

WiFi / Bluetooth Module Data Sheet

Cypress CYW43438 WLAN / BT + ST Micro STM32F412 MCU
for 802.11b/g/n & Bluetooth® 4.1

Electric Imp P/N : imp004m
MURATA P/N : LBEE5ZZ1MD-011

This Datasheet is preliminary version, and subject to change without notice.

Revision history

Issued Date	Revision Code	Revision Page	Changed Items	Change Reason
Jul. 6. 2016			First Issue	
Sep. 9. 2016	A	P3 P4 P6 P15 P17	2. Part Number 4.1. Dimensions 4.2. Terminal Configurations 11. Land pattern (Top View) 13. Tape and Reel Packing	
Oct. 11. 2016	B	P3 P4 P6 P10 P12	2. Part Number 4.1. Dimensions (LMK) 42 Terminal Configurations 8. Power up sequence 9. RF Characteristics	
Oct. 13. 2016	C	P6 P8 P9 P10 P11 P16 P17	4.2. Pin configurations 4.3. Pin mux table 5. LED drive 6. Phototransistor 7. SPI flash requirements 9. Operating condition 10. External 32kHz crystal 14. Reference circuit 15. Recommended components	
Oct. 20. 2016	D	P10	6. Phototransistor	Correct imp003 reference
Oct. 21. 2016	E	P3	1. Scope	Update cloud information
Mar. 14. 2017	F	P5	4.1. Dimensions	Correct Pin 1 Marking
Apr. 13. 2017	G	P5 P12	4. Dimensions, Marking and Terminal Configurations 9. Operating Condition	Correct Top view design Correct the range of VDD_WLAN, VDDA MCU and VDD_IO MCU
Apr. 20. 2017	H	P5	4.1. Dimensions	Correct the marking.
Jun. 27. 2017	I	P3	1. Scope	Wording
Jul. 29. 2017	J	P1	Part number	Updated from temp to production part number
		P15	7. SPI flash requirements	Added SPI commands
		P16	8. Required wiring for Bluetooth operation	Added Bluetooth connections
		P23	15. Reference circuit	
		P17	9. Absolute Maximum Rating	Correction
		P24	16.3 Flash memory	Updated part number recommendations
		P34	20. Regulatory Requirements	Added FCC and IC regulations for modular certification

TABLE OF CONTENTS

1. Scope	3
2. Part Number	4
3. Block Diagram	5
4. Dimensions, Marking and Terminal Configurations.....	6
4.1. Dimensions	6
4.2. Terminal Configurations.....	9
4.3. Pin Mux table	12
5. LED drive.....	13
6. Phototransistor	14
7. SPI flash requirements	15
8. Required wiring for Bluetooth operation	16
9. Absolute Maximum Rating	17
10. Operating Condition	17
11. External 32.768 kHz Crystal.....	18
12. Power Up Sequence	19
12.1. Without RESET_L control.....	19
12.2. With RESET_L control	19
12.3. RESET_L Circuit.....	20
13. Electrical Characteristics	21
14. Land pattern (Top View).....	22
15. Reference Circuit.....	23
16. Recommended Components.....	23
16.1. Bi-color LED	23
16.2. Phototransistor.....	24
16.3. SPI Flash	24
17. Tape and Reel Packing	25
18. NOTICE	28
18.1. Storage Conditions:	28
18.2. Handling Conditions:	28
18.3. Standard PCB Design (Land Pattern and Dimensions):.....	28
18.4. Notice for Chip Placer:.....	29
18.5. Soldering Conditions:.....	30
18.6. Cleaning:.....	30
18.7. Operational Environment Conditions:.....	30
18.8. Input Power Capacity:.....	31
19. PRECONDITION TO USE OUR PRODUCTS	32
20. Regulatory requirements	33
20.1. FCC Warning Notice	33
20.2. IC Warning Notice.....	34

Please be aware that an important notice concerning availability, standard warranty and use in critical applications of Murata products and disclaimers thereto appears at the end of this specification sheet.

Preliminary

< Specification may be changed by Murata without notice >
Murata Manufacturing Co., Ltd.

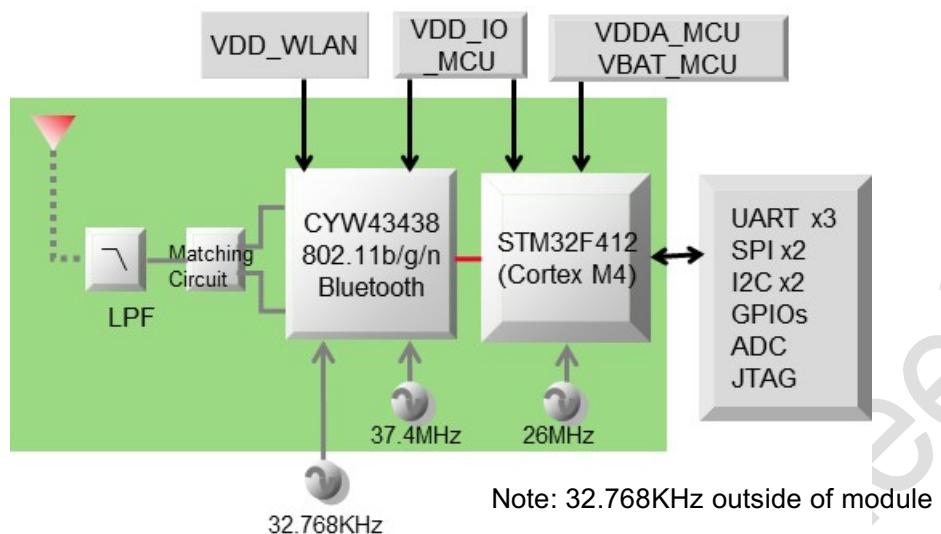
1. Scope

This specification is for the LBEE5ZZ1MD (imp004m) module that provides connectivity to the internet via WiFi. The fully maintained, secure OS that is part of the Electric Imp cloud service comes pre-loaded.

- 802.11 b/g/n 1x1 WiFi
 - 802.11b 17dBm (typ.)
 - 802.11g 13dBm (typ.)
 - 802.11n 12dBm (typ.) [20MHz channels]
 - RX Sensitivity -98dBm (typ.) [@1Mbps]
 - On-board antenna
 - Supports WEP, WPA, WPA2, WPS
- Bluetooth 4.1
 - BTLE support for WiFi configuration using GATT
 - Automatically shares antenna with WiFi
 - Optional: requires 4 MCU pins and stack license fee to enable functionality in commercial products
- 32-bit Cortex M4 processor
 - Robust embedded operating system with fail-safe firmware updates
 - Virtual machine for customer firmware
 - 256kB of application bytecode flash
 - Over 190kB of free application RAM
- Electric Imp OS & service
 - Robust embedded operating system with fail-safe, secure OS & Application updates
 - Pre-provisioned MAC address & per-device secrets
 - TLS1.2-RSA-ECDHE (forward secrecy) connection to cloud
 - Elliptic curve challenge-response to prevent device impersonation
 - Fully featured cloud VM for every device for easy integration with RESTful APIs
 - Open source integrations with AWS, Azure, etc services
- LED drive for red/green status LEDs
- Phototransistor input for Electric imp's patented BlinkUp™ technology for easy configuration from any smartphone, tablet, or web browser
- 18 user selectable I/Os
 - GPIO, PWM, Analog input, SPI, UART, I2C
 - Dedicated SPI bus for local storage
- Low power 14uA (typ.) sleep mode
 - Option for coin cell RTC battery backup
- Compliant with the RoHS directive

