

October 2010

FSLV16211 — 24-Bit Bus Switch

Features

- 5Ω Switch Connection between Two Ports
- Minimal Propagation Delay through the Switch
- Low I_{CC}
- Zero Bounce in Flow-Through Mode
- Packaged in Thin-Shrink Small Outline Package (TSSOP)

Description

The FSLV16211 is a 24-bit, high-speed, low-voltage bus switch. The low on resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

This design can be used as a 12- or 24-bit bus switch. When /OE1 is LOW, port 1A is connected to Port 1B. When /OE2 is LOW, port 2A is connected to Port 2B.

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
FSLV16211MTDX	-40°C to 85°C	56-Lead, Thin Shrink Small Outline Package (TSSOP), JEDEC M0-153, 6.1mm Wide	Tape and Reel

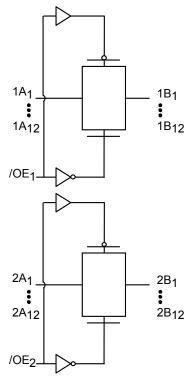


Figure 1. Logic Diagram

Connection Diagram

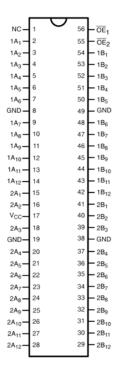


Figure 2. Pin Assignments for TSSOP (Top Through View)

Pin Description

Pin Name	Description
\overline{OE}_1 , \overline{OE}_2	Bus Switch Enables
1A, 2A	Bus A
1B, 2B	Bus B
NC	No Connect

Truth Table

Inp	uts	Inputs/0	Outputs
OE ₁	OE ₂	1A,1B	2A, 2B
Low	Low	1A=1B	2A=2B
Low	High	1A=1B	Z
High	Low	Z	2A=2B
High	High	Z	Z

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	-0.5	4.6	V
Vs	DC Switch Voltage ⁽¹⁾	-0.5	4.6	V
V _{IN}	DC Input Voltage	-0.5	4.6	V
I _{IK}	DC Input Diode Current		-50	mA
I _{OUT}	DC Output Sink Current		128	mA
I _{CC} /I _{GNG}	DC V _{CC} /GND Current		±100	mA
T _{STG}	Storage Temperature Range	-65	150	°C

Note:

 The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings. (2)

Symbol	Parameter		Min.	Max.	Unit
V _{CC}	Power Supply Operating Voltage		2.3	3.6	V
V _{IN}	Input Voltage		0	3.6	V
V_{OUT}	Output Voltage		0	3.6	V
+ +	In and Discount Fall Time	Switch Control Input	0	4.0	ns/V
t _r , t _f Input Rise and Fall Time	Switch I/O	0	DC	ns/V	
T _A	Free Air Operating Temperature		-40	85	°C

Note:

2. Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

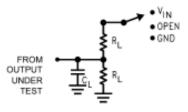
Not all conditions may appear on all switch types.

Symbol	Parameter	Conditions	V _{cc}	T _A = -40°C to +85°C			11:4
Symbol		Conditions	(V)	Min.	Тур.	Max.	Unit
V _{IK}	Clamp Diode Voltage	I _{IN} = -18mA	3.0			-1.2	V
V _{IH}	HIGH Level Control Input Voltage		2.3-2.7 2.7-3.6	1.7 2.0			V
V _{IL}	LOW Level Control Input Voltage		2.3-2.7 2.7-3.6			0.7	V
	<u> </u>	Force V _I = 3.6V, I _{OUT} = 0.0A	2.3			10	_
IL	Input Leakage Current	Force V _I = 3.6V	0.0			10	μΑ
		$0 \leq \ V_{IN} \leq \ 3.6 V$	3.6			1	
I _{CC}	Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0A$	3.6			10	μΑ
Δlcc	Increase in I _{CC} per Input	One Input at 3V Other Inputs at V _{CC} or GND	3.6			300	μΑ
l _{OZ}	Off-State Leakage	0.0 ≤ A, B ≤ 3.6V	3.6	-1		1	μΑ
		I _{IN} = 64mA, V _I = 0.0V	3.0		5	7	
		$I_{IN} = 30 \text{mA}, V_I = 0.0 \text{V}$	3.0		5	7	
		$I_{IN} = 15mA, V_I = 2.4V$	3.0		10	15	
Ron	Switch On Resistance	$I_{IN} = 15mA, V_I = 3.0V$	2.3			20	Ω
NON	Owiton On Nesistance	$I_{IN} = 64mA, V_I = 0.0V$	2.3		5	8	
		$I_{IN} = 30 \text{mA}, V_I = 0.0 \text{V}$	2.3		5	8	
		$I_{IN} = 15 \text{mA}, V_I = 1.7 \text{V}$	2.3		10	15	
		$I_{IN} = 15mA, V_I = 2.0V$	2.3			20	

AC Electrical Characteristics

0		T _A =-40°C to +85°C		T _A =40°C	- Unit	
	Dovernator	C _L =30pF, R _L =500Ω		C _L =50pF, R _L =500Ω		
Symbol	Parameter	$V_{CC} = 2.5V \pm 0.20V$		$V_{CC} = 3.3V \pm 0.30V$		
		Min.	Max.	Min.	Max.	
t _{PHL} , t _{PLH}	Propagation Delay ⁽³⁾		0.15		0.25	ns
t _{PHZ} , t _{PLZ}	Enable Time	0.5	4.7	1.0	7.0	ns
t_{PZH} , t_{PZL}	Disable Time	0.5	5.1	1.0	5.5	ns

Note:


3. This parameter is guaranteed by design, but is not production tested. The bus switch contributes no propagation delay other than the RC delay of the typical on resistance of the switch and the load capacitance when driven by an ideal voltage source (zero output impedance).

