pin should be grounded through a capacitor.                                                                                        | 22 22 25                    |
| 25      | 2ndlFin2              | _                         | 2.25                  | Pin of 2nd IF amplifier input 2. This pin should be grounded through capacitor.                                                                                                 |                             |
| 26      | 2ndlFin1              | _                         | 2.25                  | Pin of 2nd IF amplifier input 1. 2nd IF filter must be inserted between pins 26 & 28.                                                                                           | 27                          |
| 27      | GND<br>(2ndIF AMP)    | GND                       | _                     | Ground pin of 2nd IF amplifier.                                                                                                                                                 |                             |
| 28      | IF MIXout             | _                         | 1.80                  | Output pin from IF mixer. IF mixer output signal goes through gain control amplifier before this emitter follower output port.                                                  | (29)                        |
| 29      | Vgc (IF MIX)          | 0 to 3.3                  | _                     | Gain control voltage pin of IF mixer output amplifier. This voltage performs forward control (Vcc up→Gain down).                                                                |                             |
| 30      | Vcc (IF MIX)          | 2.7 to 3.3                | _                     | Supply voltage pin of IF mixer, gain control amplifier and emitter follower transistor.                                                                                         | 2nd LO 28                   |
| 1       | IF MIXin              | _                         | 1.18                  | Input pin of IF mixer.                                                                                                                                                          | 2                           |
| 2       | GND (IF MIX)          | 0                         |                       | Ground pin of IF mixer.                                                                                                                                                         |                             |

Note: Ground pattern on the board must be formed as wide as possible to minimize ground impedance.

# **TEST CIRCUIT**




NOTE: Spectrum Analyzer to measure frequency. Oscilloscope to measure voltage swing.

#### **COMPONENTS LIST**

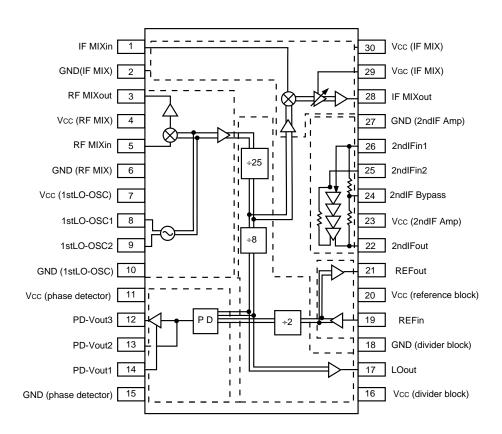
| FORM              | SYMBOL                                 | VALUE       |
|-------------------|----------------------------------------|-------------|
|                   | C1 to C5, C12, C13, C15, C17, C18, C22 | 1000 pF     |
|                   | C8, C11, C14, C23                      | 1 μF        |
| Chip Capacitor    | C6, C7                                 | 24 pF (NPO) |
|                   | C9                                     | 1800 pF     |
|                   | C19                                    | 9900 pF     |
|                   | C10                                    | 33 nF       |
| Ceramic capacitor | C16, C20                               | 0.1 μF      |
|                   | C21                                    | 0.01 μF     |
|                   | R1, R2                                 | 4.7 kΩ      |
| Chip Resistor     | R3                                     | 6.2 kΩ      |
|                   | R4                                     | 1.2 kΩ      |
|                   | R5, R6                                 | 1.95 kΩ     |
| Varactor Diode    | D1                                     | HVU12       |
| Chip Inductor     | L                                      | 2.7 nH      |
|                   |                                        |             |

#### **OUTLINE DIMENSIONS** (Units in mm)

#### Package Outline S30



#### Note:


Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

#### ORDERING INFORMATION

| Part Number  | Package             | Quantity and Form                                                                           |
|--------------|---------------------|---------------------------------------------------------------------------------------------|
| UPB1005GS-E1 | 30 Pin plastic SSOP | Embossed tape<br>16 mm wide.<br>Qty 2.5 kp/reel.<br>Pin 1 is in tape pull-out<br>direction. |

PRINTED IN USA ON RECYCLED PAPER -1/99

#### INTERNAL BLOCK DIAGRAM