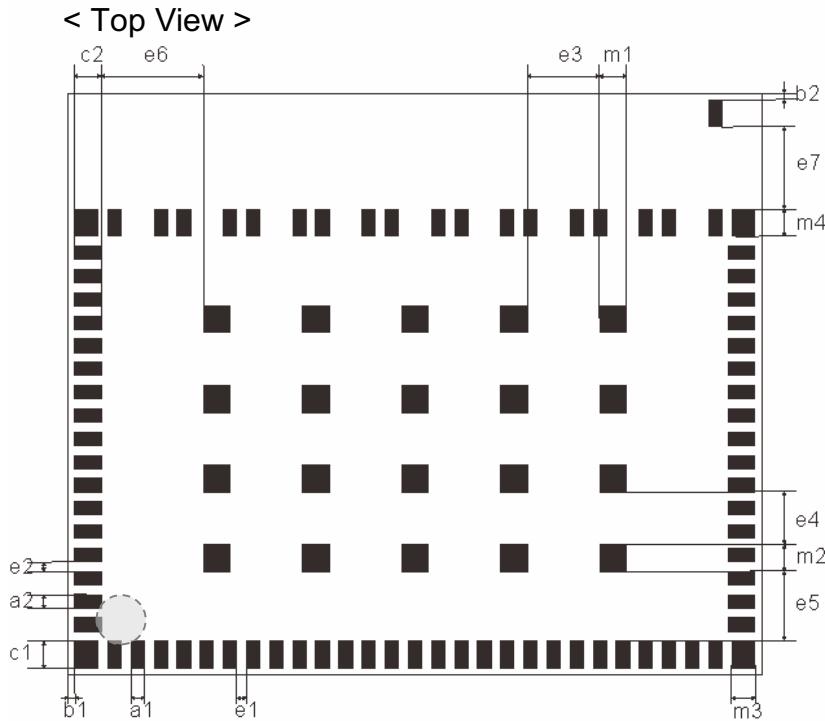
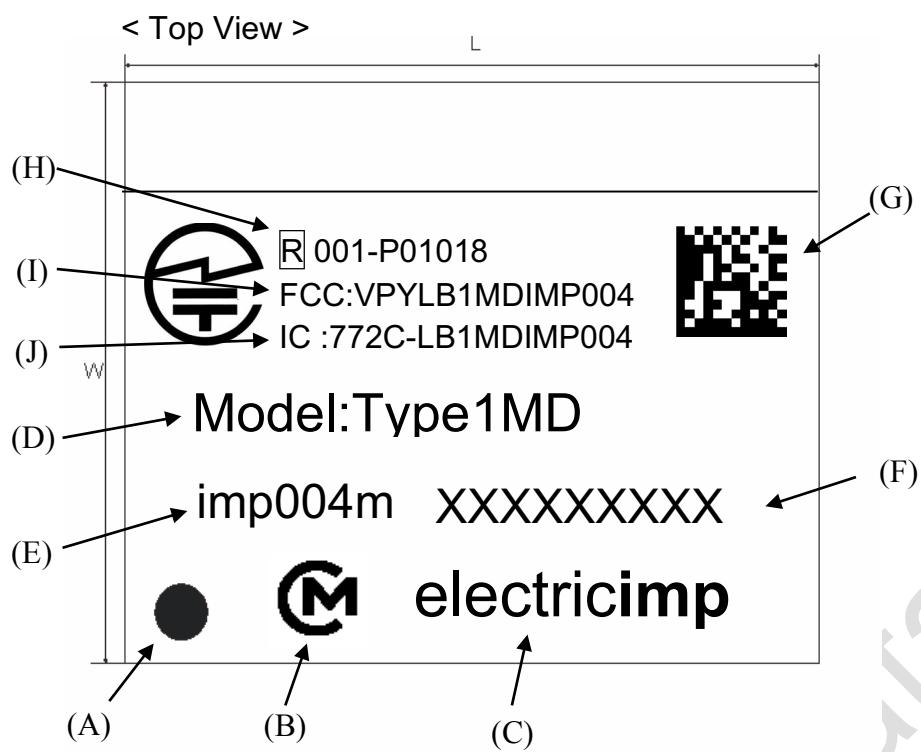
Preliminary

< Specification may be changed by Murata without notice >


Murata Manufacturing Co., Ltd.

2. Part Number

Sample Part Number
LBEE5ZZ1MD-TEMP



Production Part Number
LBEE5ZZ1MD-011

3. Block Diagram

4. Dimensions, Marking and Terminal Configurations

4.1. Dimensions

< Side View >

Preliminary

< Specification may be changed by Murata without notice >
Murata Manufacturing Co., Ltd.

Mark	Dimensions	Mark	Dimensions	Mark	Dimensions
L	21.0 +/- 0.2	W	17.5 +/- 0.2	T	2.3 max.
a1	0.4 +/- 0.1	a2	0.4 +/- 0.1	b1	0.2 +/- 0.2
b2	0.2 +/- 0.2	c1	0.8 +/- 0.1	c2	0.8 +/- 0.1
e1	0.3 +/- 0.1	e2	0.3 +/- 0.1	e3	2.2 +/- 0.1
e4	1.6 +/- 0.1	e5	2.1 +/- 0.1	e6	3.1 +/- 0.1
e7	2.5 +/- 0.1	m1	0.8 +/- 0.1	m2	0.8 +/- 0.1
m3	0.7 +/- 0.1	m4	0.8 +/- 0.1		

(unit : mm)

Marking

Marking	Meaning
(A)	Pin 1 Marking
(B)	Murata Logo
(C)	Electric Imp Logo
(D)	Murata Module Type
(E)	Imp Module Type
(F)	Inspection Number
(G)	2D code
(H)	Japanese Type certification No.
(I)	FCC certification ID
(J)	IC certification No.

Structure

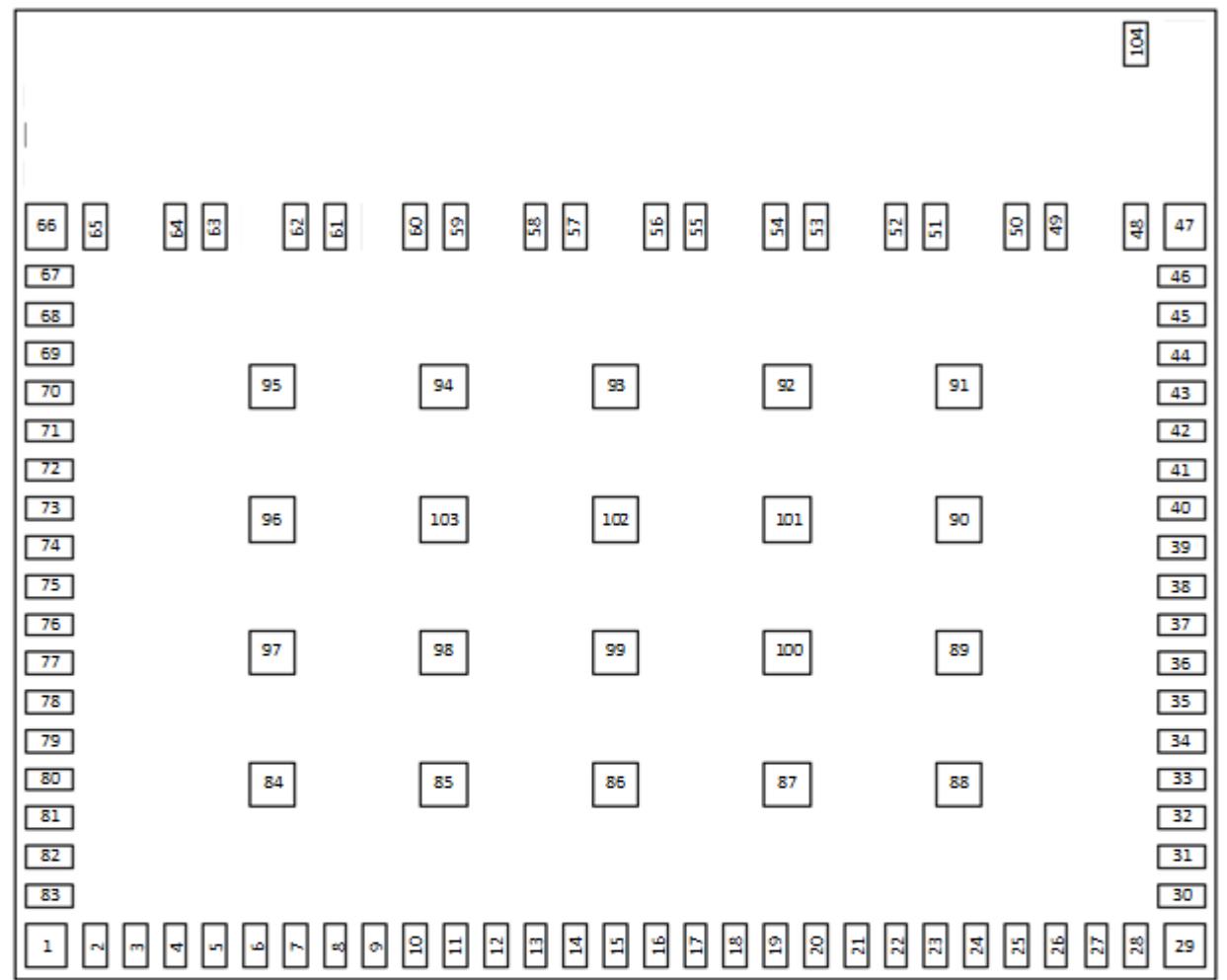
Preliminary

< Specification may be changed by Murata without notice >

Murata Manufacturing Co., Ltd.

Mounting

The module is designed to be mounted on the edge of the board, with the antenna section hanging off in free space. The antenna is tuned for free space operation. Please see the design guide on Electric Imp dev center website at <http://www.electricimp.com/docs> for more information.


Preliminary

< Specification may be changed by Murata without notice >

Murata Manufacturing Co., Ltd.

4.2. Terminal Configurations

Top view (through package)

Preliminary

< Specification may be changed by Murata without notice >
Murata Manufacturing Co., Ltd.

