

MECHANICAL DATA

Dimensions in mm (inches)

**HIGH VOLTAGE, MEDIUM POWER, NPN
TRANSISTOR FOR HIGH RELIABILITY
APPLICATIONS**

FEATURES

- SILICON PLANAR EPITAXIAL NPN TRANSISTOR
- HERMETIC CERAMIC SURFACE MOUNT PACKAGE (SOT23 COMPATIBLE)
- CECC SCREENING OPTIONS
- SPACE QUALITY LEVELS OPTIONS
- HIGH VOLTAGE

APPLICATIONS:

Hermetically sealed surface mount version of the popular 2N3700 for high reliability / space applications requiring small size and low weight devices.

LCC1 CERAMIC PACKAGE

Underside View

PAD 1 – Emitter PAD 2 – Base PAD 3 – Collector

ABSOLUTE MAXIMUM RATINGS ($T_{case} = 25^\circ\text{C}$ unless otherwise stated)

V_{CBO}	Collector – Base Voltage ($I_E = 0$)	140V
V_{CEO}	Collector – Emitter Voltage ($I_B = 0$)	80V
V_{EBO}	Emitter – Base Voltage ($I_C = 0$)	7V
I_C	Collector Current	1A
P_D	Total Power Dissipation ($T_{amb} \leq 25^\circ\text{C}$)	0.5W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient	350°C/W
T_{stg}	Storage Temperature	–65 to 200°C

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^\circ C$ unless otherwise stated)

Parameter	Test Conditions	Min.	Typ.	Max.	Unit
I_{CBO} ($I_E = 0$)	$V_{CB} = 90V$			10	nA
	$V_{CB} = 90V \quad T_{amb} = 150^\circ C$			10	µA
I_{EBO}	$V_{EB} = 5V$			10	nA
$V_{CE(sat)*}$	$I_C = 150mA \quad I_B = 15mA$			0.2	V
	$I_C = 500mA \quad I_B = 50mA$			0.5	V
$V_{BE(sat)*}$	$I_C = 150mA \quad I_B = 15mA$			1.1	V
h_{FE}^* DC Current Gain ($V_{CE} = 10V$)	$I_C = 0.1mA$	50			-
	$I_C = 10mA$	90			-
	$I_C = 150mA$	100		300	-
	$I_C = 500mA$	50			-
	$I_C = 1A$	15			-
	$I_C = 150mA \quad T_{amb} = -55^\circ C$	40			-
$V_{(BR)CBO}$ ($I_E = 0$)	$I_C = 100\mu A$	140			V
$V_{(BR)EBO}$ ($I_C = 0$)	$I_E = 100\mu A$	7			V

* Pulse test $t_p = 300\mu s$, $\delta \leq 1\%$

DYNAMIC CHARACTERISTICS ($T_{case} = 25^\circ C$ unless otherwise stated)

Parameter	Test Conditions	Min.	Typ.	Max.	Unit
f_T Transition Frequency	$I_C = 50mA \quad V_{CE} = 10V \quad f = 20MHz$		100		MHz
h_{fe} Small Signal Current Gain	$I_C = 1mA \quad V_{CE} = 5V \quad f = 1kHz$	80		400	-
C_{EBO} Emitter-base Capacitance	$I_C = 0 \quad V_{EB} = 0.5V \quad f = 1MHz$		60		pF
C_{CBO} Collector-base Capacitance	$I_C = 0 \quad V_{CB} = 10V \quad f = 1MHz$		12		pF
$r_{bb}'C_{b'c}$ Feedback time constant	$I_C = 10mA \quad V_{CB} = 10V \quad f = 4MHz$	25		400	ps

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.