

POWER RESISTOR - PR01

FEATURES

- · Metal film technology
- High power in small package
- High stability, reliability and uniformity characteristics
- Good performance for pulse applications
- Different leads for different applications
- Various forming styles are available
- Defined interruption behavior (fusing time)
- Non-flammable
- Various packing and taping configurations

MARKET SEGMENTS AND APPLICATIONS

INDUSTRY SECTOR	APPLICATION SEGMENT	END-USER EQUIPMENT	
Industrial	Power	Power supplies Motor speed controls	
Telecom	Data Communication	Line protection resistor Power supplies	
_	Sound & Vision	Amplifiers Television, Color monitor Video cassette recorder	
Consumer	Kitchen Appliances	Blender	
	Lighting	Ballast equipment	
Automotive	Electronic Systems	Dashboard electronics Lighting equipment Window / mirror steering ABS system, Alarm system, Airbag Electronic fuel injection	

PR01

Phoenix Passive Components

TECHNOLOGY

A homogeneous film of metal alloy is deposited on a high-grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting wires of electrolytic copper or copper-clad iron are welded to the end-caps. The resistors are coated with a red, non-flammable lacquer, which provides electrical, mechanical and climatic protection. The encapsulation is resistant to all cleaning solvents in accordance with MIL-STD-202, method 215 and IEC 60068-2-45.

QUICK REFERENCE DATA

DESCRIPTION	PR01 ±5% (E24 series)	PR01 ±1% (E24/E96 series)			
	Cu / Fe	Cu lead			
Resistance range	0.22 Ω - 1 ΜΩ	1 Ω - 1 ΜΩ			
Maximum dissipation at T _{amb} = 70 °C	1	W			
Thermal resistance (R _{th})	135 K/W				
Limiting voltage (DC or RMS)	350 V				
Rated voltage (1)	√Pn	хR			
Temperature coefficient	±250 p	ppm/°C			
Basic specification	IEC 60115-1	and 60115-4			
Climatic category (IEC 60068)	55/1	55/56			
Stability ΔR/R _{max} after:					
Load	±5% + 0.1 Ω	±1% + 0.1 Ω			
Climatic tests	±3% + 0.1 Ω	±1% + 0.1 Ω			
Resistance to soldering heat	$\pm 1\% + 0.05 \Omega$ $\pm 0.5\% + 0.05 \Omega$				

⁽¹⁾ Maximum rated voltage is the limiting voltage

MECHANICAL DATA

AXIAL STYLE



Table 1. Mechanical Data.

PRODUCT	A	L1 max	L2 max	ØD max	B1-B2 max	Ød	s	WEIGHT gr/100 pcs
PR01	52.0 + 1.5 / - 0.0 (2.05 + 0.06 / - 0.00)	6.5 (0.26)	8.5 (0.34)	2.5 (0.10)	1.2 (0.05)	0.58 ±0.05 Cu (0.023 ±0.002 Cu)	5.0 ±0.1 (0.20 ±0.01)	24.0

Dimensions unless specified in mm (inches)

MOUNTING

The resistors are suitable for processing on automatic insertion equipment, cutting and bending machines. A radial taped version economizes space on the PCB. The double kink style offers great advantages for manual insertion improving the mounting stability for the customer. They have a real snap in function to fix the resistor in PCB without weakening the connecting leads.

ELECTRICAL CHARACTERISTICS

DERATING

The power that the resistor can dissipate depends on the operating temperature.