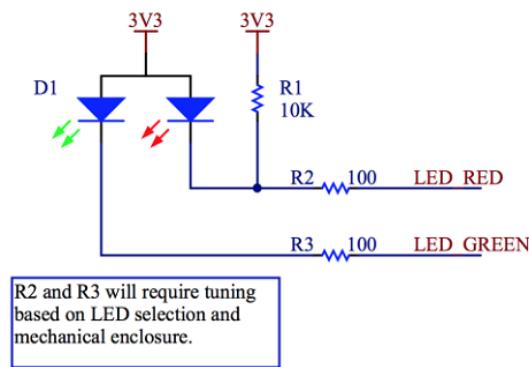
No.	Name	Type	Description
1	GND	GND	
2	CLK_REQ	O	Reference clock request. As the clock is internal, this pin does not need to be connected
3	BT_REG_ON	I	Enable Bluetooth power. Leave NC if Bluetooth is not used (active high)
4	NC	-	No Connect
5	pinM	I/O	GPIO, i2cNM SDA, PWM
6	pinN	I/O	GPIO, i2cNM SCL, PWM
7	pinP	I/O	GPIO, i2cQP SDA, PWM, IRQ
8	pinW	I/O	GPIO, uartBCAW CTS, ADC, IRQ & wake from deep sleep (active high)
9	GND	GND	
10	pinA	I/O	GPIO, uartBCAW RTS, spiAHSR MOSI, ADC, PWM
11	pinB	I/O	GPIO, uartBCAW TX, ADC, PWM, IRQ
12	pinC	I/O	GPIO, uartBCAW RX, ADC, IRQ
13	LPO_IN	I	Sleep Clock (for both WiFi & Bluetooth). If low power WiFi operation – or Bluetooth operation – is required, this pin should be connected to pinE. Otherwise, ground this pin.
14	pinD	I/O	GPIO, ADC, PWM, IRQ
15	pinE	I/O	GPIO, IRQ
16	pinK	I/O	GPIO, spiGJKL SCLK, ADC, PWM
17	pinL	I/O	GPIO, spiGJKL NSS, ADC, IRQ
18	GND	GND	
19	VDD_IO MCU	PWR	MCU/WLAN VIO
20	GND	GND	
21	pinQ	I/O	GPIO, uartQ TX, i2cQP SCL, IRQ
22	pinR	I/O	GPIO, spiAHSR NSS, IRQ
23	pinS	I/O	GPIO, spiAHSR SCLK, IRQ
24	PSU_ENABLE	O	Active high when WiFi needs 2.7v+
25	pinF	I/O	GPIO, uartFGJH TX
26	pinG	I/O	GPIO, uartFGJH RX, spiGJKL MOSI
27	pinH	I/O	GPIO, uartFGJH CTS, uartHJ TX, spiAHSR MISO, IRQ
28	pinJ	I/O	GPIO, uartFGJH RTS, uartHJ RX, spiGJKL MISO, pulse counter
29	GND	GND	
30	LED_RED	O	Red LED drive
31	LED_GREEN	O	Green LED drive
32	OPTO_IN	I	Phototransistor input
33	OPTO_BIAS	O	Phototransistor supply
34	FLASH_MOSI	O	SPI flash connection
35	FLASH_SCLK	O	SPI flash connection
36	FLASH_CS_L	O	SPI flash connection

37	FLASH_MISO	I	SPI flash connection
38	NC	-	
39	RESET_L	I	MCU reset, internally pulled up
40	VSSA/VREF-	GND	Must be connected to GND
41	OSC32_OUT	O	32kHz xtal connection
42	OSC32_IN	I	32kHz xtal connection (ground if no xtal fitted)
43	GND	GND	
44	VBAT MCU	PWR	MCU VBAT input
45	VDDA MCU	PWR	MCU VDDA input
46	VDD_WLAN	PWR	WLAN VBAT input
47-70	GND	GND	
71	BT_UART_TXD	O	Bluetooth UART transmit. Leave NC if not used
72	BT_UART_RTS	O	Bluetooth UART ready to send. Leave NC if not used
73	BT_UART_RXD	I	Bluetooth UART receive. Leave NC if not used
74	BT_UART_CTS	I	Bluetooth UART clear to send. Leave NC if not used
75-76	GND	GND	
77	BT_HOST_WAKE	O	Signal to wake host (from Bluetooth core). Leave NC if not used
78-81	NC	-	
82	BT_DEV_WAKE	I	Signal to wake Bluetooth core (from host). Leave NC if not used
83	NC	-	No Connect
84-103	GND	GND	
104	NC	-	Note this pad should not be touching any PCB

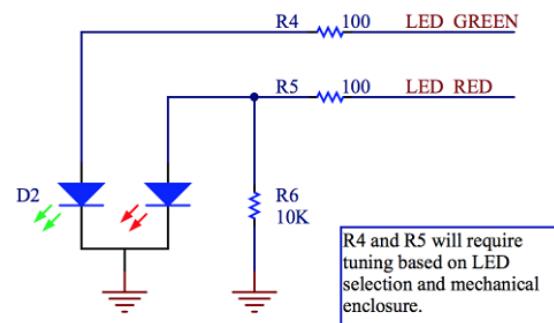
4.3. Pin Mux table

Pin	Uart BCAW	uart FGJH	uart HJ	uart Q	i2c NM	i2c QP	spi AHSR	spi GJKL	ADC	PWM	Pulse count	State change
pinA	RTS						MOSI		Yes	Yes		
pinB	TX								Yes	Yes		Yes
pinC	RX								Yes			Yes
pinD									Yes	Yes		Yes
pinE												Yes
pinF		TX										
pinG		RX					MOSI					
pinH		CTS	TX				MISO					Yes
pinJ		RTS	RX				MISO				Yes	
pinK							SCLK	Yes	Yes			
pinL							NSS	Yes				Yes
pinM					SDA					Yes		
pinN					SCL					Yes		
pinP						SDA				Yes		Yes
pinQ			TX		SCL							Yes
pinR						NSS						Yes
pinS						SCLK						Yes
pinW	CTS								Yes			Yes

5. LED drive


The indicator LED should be bicolor, because red, green and amber (red+green) are used to indicate status.

The LED drive pins will auto-detect common anode or common cathode parts. The detection is done by looking to see which way up the LED_RED pin is idling at boot; to ensure this works correctly, please place a 10k resistor in parallel with the red LED.


The current drive on these pins is 20mA maximum.

Please refer to section 15 for the recommended LEDs.

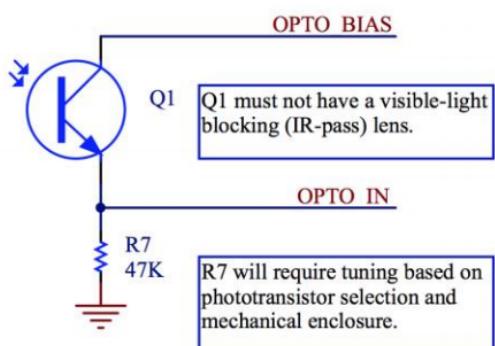
<Common anode diagram>

<Common cathode diagram>

Two specific LED codes indicate errors when talking to the SPI flash:

SPI flash not found	amber	red	off
SPI flash error	red	amber	off

If you encounter either of these codes, then this indicates an electrical connection issue or an incompatible flash part.


6. Phototransistor

The phototransistor is used to receive BlinkUp configuration data. The bias resistor connected between OPTO_IN and GND may need to be adjusted to ensure adequate sensitivity and response time - in general you need at least 500mV swing on the OPTO_IN pin between black and white states, with the worst (dimmest) BlinkUp sender you can find. More information and sample code to tune blinkup is available on the Electric Imp dev center website.

End-user BlinkUp send data at between 30 and 60 bits per second, depending on the user's device. For factory configuration, data is typically sent at 142 bits per second using red LED(s) in a test fixture. If your application does not require optical configuration, config can be sent electrically at 142 bits per second from another micro using the OPTO_IN pin. Please contact us for more details.

It is also recommended to place 0402, 13pF capacitor footprints (Murata GRM1555C1H130JA01) close to the imp004m between OPTO_BIAS and GND, and OPTO_IN and GND. If issues are seen with RF coupling onto the blinkup circuit, then these components will address the issue by presenting a low impedance in the 2.4GHz band.

Please refer to paragraph 15 for the recommended phototransistors.

7. SPI flash requirements

An external SPI Flash part is required for operation, which must be pre-loaded with the correct WiFi firmware image before assembly. The required image is available from the Electric Imp dev center website at <http://www.electricimp.com/docs>

The minimum size of the SPI Flash is 8Mbit (1MB), and the maximum size is 128Mbit (16MB). The area below address 0xC2000 (776kB) is the pre-programmed area. The remainder of the flash device is made available to user code programmatically, and may optionally be pre-programmed for user applications before assembly.

