QUAD HIGH-CURRENT DARLINGTON SWITCHES

These quad Darlington arrays are designed to serve as interface between low-level logic and peripheral power devices such as solenoids, motors, incandescent displays, heaters, and similar loads of up to 320 W per channel. Both integrated circuits include transient-suppression diodes that enable use with inductive loads. The input logic is compatible with most TTL, DTL, LSTTL, and 5 V CMOS logic.

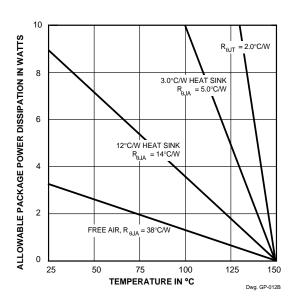
Type UDN2878W and UDN2879W 4 A arrays are identical except for output-voltage ratings. The former is rated for operation to 50 V (35 V sustaining), while the latter has a minimum output breakdown rating of 80 V (50 V sustaining). The lower-cost UDN2879W-2 is recommended for applications requiring load currents of 3 A or less. These less expensive devices are identical to the basic parts except for the maximum allowable load-current rating.

For maximum power-handling capability, all drivers are supplied in a 12-pin single in-line power-tab package. The tab needs no insulation. External heat sinks are usually required for proper operation of these devices.

FEATURES

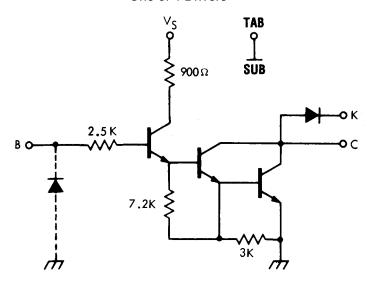
- Output Currents to 4 A
- Output Voltages to 80 V
- Loads to 1280 W
- TTL, DTL, or CMOS Compatible Inputs
- Internal Clamp Diodes
- Plastic Single In-Line Package
- Heat-Sink Tab

Dwg. No. A-11,974


ABSOLUTE MAXIMUM RATINGS at +25°C Free-Air Temperature for any driver (unless otherwise noted)

Output Voltage, V _{CEX} (UDN2878W)	
Output Current, I _C (UDN2878W & UDN2879W)	5.0 A
(UDN2879W-2)	4.0 A
Input Voltage, V _{IN}	15 V
Input Current, I _{IN}	25 mA
Supply Voltage, V _S	10 V
Total Package Power Dissipation,	
P _D See	Graph
Operating Ambient Temperature Rang	
T _A 20°C to	+85°C
Storage Temperature Range,	
T _S 55°C to +	-150°C

Always order by complete part number:

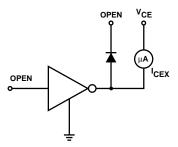

Part Number	Max. I _C	Max. V _{CEX}	Min. V _{CE (sus)}
UDN2878W	5.0 A	50 V	35 V
UDN2879W	5.0 A	80 V	50 V
UDN2879W-2	4.0 A	80 V	50 V

PARTIAL SCHEMATIC

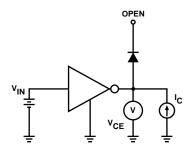
One of 4 Drivers

Dwg. No. A-12,037

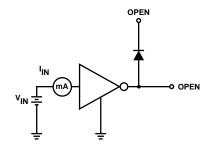
NOTE: Pin 3 must be connected to ground for proper operation.



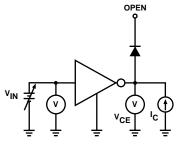
ELECTRICAL CHARACTERISTICS at $V_S = 5.0 \text{ V}$, $T_A = +25^{\circ}\text{C}$ (unless otherwise noted).