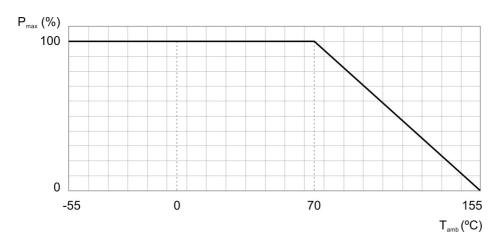


Fig. 2. Maximum dissipation (P_{max}) in percentage of rated power as a function of ambient temperature (T_{amb})

APPLICATION INFORMATION

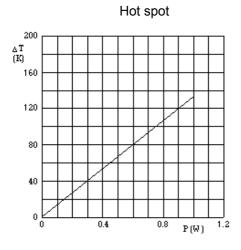


Fig. 3. $~\phi$ 0.58 mm Cu - leads Hot spot temperature rise ($\Delta T)$ as a function of dissipated power

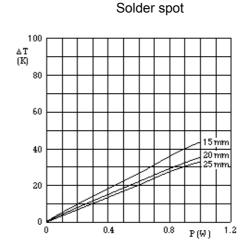


Fig. 4. ϕ 0.58 mm Cu - leads Minimum distance from resistor body to PCB =1mm Temperature rise (Δ T) at the lead end (solder spot) as a function of dissipated power at various leads lengths after mounting

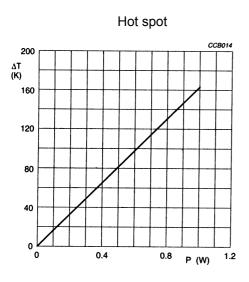


Fig. 5. ϕ 0.60 mm FeCu - leads Hot spot temperature rise (Δ T) as a function of dissipated power (preformed types only)

Solder spot **CCB015** **CCB

Fig. 6. ϕ 0.60 mm FeCu - leads Minimum distance from resistor body to PCB =1mm Temperature rise (Δ T) at the lead end (solder spot) as a function of dissipated power at various leads lengths after mounting (preformed types only)

Note: The maximum permissible hot spot temperature is 205 °C

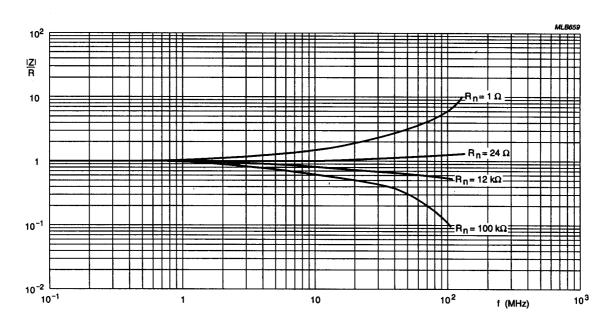


Fig. 7. Impedance as a function of applied frequency

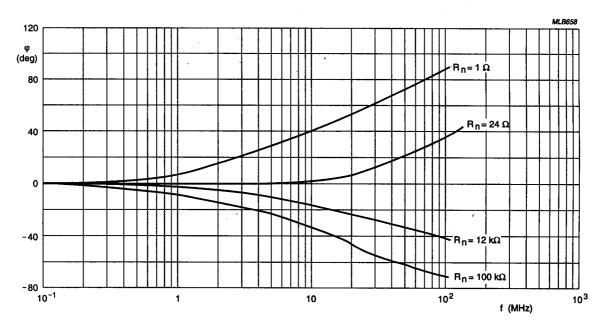


Fig. 8. Phase angle as a function applied frequency

PULSE LOADING CAPABILITIES

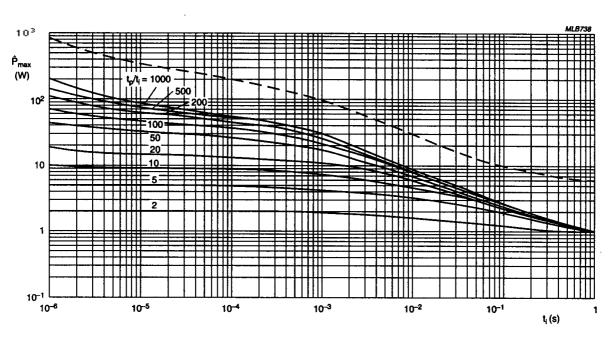


Fig. 9. Pulse on a regular basis, maximum permissible peak pulse power (^P_{max}) as a function of pulse duration (ti)