The imp004m's SPI flash chip **must** support both 4KB erases (Command 0x20) and 64KB erases (command 0xD8) and Page Program (command 0x02). You must also ensure that the SPI flash you use is able to run down to the **minimum operational voltage** of your product to ensure that the SPI flash is operational at all times that the imp is operational. This is critical during upgrades in low battery states. If you are running from a single LiMnO₂ cell (eg. CR123), you should use a wide voltage range SPI flash that is operational from 1.7-3.6V such as the **Macronix MX25R8035FM2IH0**.

Minimum Size	8 Mbit (1024 kBByte)
Reserved for OS (do not pre-program)	0x000000 to 0xC2000 (776 kBByte)

Summary of required SPI flash commands

Required Command	Command in Hex
4KB Sector Erase	0x20
64KB Block Erase	0xD8
Page Program	0x02

8. Required wiring for Bluetooth operation

If Bluetooth is not used in the application, leave all Bluetooth pins (3, 71-74, 77, 82) unconnected.

To use Bluetooth in an application, you must connect the MCU pins to the Bluetooth device:

- BT_UART_TXD should be connected to an MCU UART RX pin (pinC, pinG or pinJ)
- BT_UART_RXD should be connected to the same UART's TX pin (pinB, pinF or pinH)
- pinE MUST be connected to the LPO in pin, to supply a 32kHz clock to the Bluetooth radio
- BT_REG_ON should be connected to any free MCU pin, to control Bluetooth power
- BT_UART_CTS should be grounded (The imp Bluetooth stack uses 2 wire UART)

Aside from pinE, which cannot be reassigned, choice of UART and control pin for BT_REG_ON is determined by the application – this allows flexibility in complex IO configurations.

Please refer to the Electric Imp dev center for more information on how to configure the Bluetooth stack, which is present from impOS release 40.

Note that though use of Bluetooth is free for developers, commercial use incurs an additional licensing fee for the stack. Please contact sales@electricimp.com for more details.

9. Absolute Maximum Rating

	min.	max.	unit
Storage Temperature	-40	85	deg.C
Supply Voltage	VBAT MCU	-0.3	4
	VDDA MCU	-0.3	4
	VDD WLAN	-0.5	6
	VDD IO MCU	-0.3	3.63

Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability. No damage assuming only one parameter is set at limit at a time with all other parameters is set within operating condition.

10. Operating Condition

	min.	typ.	max.	unit
Operating Temperature Range	-30	25	70	deg.C
Specification Temperature Range	-20	25	55	deg.C
Supply Voltage	VBAT MCU	1.65	3.3	3.6
	VDDA MCU	1.8	3.3	3.6
	VDD WLAN	3.0	3.3	3.6
	VDD IO MCU	1.8	3.3	3.6

Notes :

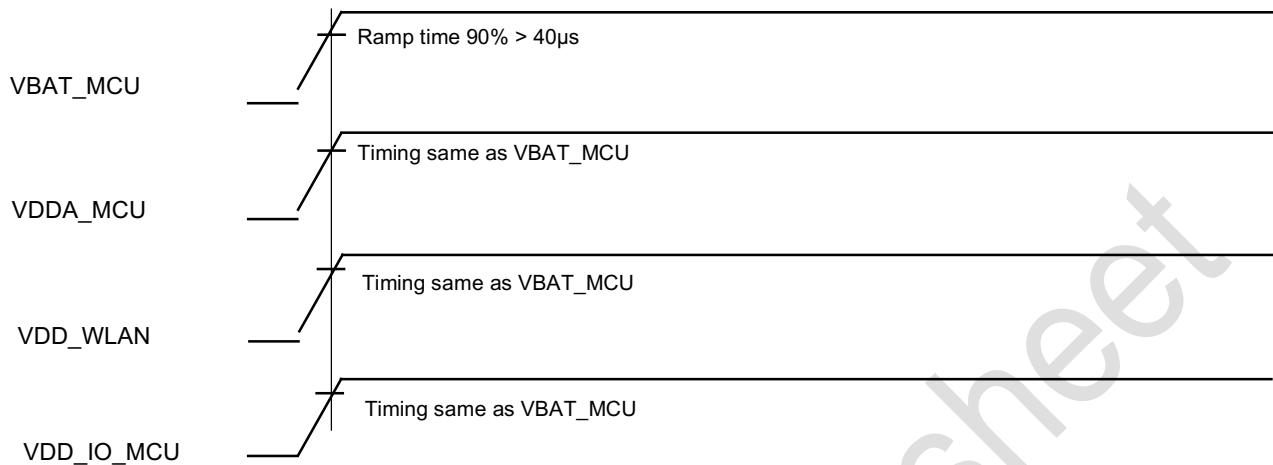
- All RF characteristics in this datasheet are defined by Specification Temperature Range. Specifications require derating at extreme temperatures.
- VDDA MCU and VDD IO MCU must be the same potential.

Preliminary

< Specification may be changed by Murata without notice >

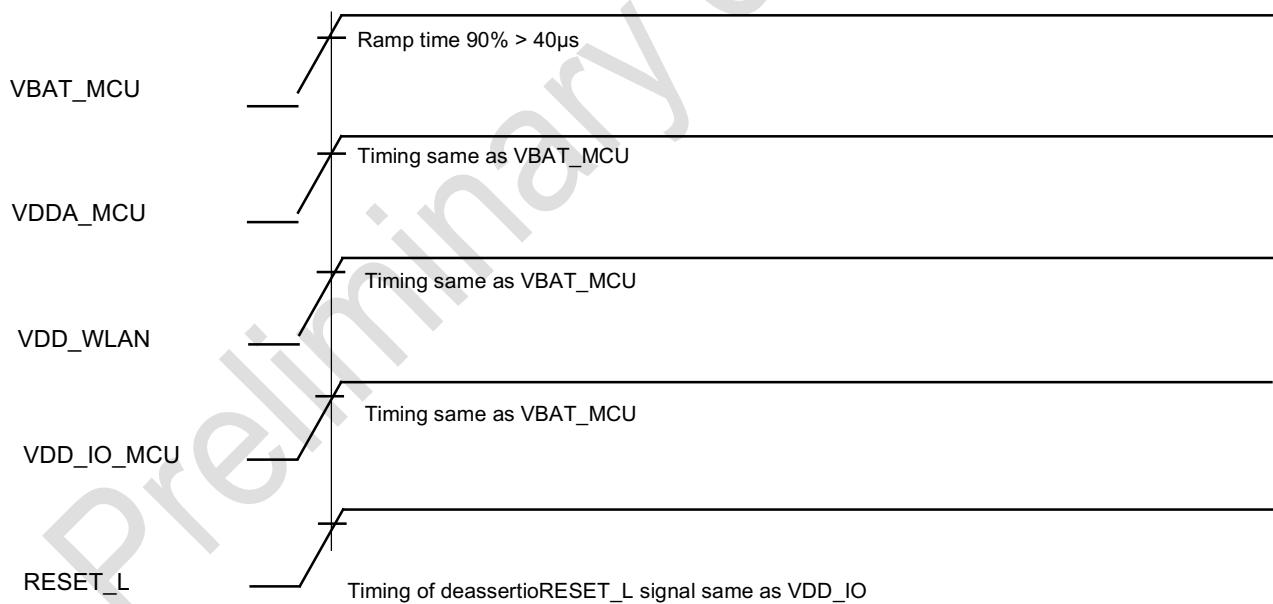
Murata Manufacturing Co., Ltd.

11. External 32.768 kHz Crystal


If the application requires the imp004m to enter deep sleep mode, a 32kHz crystal should be attached to the OSC32_IN and OSC32_OUT pins. Please refer to the STM32F412 datasheet and application note AN2867 by STMicroelectronics NV for detailed crystal requirements.

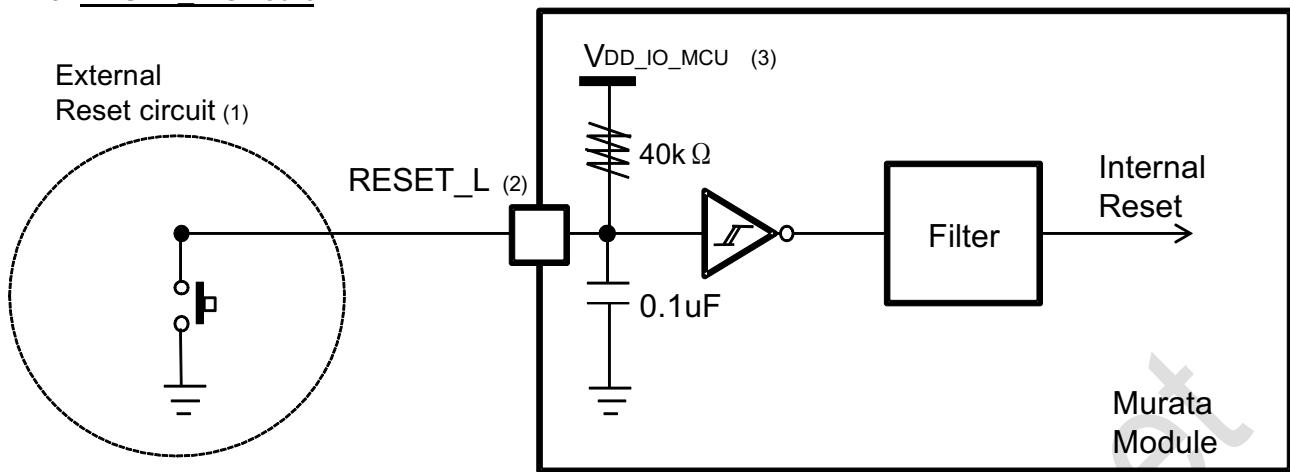
If deep sleep mode is not required, OSC32_IN should be connected to GND and OSC32_OUT left floating. The imp004m will detect this state and disable the sleep APIs.

