

INSULATED GATE BIPOLAR TRANSISTOR

$V_{CES} = 600V$
 $I_C = 30A, T_C = 100^\circ C$
 $T_{J(max)} = 175^\circ C$
 $V_{CE(on)} \text{ typ} = 1.65V @ I_C = 18A$

Applications

- Industrial Motor Drives
- Inverter
- UPS
- Welding

G	C	E
Gate	Collector	Emitter

Features	Benefits
Low $V_{CE(ON)}$ and switching losses	High efficiency in a wide range of applications and switching frequencies
Square RBSOA and maximum junction temperature $175^\circ C$	Improved reliability due to rugged hard switching performance and higher power capability
Positive $V_{CE(ON)}$ temperature coefficient	Excellent current sharing in parallel operation
5μs short circuit SOA	Enables short circuit protection scheme
Lead-free, RoHS compliant	Environmentally friendly

Base part number	Package Type	Standard Pack		Orderable part number
		Form	Quantity	
IRGC4630B	Wafer	Wafer	1	IRGC4630B

Mechanical Parameters

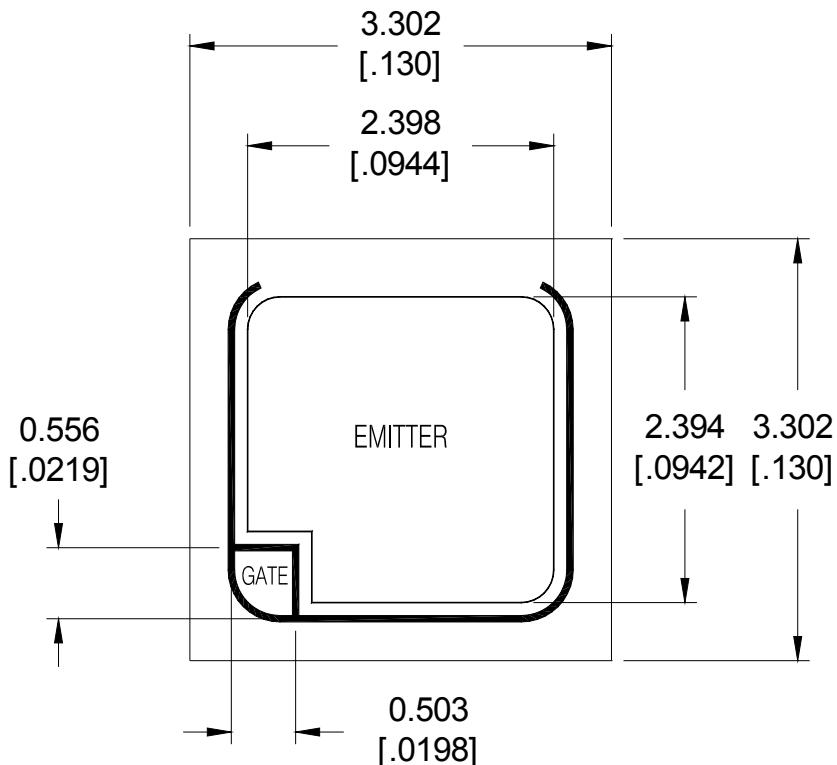
Die Size	3.302 x 3.302	mm ²
Minimum Street Width	75	μm
Emiter Pad Size (Included Gate Pad)	See Die Drawing	
Gate Pad Size	0.5 x 0.6	mm ²
Area Total / Active	10.9 / 6.4	
Thickness	70	μm
Wafer Size	150	mm
Notch Position	0	Degrees
Maximum-Possible Chips per Wafer	1408pcs.	
Passivation Front side	Silicon Nitride	
Front Metal	Al, Si (4μm)	
Backside Metal	Al (1kA°), Ti (1kA°), Ni (4kA°), Ag (6kA°)	
Die Bond	Electrically conductive epoxy or solder	
Reject Ink Dot Size	0.25 mm diameter minimum	

Maximum Ratings

	Parameter	Max.	Units
V_{CE}	Collector-Emitter Voltage, $T_J=25^\circ C$	600	V
I_C	DC Collector Current	①	A
I_{LM}	Clamped Inductive Load Current ④	72	A
V_{GE}	Gate Emitter Voltage	± 20	V
T_J, T_{STG}	Operating Junction and Storage Temperature	-40 to +175	°C

Static Characteristics (Tested on wafers) . $T_J=25^\circ C$

	Parameter	Min.	Typ.	Max.	Units	Conditions
$V_{(BR)CES}$	Collector-to-Emitter Breakdown Voltage	600	—	—	V	$V_{GE} = 0V, I_C = 100\mu A$ ⑤
$V_{CE(sat)}$	Collector-to-Emitter Saturated Voltage	—	1.1	1.325		$V_{GE} = 15V, I_C = 5A, T_J = 25^\circ C$
$V_{GE(th)}$	Gate-Emitter Threshold Voltage	4.0	—	6.5		$I_C = 500\mu A, V_{GE} = V_{CE}$
I_{CES}	Zero Gate Voltage Collector Current	—	2.0	25	μA	$V_{CE} = 600V, V_{GE} = 0V$
I_{GES}	Gate Emitter Leakage Current	—	—	± 100	nA	$V_{CE} = 0V, V_{GE} = \pm 20V$