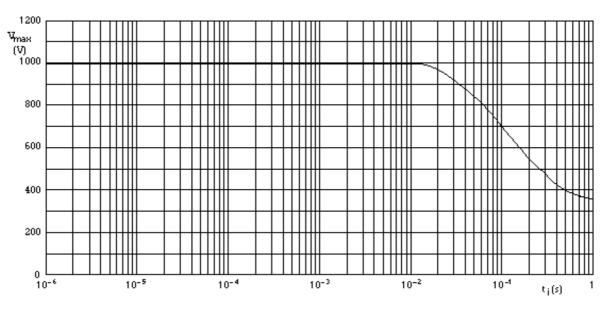


Fig. 10. Pulse on a regular basis, maximum permissible peak pulse voltage (^V_{max}) as a function of pulse duration (ti)

INTERRUPTION CHARACTERISTICS

The graphs are based on measured data under constant voltage conditions; these data may deviate according to the application.

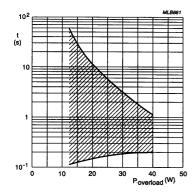


Fig. 11. Time to interruption as a function of overload power for range: 0R22 ≤ Rn < 1R

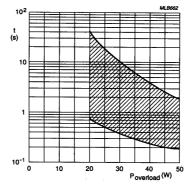


Fig. 12. Time to interruption as a function of overload power for range: $1R \le Rn < 15R$

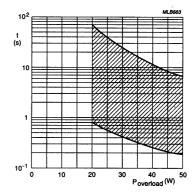


Fig. 13. Time to interruption as a function of overload power for range: $16R \le Rn < 560R$

Phoenix Passive Components

MARKING

The nominal resistance and tolerance are marked on the resistor using four or five colored bands in accordance with IEC publication 60062 "color code for fixed resistors". Standard values of nominal resistance are taken from the E24/E96 series for resistors with a tolerance of $\pm 5\%$ or $\pm 1\%$. The values of the E24/E96 series are in accordance with IEC publication 60063.

ORDERING INFORMATION

Table 2. Ordering code.

LEAD Ø	TOLERANCE	TAPING	QUANTITY (pcs)	PACKAGING	ORDERING CODE	
	±1%			5000	REEL	2306 191 5xxxx
		52.0 (2.05)	0000	AMMOPACK	2322 196 1xxxx	
0.58 Cu			1000	AMMOPACK	2306 191 2xxx	
(0.023)	±5%			AMMOPACK	2306 197 53xxx	
				AMMOPACK	2322 193 14xxx	
			3300	REEL	2306 197 23xxx	

Dimensions unless specified in mm (inches)
Check "Formed leads" specifications to see related part-numbers

The resistors have a 12 digit ordering code starting with 2306 or 2322.

The next 5 digits indicate the resistor type and packaging see table 2.

For 5% tolerance the last 3 digits indicate the resistance value:

- The first 2 digits indicate the resistance value;
- The last digit indicates the resistance decade in accordance with table 3.

For 1% tolerance the last 4 digits indicate the resistance value:

- The first 3 digits indicate the resistance value;
- The last digit indicates the resistance decade in accordance with table 3.

Phoenix Passive Components

Table 3. Last digit of ordering code.

RESISTANCE DECADE (5%)	RESISTANCE DECADE (1%)	LAST DIGIT
0.22 - 0.91 Ω	-	7
1 – 9.1 Ω	1 - 9.76 Ω	8
10 - 91 Ω	10 - 97.6 Ω	9
100 - 910 Ω	100 - 976 Ω	1
1 – 9.1 kΩ	1 - 9.76 kΩ	2
10 - 91 kΩ	10 - 97.6 kΩ	3
100 - 910 kΩ	100 - 976 kΩ	4
1 ΜΩ	1 ΜΩ	5

Example:

PR01, 150 Ω , ±5%, ammopack 1000 pcs is **2306 197 53151**

NAFTA ORDERING INFORMATION

Table 4. NAFTA ordering code.