12. Power Up Sequence


12.1. Without RESET_L control

Following timing diagram explain module power up sequence.

*Power down sequence is opposite sequence of power up.


12.2. With RESET_L control

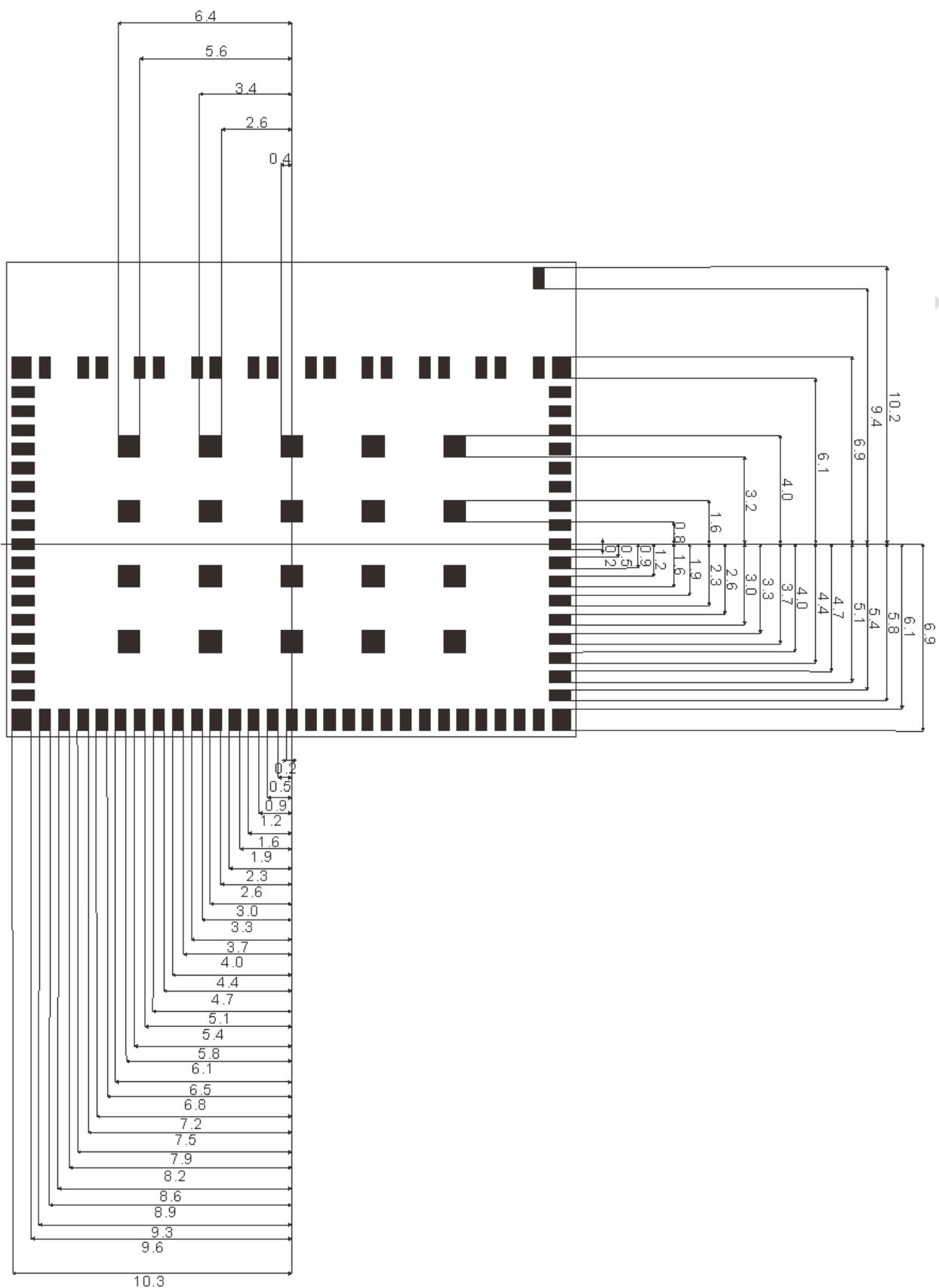
*Power down sequence is opposite sequence of power up.

*RESET_L pin must be controlled by Open Drain.

12.3. RESET_L Circuit

- (1) The reset network protects the device against parasitic resets.
- (2) The use must ensure that the level on the RESET_L pin can go below the V_{IL}(NRST) max level specified in below table. Otherwise the reset is not taken into account by the device.
- (3) RESET_L pin must be controlled by Open Drain. High signal must not input to this pin.

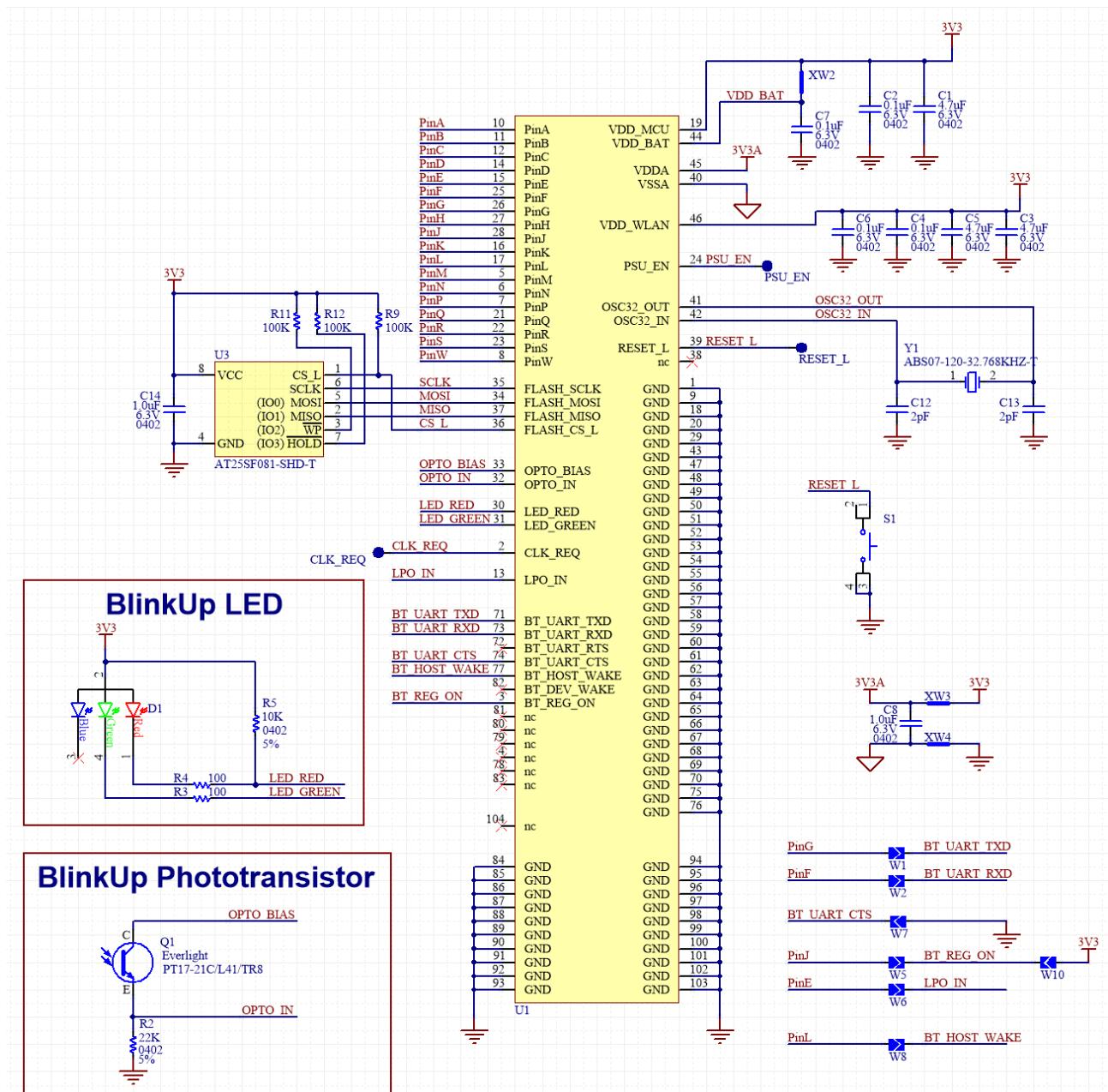
Symbol	Parameter	Min	Typ	Max	Unit
V _{IL}	RESET_L I/O input low level voltage	-	-	0.1xV _{DD} _IO_MCU+0.1	V


13. Electrical Characteristics

- DC Characteristics -	min.	typ.	max.	unit
1. DC current				
1) Tx mode ¹⁾		300	370	mA
2) Rx mode		45	100	mA

1) Conditions: 25deg.C, VDD_WLAN=3.3V, VDD_IO MCU=3.3V
(1Mbps mode unless otherwise specified.)