Electrical Characteristics (Not subject to production test- Verified by design/characterization)

	Parameter	Min.	Typ.	Max.	Units	Conditions
$V_{CE(sat)}$	Collector-to-Emitter Saturated Voltage	—	1.65	1.95	V	$V_{GE} = 15V, I_C = 18A, T_J = 25^\circ C$
		—	2.15	—		$V_{GE} = 15V, I_C = 18A, T_J = 175^\circ C$
SCSOA	Short Circuit Safe Operating Area	5	—	—	μs	$V_{GE}=15V, V_{CC}=400V, ②$ $R_G=22\Omega, V_P \leq 600V, T_J=150^\circ C$
RBSOA	Reverse Bias Safe Operating Area	FULL SQUARE				$T_J = 175^\circ C, I_C = 72A$ $V_{CC} = 480V, V_P \leq 600V$ $Rg = 22\Omega, V_{GE} = +20V \text{ to } 0V$
C_{iss}	Input Capacitance	—	1043	—		$V_{GE} = 0V$
C_{oss}	Output Capacitance	—	87	—		$V_{CE} = 30V$
C_{rss}	Reverse Transfer Capacitance	—	32	—		$f = 1.0MHz$
Q_g	Total Gate Charge (turn-on)	—	35	—		$I_C = 18A$ ⑥
Q_{ge}	Gate-to-Emitter Charge (turn-on)	—	10	—		$V_{GE} = 15V$
Q_{gc}	Gate-to-Collector Charge (turn-on)	—	15	—		$V_{CC} = 400V$

Switching Characteristics (Inductive Load-Not subject to production test-Verified by design/characterization)

	Parameter	Min.	Typ.	Max.	Units	Conditions ③
$t_{d(on)}$	Turn-On delay time	—	40	—	ns	$I_C = 18A, V_{CC} = 400V$
t_r	Rise time	—	25	—		$R_G = 22\Omega, V_{GE}=15V, L=200\mu H$
$t_{d(off)}$	Turn-Off delay time	—	105	—		$T_J = 25^\circ C$
t_f	Fall time	—	25	—		
$t_{d(on)}$	Turn-On delay time	—	40	—		$I_C = 18A, V_{CC} = 400V$
t_r	Rise time	—	25	—		$R_G = 22\Omega, V_{GE}=15V, L = 200\mu H$
$t_{d(off)}$	Turn-Off delay time	—	120	—		$T_J = 175^\circ C$
t_f	Fall time	—	40	—		

Die Drawing

NOTES:

1. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
2. CONTROLLING DIMENSION: [INCH].
3. LETTER DESIGNATION:
S = SOURCE SK = SOURCE KELVIN E = Emitter
G = GATE IS = CURRENTSENSE
4. DIMENSIONAL TOLERANCES:
BONDING PADS: < 0.635 TOLERANCE = +/- 0.013
WIDTH < [.0250] TOLERANCE = +/- [.0005]
& > 0.635 TOLERANCE = +/- 0.025
LENGTH > [.0250] TOLERANCE = +/- [.0010]

OVERALL DIE: < 1.270 TOLERANCE = +/- 0.102
WIDTH < [.050] TOLERANCE = +/- [.004]
& > 1.270 TOLERANCE = +/- 0.203
LENGTH > [.050] TOLERANCE = +/- [.008]
5. DIE THICKNESS = 0.070 [.0028] TOL: = 0.007 [.0003]

Notes:

- ① The current in the application is limited by $T_{J\text{Max}}$ and the thermal properties of the assembly.
- ② Not subject to production test- Verified by design / characterization.
- ③ Values influenced by parasitic L and C in measurement.
- ④ $V_{CC} = 80\%$ (V_{CES}), $V_{GE} = 20V$, $L = 200\mu\text{H}$, $R_G = 22\Omega$.
- ⑤ Refer to AN-1086 for guidelines for measuring $V_{(BR)CES}$ safely
- ⑥ Die Level Characterization.

Additional Testing and Screening

For Customers requiring product supplied as Known Good Die (KGD) or requiring specific die level testing, please contact your local IR Sales.

Shipping

Sawn Wafer on Film. Please contact your local IR sales office for non- standard shipping options

Handling

- Product must be handled only at ESD safe workstations. Standard ESD precautions and safe work environments are as defined in MIL-HDBK-263.
- Product must be handled only in a class 10,000 or better-designated clean room environment.
- Singulated die are not to be handled with tweezers. A vacuum wand with a non-metallic ESD protected tip should be used.

Wafer/Die Storage

- Proper storage conditions are necessary to prevent product contamination and/or degradation after shipment.
- Note: To reduce the risk of contamination or degradation, it is recommended that product not being used in the assembly process be returned to their original containers and resealed with a vacuum seal process.
- Sawn wafers on a film frame are intended for immediate use and have a limited shelf life.

Further Information

For further information please contact your local IR Sales office or email your enquiry to <http://die.irf.com>

Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR's Web site.

International
 Rectifier

IR WORLD HEADQUARTERS: 101N. Sepulveda Blvd, El Segundo, California 90245, USA

Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.