LEAD Ø	TOLERANCE	TAPING	QUANTITY (pcs)	PACKAGING	NAFTA ORDERING CODE		
	±5% ±1%		5000	REEL	5073NWxxxxxJ12AFX		
		52.0 (2.05)	1000	AMMOPACK	5073NWxxxxxJA8AFX		
0.58 Cu					5000	AMMOPACK	5073NWxxxxxJ18AFX
(0.023)			5000	AMMOPACK	5073NWxxxxxF18AF5		
			1000	AMMOPACK	5073NWxxxxxFA8AF5		
			5000	REEL	5073NWxxxxxF12AF5		

Dimensions unless specified in mm (inches)

The ohmic value in the NAFTA ordering code (see table 4) is represented by the "xxxxx" in the middle of the above ordering code. Table 5 gives some examples how to use these 5 digits.

Table 5. Examples of the ohmic value.

VALUE	5 DIGITS
1 Ω	1R000
10 Ω	10R00
100 Ω	100R0
1 kΩ	1K000
10 kΩ	10K00
100 kΩ	100K0
1 ΜΩ	1M000

PACKAGING

TAPE IN AMMOPACK

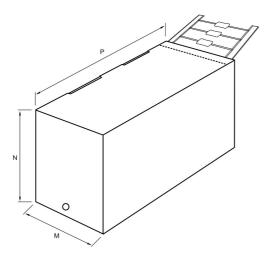


Table 6. Ammopack.

PRODUCT	TAPING	М	N	Р	QUANTITY (pcs)
PR01	52.0 + 1.5 / - 0.0 (2.05 + 0.06 / - 0.00)	82 (3.3)	28 (1.2)	262 (10.4)	1000
PR01	52.0 + 1.5 / - 0.0 (2.05 + 0.06 / - 0.00)	78 (3.1)	100 (4.0)	260 (10.3)	5000

Dimensions unless specified in mm (inches)

TAPE ON REEL

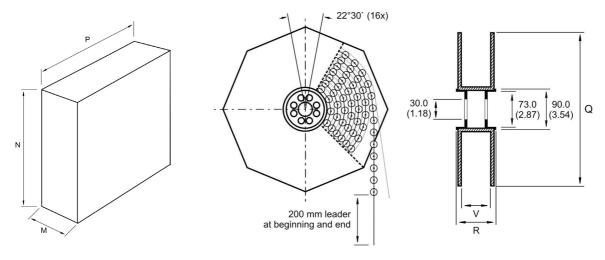


Table 7. Reel.

PRODUCT	TAPING	М	N	Р	Q	V	R	QTY pcs
PR01	52.0 + 1.5 / - 0.0 (2.05 + 0.06 / - 0.00)	92 (3.7)	311 (12.3)	311 (12.3)	305 (12.1)	75 (3.0)	86 (3.4)	5000

Dimensions unless specified in mm (inches)

TESTS AND REQUIREMENTS

Essentially all tests are carried out in accordance to the schedule of IEC publications 60115 – 1, category 55/155/56 (rated temperature range - 55 to +155 °C; damp heat, long term, 56 days and along the lines of IEC publications 60068-2); "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmosphere conditions according to IEC 60068-1 subclause 5.3, unless otherwise specified.

In some instances deviations from IEC applications were necessary for our method specified.

Table 8. Test and requirements.

IEC 60115-1	IEC 60068-2	TEST	PROCEDURE	TEST PROCEDURE REQUIRE		EMENTS
CLAUSE TEST METHOD			PR01 5%	PR01 1%		
4.6.1.1	-	Insulation resistance	500 V (DC) during 1 minute; V-block method.	$R_{insmin}10^4M\Omega$		