Note: The above mentioned values have been obtained according to our own measuring methods and may very depend on the circuit, in which the component is actually incorporated. Therefore, you are kindly requested to test the performance of the component actually in your set.


14. Land pattern (Top View)

Unit : mm

Preliminary
< Specification may be changed by Murata without notice >
Murata Manufacturing Co., Ltd.

15. Reference Circuit

16. Recommended Components

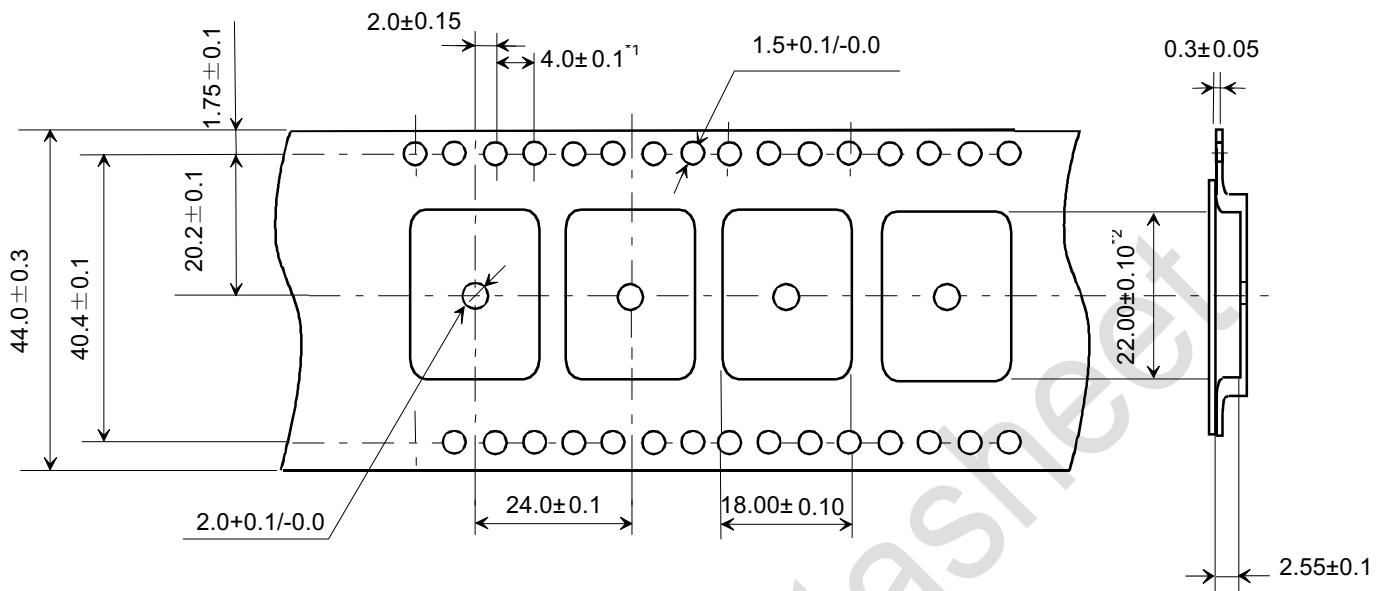
16.1. Bi-color LED

	Manufacturer	Manufacturer's part number
Surface mount		
top-view	SunLED	XZMDKVG59W-1
	Liteon	LTST-C195KGJRKT
side-view	SunLED	XZMDKVG88W
	Bivar	SM1204BC
Through-hole		
3mm	SunLED	XLMDKVG34M
	Liteon	LTL1BEKVJNN

16.2. Phototransistor

	Manufacturer	Manufacturer's part number
Surface mount		
top-view	Everlight	PT17-21C/L41/TR8
	Fairchild	KDT00030TR
side-view	SunLED	XZRN156W-1
	Everlight	PT12-21C/TR8
Through-hole		
3mm	SunLED	XRNI30W-1
	LiteOn	LTR-4206

16.3. SPI Flash

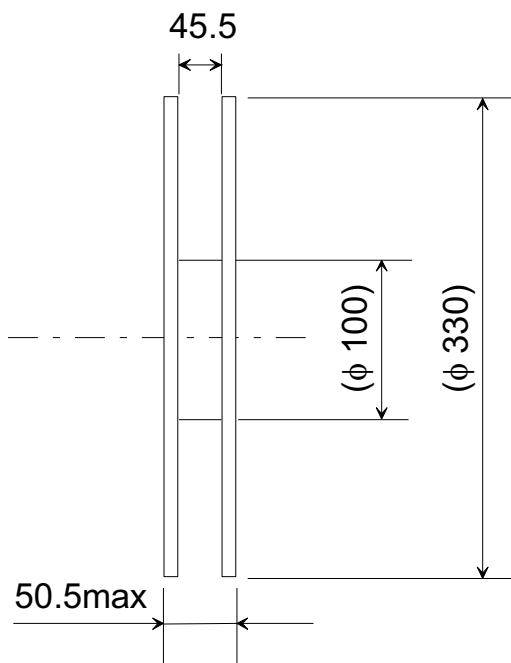
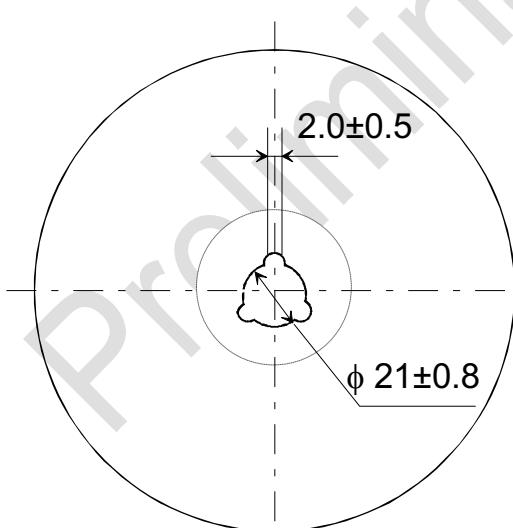

Size	Manufacturer	Manufacturer's part number
8 Mbit	Adesto Technologies Macronix International	AT25SF081 MX25R8035F ⁽¹⁾
16 Mbit	Adesto Technologies Cypress Semiconductor Corp	AT25SF161 S25FL116K ⁽²⁾
32 Mbit	Adesto Technologies Cypress Semiconductor Corp	AT25SF321 S25FL132K ⁽²⁾
64 Mbit	Cypress Semiconductor Corp Cypress Semiconductor Corp	S25FL064L S25FL164K ⁽²⁾

(1) This device offers a wide operating voltage range

(2) This part is EOL, though inventory may still be available through distributors

17. Tape and Reel Packing

(1) Dimensions of Tape (Plastic tape)

*1 Cumulative tolerance of max. ± 0.3 every 10 pitches

*2 Reference value

(Unit : mm)