Capacitance

 $T_A = +25$ °C, f = 1MHz, unless otherwise noted. Capacitance is characterized, but not production tested.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
C _{IN}	Control Pin Input Capacitance	V _{CC} – 3.3V		4.5		pF
C _{I/O}	Input/Output Capacitance	V _{CC} , /OE= 3.3V		18		pF

AC Loading Waveforms

 TEST
 SWITCH

 t_{PD}
 Open

 t_{PLZ}/t_{PZL}
 V_{IN}

 t_{PHZ}/t_{PZH}
 GND

Note: C_L includes load and stray capacitance Note: Input PRR = 1.0 MHz, t_W = 500 ns

Figure 3. AC Test Circuit

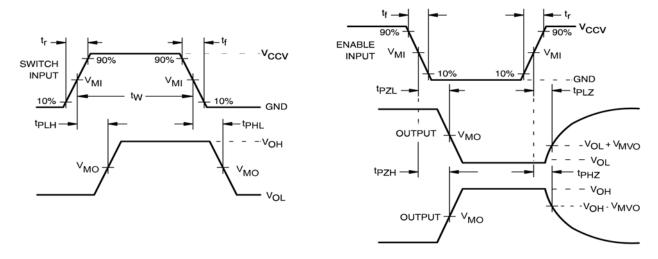


Figure 4. AC Waveforms

	V _{cc}				
Symbol	3.3V ± 0.3V	2.5V ± 0.2V			
V _{MI}	1.5V	V _{CC} /2			
V _{MO}	1.5V	V _{CC} /2			
V _{MVO}	0.3V	0.15V			
V _{IN}	6.0V	2 x V _{CC}			
V _{CCV}	3.0V	Vcc			
t _r /t _f	2ns	2.5ns			

Physical Dimensions Α 14.00±0.10 0.15 TYP В 8.10 4.05 28 0.2 C B A 23 28 ALL LEAD TIPS PIN #1 IDENT. 0.30 0.50 LAND PATTERN RECOMMENDATION REFERENCE TSSOP50P810X120-56N □ 0.1 C SEE DETAIL A 1.1 MAX ALL LEAD TIPS -C-0.09-0.20 0.10±0.05 0.17-0.27 0.50 ⊕ 0.10M A BS CS 12.00° TOP & BOTTOM NOTES: R0.16 GAGE PLANE A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION EE, $_{\rm R0.31}$ REF NOTE 6, DATE 10/97. 0.25 B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. SEATING PLANE D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982. 0.60±0.10 1.00 E. DRAWING FILE NAME: MTD56REV3 MTD56REV3 DETAIL A

Figure 5. 56-Lead Thin-Shrink Small Outline Package (TSSOP), JEDEC MO153, 6.1mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

F-PFS™ AccuPower™ Auto-SPM™ FRFFT® Global Power ResourceSM Build it Now™ CorePLUS™ Green FPS™ CorePOWER™ Green FPS™ e-Series™ CROSSVOLT™ G*max*™ CTL™ GTO™ Current Transfer Logic™ IntelliMAX™ DEUXPEED⁶ ISOPLANAR™ Dual Cool™ MegaBuck™ EcoSPARK® MICROCOUPLER™

EfficientMa×™ MicroFET™ ESBC™ MicroPak™ ® MicroPak2™ MillerDrive™ Fairchild® MotionMa×™ Fairchild Semiconductor® Motion-SPM™ FACT Quiet Series™ OptoHiT™ FACT® OPTOLOGIC® FAST® OPTOPLANAR® FastvCore™

FETBench™ FlashWriter®* FPS™ Power-SPM™ PowerTrench[©] PowerXS™

Programmable Active Droop™

QFET®
QS™
Quiet Series™
RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMaxTM
SMART STARTTM
SPM[®]
STEALTHTM
SuperFEOTTM
SuperSOTTM
SuperSOTTM
SuperSOTTM

SuperSOT**-3
SuperSOT**-8
SuperSOT**-8
SupreMOS*
SyncFET**
Sync-Lock**

SYSTEM ®*

GENERAL

The Power Franchise®

the Liver The Company of the Company of

TinyBoost™
TinyBoost™
TinyCalc™
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPower™
TinyPWM™
TinyWire™

TriFault Detect**
TRUECURRENT***

µSerDes**

UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

PDP SPM™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SECRETIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 150

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.