		Test	Applicable		Limits			
Characteristic	Symbol	Fig.	Devices	Test Conditions	Min.	Max.	Units	
Output Leakage Current	I _{CEX}	1	UDN2878W	V _{CE} = 50 V	_	100	μА	
				V _{CE} = 50 V, T _A = +70°C	_	500	μА	
			UDN2879W/W-2	V _{CE} = 80 V	_	100	μА	
				V _{CE} = 80 V, T _A = +70°C	_	500	μА	
Output Sustaining	V _{CE(sus)}	_	UDN2878W	I _C = 4 A, L = 10 mH	35	_	V	
Voltage			UDN2879W	I _C = 4 A, L = 10 mH	50	_	V	
			UDN2879W-2	I _C = 3 A, L = 10 mH	50	_	V	
Collector-Emitter	V _{CE(SAT)}	2	All	$I_C = 500 \text{ mA}, V_{IN} = 2.75 \text{ V}$	_	1.1	V	
Saturation Voltage				I _C = 1.0 A, V _{IN} = 2.75 V	_	1.3	V	
				I _C = 2.0 A, V _{IN} = 2.75 V	_	1.5	V	
				$I_C = 3.0 \text{ A}, V_{IN} = 2.75 \text{ V}$	_	1.9	V	
			UDN2878/79W	$I_C = 4.0 \text{ A}, V_{IN} = 3.0 \text{ V}$	_	2.4	V	
Input Current	I _{IN}	3	All	V _{IN} = 2.75 V	_	550	μА	
				V _{IN} = 3.75 V	_	1000	μА	
Input Voltage	V _{IN(ON)}	4	All	$V_{CE} = 2.2 \text{ V}, I_{C} = 3.0 \text{ A}$		2.75	V	
			UDN2878/79W	$V_{CE} = 2.2 \text{ V}, I_{C} = 4.0 \text{ A}$	_	2.75	V	
Supply Current per Driver	I _S	7	All	$I_C = 500 \text{ mA}, V_{IN} = 2.75 \text{ V}$	_	6.0	mA	
Turn-On Delay	t _{PLH}	_	All	0.5 E _{in} to 0.5 E _{out}	_	1.0	μs	
Turn-Off Delay	t _{PHL}	_	All	$0.5 E_{in}$ to $0.5 E_{out}$, $I_C = 3.0 A$	_	1.5	μs	
Clamp Diode	I _R	5	All	V _R = 50 V	_	50	μА	
Leakage Current				V _R = 50 V, T _A = +70°C	_	100	μА	
			UDN2879W/W-2	V _R = 80 V	_	50	μА	
				V _R = 80 V, T _A = +70°C	_	100	μА	
Clamp Diode	V _F	6	All	I _F = 3.0 A	_	2.5	V	
Forward Voltage			UDN2878/79W	I _F = 4.0 A	-	3.0	V	

Caution: High-current tests are pulse tests or require heat sinking.


TEST FIGURES

Dwg. No. A-10,350



Dwg. No. A-9732

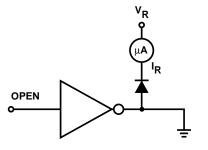
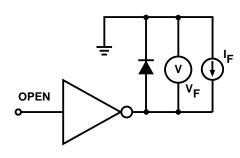

FIGURE 1

FIGURE 2


FIGURE 3

Dwg. No. A-9734A

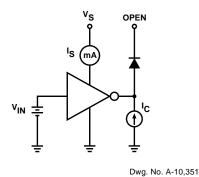
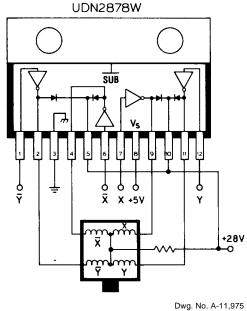
Dwg. No. A-9735A