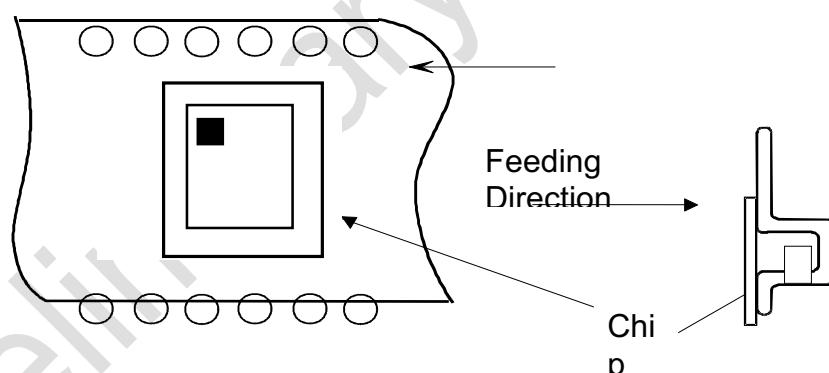
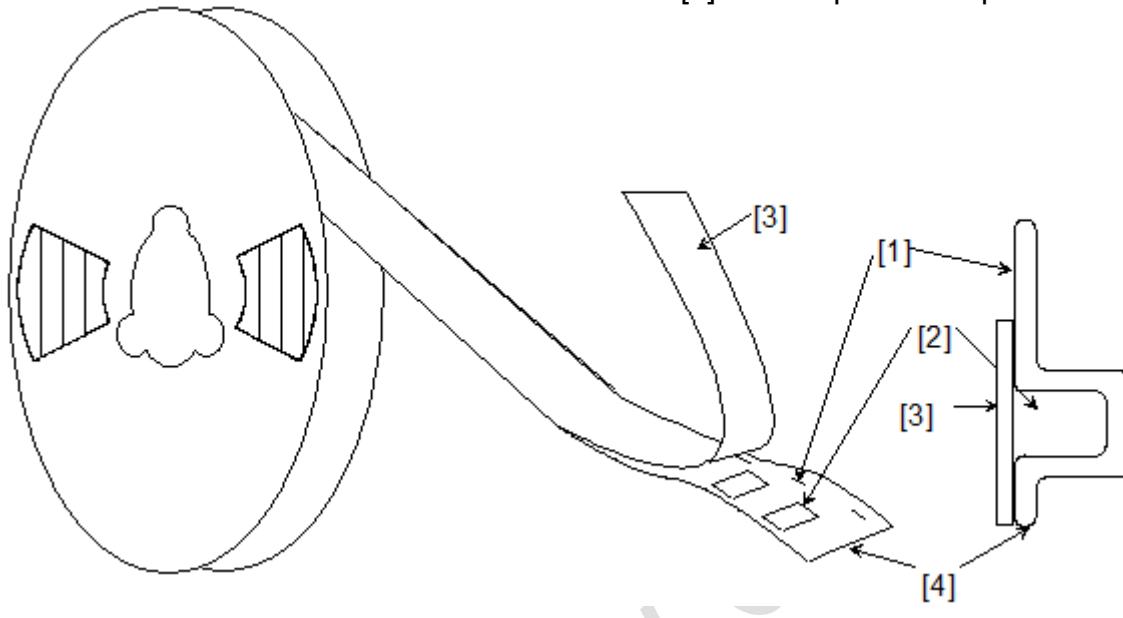
(2) Dimensions of Reel

(Unit: mm)

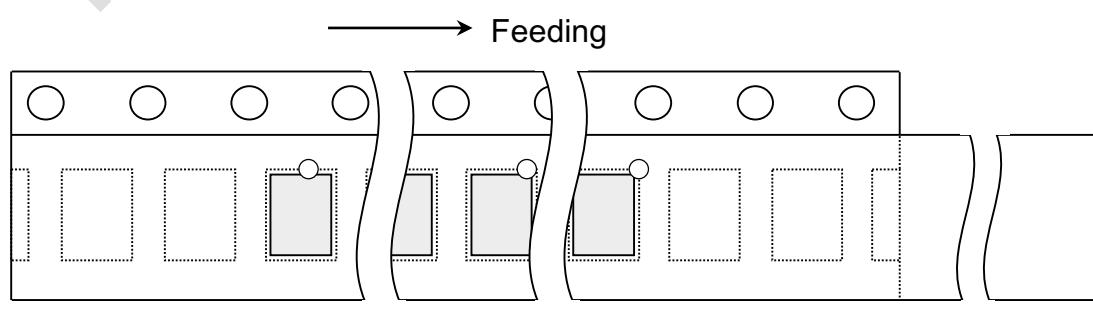
Preliminary

< Specification may be changed by Murata without notice >

Murata Manufacturing Co., Ltd.



(3) Taping Diagrams

[1] Feeding Hole : As specified in (1)


[2] Hole for chip : As specified in (1)

[3] Cover tape : 62 μ m in thickness

[4] Base tape : As specified in (1)

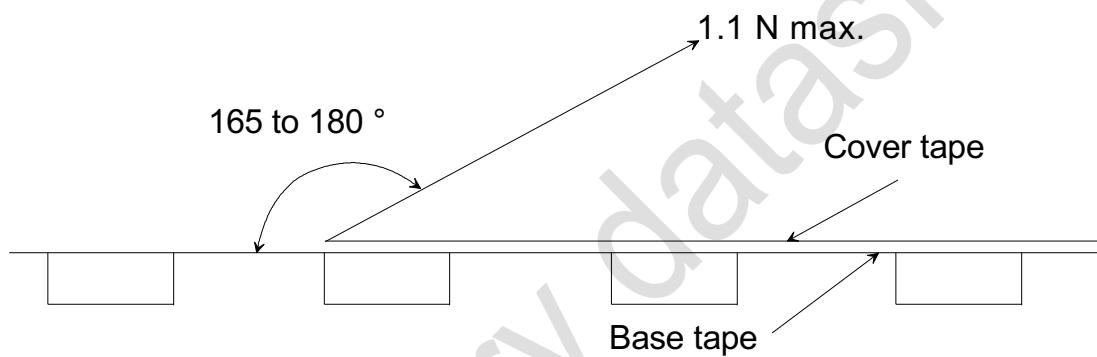
(4) Leader and Tail tape

Tail tape Components Preliminary No components Leader tape
 (No < Specification may be changed by Murata without notice
 components) Murata Manufacturing Co., Ltd. (Cover tape
 alone)

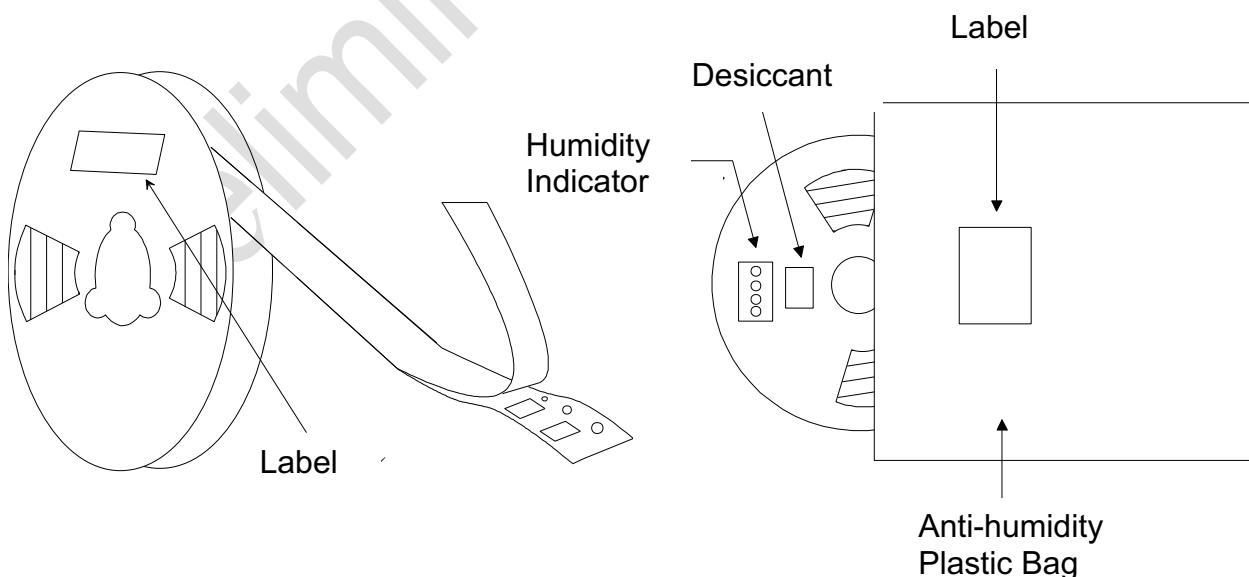
(5) The tape for chips are wound clockwise, the feeding holes to the right side as the tape is pulled toward the user.

(6) The cover tape and the base tape are not adhered at no components area for 250mm min.

(7) Tear off strength against pulling of cover tape : 5N min.


(8) Packaging unit: 500pcs./ reel

(9) Material: Base tape : Plastic


Reel : Plastic

Cover tape, cavity tape and reel are made the anti-static processing.

(10) Peeling of force: 1.1N max. in the direction of peeling as shown below.

(11) Packaging (Humidity proof Packing)

Tape and reel must be sealed with the anti-humidity plastic bag. The bag contains the desiccant and the humidity indicator.

18. NOTICE

18.1. Storage Conditions:

Please use this product within 6month after receipt.

- The product shall be stored without opening the packing under the ambient temperature from 5 to 35deg.C and humidity from 20 to 70%RH.

(Packing materials, in particular, may be deformed at the temperature over 40deg.C.)

- The product left more than 6months after reception, it needs to be confirmed the solderability before used.

- The product shall be stored in non corrosive gas (Cl₂, NH₃, SO₂, NO_x, etc.).

- Any excess mechanical shock including, but not limited to, sticking the packing materials by sharp object and dropping the product, shall not be applied in order not to damage the packing materials.