	1		 	
IEC 60068-2	TEST	PROCEDURE	REQUIR	EMENTS
METHOD			PR01 5%	PR01 1%
-	Voltage proof on insulation	500 V (RMS) during 1 minute, V-block method.		akdown shover
-	Temperature coefficient	Between - 55 °C and + 155 °C	±250 դ	ppm/°C
21(U)	Robustness of terminations:			
21(Ua1)	Tensile all samples	Load 10 N, 10s		
21(Ub)	Bending half number of samples	Load 5 N, 4 X 90°		amage 5% + 0.05 Ω
21(Uc)	Torsion other half of samples	3 x 360° in opposite directions		
20(Ta)	Solderability (after ageing)	16 h 155 °C; immersed in flux 600, leads immersed 2 mm for 2 ±0.5 s in a solder bath at 235 ±5 °C	Good tinning (≥ 95% covered) No damage	
20(Tb)	Resistance to soldering heat	Thermal shock: 3 s; 350 ±10 °C; 6 mm from body	Δ R/R _{max} \pm 1% + 0.05 Ω	Δ R/R _{max} $\pm 0.5\% + 0.05 \Omega$
14(Na)	Rapid change of	30 minutes at - 55 °C and	No visua	l damage
	temperature	5 cycles	Δ R/R _{max} ±1% + 0.05 Ω	$\Delta R/R_{max}$ $\pm 0.5\% + 0.05 \Omega$
6(Fc)	Vibration	Frequency 10 to 500 Hz, displacement 1.5mm or acceleration 10g; three directions; total 6 hours (3 x 2 h)	No damage $\Delta R/R_{max} \pm 0.5\% \pm 0.05 \Omega$	
	Climatic sequence:			
2(Ba)	Dry heat	16 h; 155 °C		
30(Db)	Damp heat (accelerated) 1 st cvcle	24 h; 25 °C to 55 °C; 90 to 100% RH	$R_{\text{ins min}} 10^3 M\Omega$	
1(Aa)	Cold	2 h; - 55 °C		
30(Db)	Damp heat (accelerated) remaining cycles	5 days; 25 °C to 55 °C; 90to 100% R.H.	Δ R/R _{max} $\pm 3\% + 0.05 \Omega$	Δ R/R _{max} \pm 1% + 0.05 Ω
	60068-2 TEST METHOD 21(U) 21(Ua1) 21(Ub) 21(Uc) 20(Ta) 14(Na) 6(Fc) 2(Ba) 30(Db) 1(Aa)	FEST METHOD - Voltage proof on insulation - Temperature coefficient 21(U) Robustness of terminations: 21(Ua1) Tensile all samples 21(Ub) Bending half number of samples 21(Uc) Torsion other half of samples 20(Ta) Solderability (after ageing) 20(Tb) Resistance to soldering heat 14(Na) Rapid change of temperature 6(Fc) Vibration Climatic sequence: 2(Ba) Dry heat 30(Db) Damp heat (accelerated) 1st cycle 1(Aa) Cold 30(Db) Damp heat (accelerated)	FEST METHOD TEST SOLUTION To Voltage proof on insulation Temperature coefficient Torsion other half of samples Temperature coefficient Torsion other half of 155 °C; immersed in flux coofficient coefficient Temperature coefficient To 4 th 155 °C coefficient Temperature coefficient Temperature coefficient Temperature coefficient Temperature coefficient Temperature coefficient To 4 th 155 °C coefficient Temperature coefficien	TEST PROCEDURE PR01 5%

IEC 60115-1	IEC 60068-2	TEST	PROCEDURE	REQUIR	EMENTS
CLAUSE	TEST METHOD			PR01 5%	PR01 1%
4.24	3(Ca)	Damp heat	56 days; 40 °C; 90 to 95% R.H.	$R_{\text{ins min}} 10^3 M\Omega$	
		(steady state)	loaded with 0.01Pff	Δ R/R _{max} ±3% + 0.05 Ω	$\Delta R/R_{max}$ ±1% + 0.05 Ω
4.25.1	-	Endurance (at 70 °C)	1000 h loaded with Pn or V _{max} 1.5 h ON and 0.5 h OFF	Δ R/R _{max} \pm 5% + 0.05 Ω	Δ R/R _{max} ±1% + 0.05 Ω
4.29	45(Xa)	Component solvent resistance	Isopropyl alcohol followed by brushing in accordance with MIL STD 202	No visible damage	
	mendment to 60115-1	Pulse Load		See figs. 9 and 10	