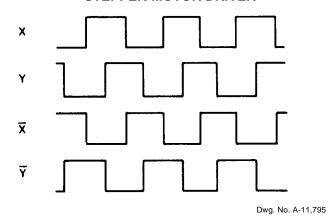
Dwg. No. A-9736

FIGURE 4

FIGURE 5

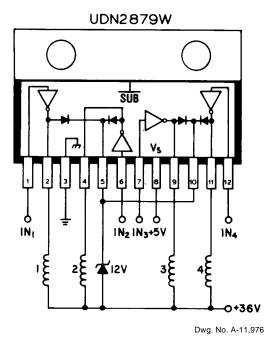
FIGURE 6

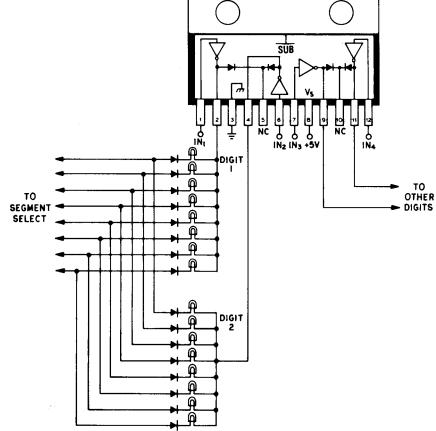




FIGURE 7

TYPICAL APPLICATIONS

INPUT WAVEFORMS

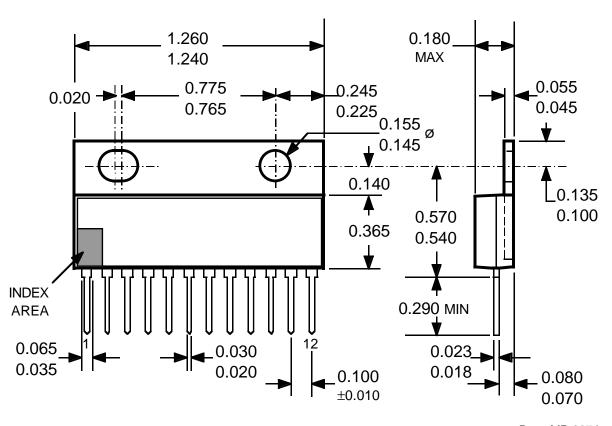

STEPPER-MOTOR DRIVER



DIGIT DRIVER FOR MULTIPLEXED INCANDESCENT LAMP DISPLAY

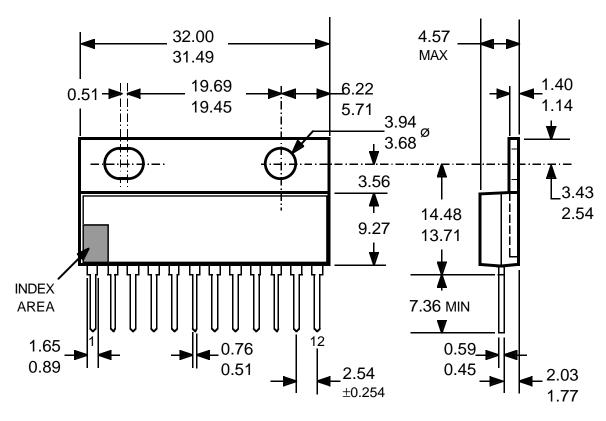
UDN2879W

PRINT-HAMMER DRIVER



Dwg. No. B-1512

Dimensions in Inches


(controlling dimensions)

Dwg. MP-007 in

- NOTES: 1. Lead thickness is measured at seating plane or below.
 - 2. Lead spacing tolerance is non-cumulative.
 - 3. Exact body and lead configuration at vendor's option within limits shown.
 - 4. Lead gauge plane is 0.030" below seating plane.
 - 5. Supplied in standard sticks/tubes of 15 devices.

Dimensions in Millimeters (for reference only)

Dwg. MP-007 mm

- NOTES: 1. Lead thickness is measured at seating plane or below.
 - 2. Lead spacing tolerance is non-cumulative.
 - 3. Exact body and lead configuration at vendor's option within limits shown.
 - 4. Lead gauge plane is 0.762 mm below seating plane.
 - 5. Supplied in standard sticks/tubes of 15 devices.

The products described here are manufactured under one or more U.S. patents or U.S. patents pending.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro products are not authorized for use as critical components in life-support devices or systems without express written approval.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

POWER SINK DRIVERS

IN ORDER OF 1) OUTPUT CURRENT, 2) OUTPUT VOLTAGE, 3) NUMBER OF DRIVERS

Output Ratings * Feat			Features					
Ou	itput itatii	igs .	Serial	Latched	Diode		Internal	
mA	V	#	Input	Drivers	Clamp	Outputs	Protection	Part Number ^T
75	17	8	X	Х	- (constant current	_	6275
	17	16	X	X	- (constant current	_	6276
100	20	8	_	_	_	saturated	_	2595
	30	32	Χ	X	_	_	_	5833
	40	32	Χ	Χ	_	saturated	_	5832
	50	8	addre	essable decc	der/driver	DMOS	_	6B259
	50	8	_	Χ	_	DMOS	_	6B273
	50	8	X	X	_	DMOS	_	6B595
120	24	8	Х	Х	- (constant current	_	6277
250	50	8	addre	essable decc	der/driver	DMOS	_	6259
	50	8	_	X	_	DMOS	_	6273
	50	8	X	X	_	DMOS	_	6595
	50	8	_	_	Х	saturated	_	2596
	60	4	_	_	X	saturated	Χ	2557
350	50	4	_	Х	Х	_	_	5800
	50	7	_	_		_	_	2003
	50	7	_	_	Χ	_	_	2004
	50	8	_	_	X X X	_	_	2803
	50	8	_	X	X	_	_	5801
	50	8	X	X	_	_	_	5821
	50	8	X	X	X	_	_	5841
	50	8		essable deco	der/driver	DMOS	_	6A259
	50	8	X	X	_	DMOS	_	6A595
	80	8	X	X	Ξ.	_	_	5822
	80	8	X	X	X	_	_	5842
	95	7	_	_	X	_	_	2023
	95	7	_	_	X	_	_	2024
450	30	28	dual 4	4- to 14-line	decoder/driv		_	6817
600	60	4	_	_	Ξ.	saturated	X	2547
	60	4	_	_	X	saturated	X	2549 and 2559
700	60	4	_	_	Х	saturated	Х	2543
750	50	8	_	_	Х	saturated	_	2597
1000	46	4	stepp	er motor cor	ntroller/drive		-	7024 and 7029
1200	46	4	micro	stepping co	ntroller/drive	r MOS	-	7042
1250	50	4	stepp	er motor tra	nslator/drive	r –	Х	5804
1800	50	4	-	_	Х	_	_	2540
3000	46	4	stepp	er motor cor	ntroller/driver	r MOS	_	7026
	46	4	micro	stepping co	ntroller/drive		_	7044

^{*} Current is maximum specified test condition, voltage is maximum rating. See specification for sustaining voltage limits or over-current protection voltage limits.

[†] Complete part number includes additional characters to indicate operating temperature range and package style.