This product is applicable to MSL3 (Based on JEDEC Standard J-STD-020)

- After the packing opened, the product shall be stored at \leq 30deg.C / \leq 60%RH and the product shall be used within 168hours.

- When the color of the indicator in the packing changed, the product shall be baked before soldering.

Baking condition: 125+5/-0deg.C, 24hours, 1time

The products shall be baked on the heat-resistant tray because the material (Base Tape, Reel Tape and Cover Tape) are not heat-resistant.

18.2. Handling Conditions:

Be careful in handling or transporting products because excessive stress or mechanical shock may break products.

Handle with care if products may have cracks or damages on their terminals, the characteristics of products may change. Do not touch products with bear hands that may result in poor solder ability and destroy by static electrical charge.

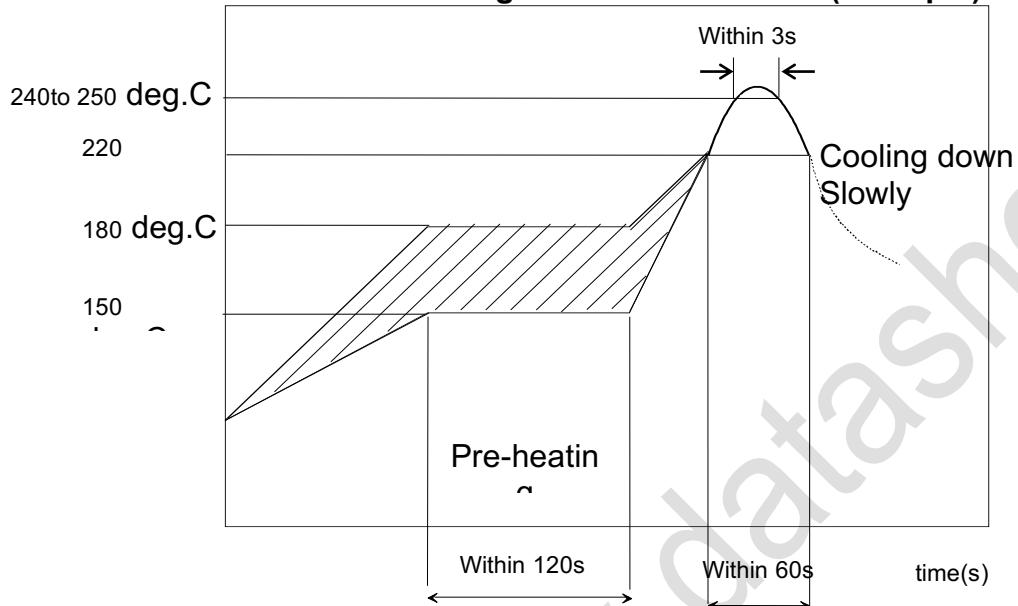
18.3. Standard PCB Design (Land Pattern and Dimensions):

All the ground terminals should be connected to the ground patterns. Furthermore, the ground pattern should be provided between IN and OUT terminals. Please refer to the specifications for the standard land dimensions.

The recommended land pattern and dimensions is as Murata's standard. The characteristics of products may vary depending on the pattern drawing method, grounding method, land dimensions, land forming method of the NC terminals and the PCB material and thickness. Therefore, be sure to verify the characteristics in the actual set. When using non-standard lands, contact Murata beforehand.

18.4. Notice for Chip Placer:

When placing products on the PCB, products may be stressed and broken by uneven forces from a worn-out chucking locating claw or a suction nozzle. To prevent products from damages, be sure to follow the specifications for the maintenance of the chip placer being used. For the positioning of products on the PCB, be aware that mechanical chucking may damage products.


Preliminary datasheet

18.5. Soldering Conditions:

The recommendation conditions of soldering are as in the following figure.

When products are immersed in solvent after mounting, pay special attention to maintain the temperature difference within 100 °C. Soldering must be carried out by the above mentioned conditions to prevent products from damage. Set up the highest temperature of reflow within 260 °C. Contact Murata before use if concerning other soldering conditions.

Reflow soldering standard conditions(Example)

Please use the reflow within 2 times.

Use rosin type flux or weakly active flux with a chlorine content of 0.2 wt % or less.

18.6. Cleaning:

Since this Product is Moisture Sensitive, any cleaning is not permitted.

18.7. Operational Environment Conditions:

Products are designed to work for electronic products under normal environmental conditions (ambient temperature, humidity and pressure). Therefore, products have no problems to be used under the similar conditions to the above-mentioned. However, if products are used under the following circumstances, it may damage products and leakage of electricity and abnormal temperature may occur.

- In an atmosphere containing corrosive gas (Cl₂, NH₃, SO_x, NO_x etc.).
- In an atmosphere containing combustible and volatile gases.
- Dusty place.
- Direct sunlight place.
- Water splashing place.
- Humid place where water condenses.
- Freezing place.

If there are possibilities for products to be used under the preceding clause, consult with Murata before actual use.

As it might be a cause of degradation or destruction to apply static electricity to products, do not apply static electricity or excessive voltage while assembling and measuring.

18.8. Input Power Capacity:

Products shall be used in the input power capacity as specified in this specifications. Inform Murata beforehand, in case that the components are used beyond such input power capacity range.

Preliminary datasheet

Preliminary

< Specification may be changed by Murata without notice >

Murata Manufacturing Co., Ltd.

19. PRECONDITION TO USE OUR PRODUCTS

PLEASE READ THIS NOTICE BEFORE USING OUR PRODUCTS.

Please make sure that your product has been evaluated and confirmed from the aspect of the fitness for the specifications of our product when our product is mounted to your product.

All the items and parameters in this product specification/datasheet/catalog have been prescribed on the premise that our product is used for the purpose, under the condition and in the environment specified in this specification. You are requested not to use our product deviating from the condition and the environment specified in this specification.

Please note that the only warranty that we provide regarding the products is its conformance to the specifications provided herein. Accordingly, we shall not be responsible for any defects in products or equipment incorporating such products, which are caused under the conditions other than those specified in this specification.

WE HEREBY DISCLAIMS ALL OTHER WARRANTIES REGARDING THE PRODUCTS, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, THAT THEY ARE DEFECT-FREE, OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.

The product shall not be used in any application listed below which requires especially high reliability for the prevention of such defect as may directly cause damage to the third party's life, body or property. You acknowledge and agree that, if you use our products in such applications, we will not be responsible for any failure to meet such requirements.

Furthermore, **YOU AGREE TO INDEMNIFY AND DEFEND US AND OUR AFFILIATES AGAINST ALL CLAIMS, DAMAGES, COSTS, AND EXPENSES THAT MAY BE INCURRED, INCLUDING WITHOUT LIMITATION, ATTORNEY FEES AND COSTS, DUE TO THE USE OF OUR PRODUCTS IN SUCH APPLICATIONS.**

- Aircraft equipment.
- Aerospace equipment
- Undersea equipment.
- Power plant control equipment
- Medical equipment.
- Transportation equipment (vehicles, trains, ships, elevator, etc.).
- Traffic signal equipment.
- Disaster prevention / crime prevention equipment.
- Burning / explosion control equipment
- Application of similar complexity and/ or reliability requirements to the applications listed in the above.

We expressly prohibit you from analyzing, breaking, reverse-engineering, remodeling altering, and reproducing our product. Our product cannot be used for the product which is prohibited from being manufactured, used, and sold by the regulations and laws in the world.

We do not warrant or represent that any license, either express or implied, is granted under any our patent right, copyright, mask work right, or our other intellectual property right relating to any combination, machine, or process in which our products or services are used. Information provided by us regarding third-party products or services does not constitute a license from us to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from us under our patents or other intellectual property.

Please do not use our products, our technical information and other data provided by us for the purpose of developing of mass-destruction weapons and the purpose of military use.

Moreover, you must comply with "foreign exchange and foreign trade law", the "U.S. export administration regulations", etc.

Please note that we may discontinue the manufacture of our products, due to reasons such as end of supply of materials and/or components from our suppliers.

By signing on specification sheet or approval sheet, you acknowledge that you are the legal representative for your company and that you understand and accept the validity of the contents herein. When you are not able to return the signed version of specification sheet or approval sheet within 30 days from receiving date of specification sheet or approval sheet, it shall be deemed to be your consent on the content of specification sheet or approval sheet. Customer acknowledges that engineering samples may deviate from specifications and may contain defects due to their development status. We reject any liability or product warranty for engineering samples. In particular we disclaim liability for damages caused by

- the use of the engineering sample other than for evaluation purposes, particularly the installation or integration in the product to be sold by you,
- deviation or lapse in function of engineering sample,
- improper use of engineering samples.

We disclaim any liability for consequential and incidental damages.

If you can't agree the above contents, you should inquire our sales.

Preliminary

< Specification may be changed by Murata without notice >

Murata Manufacturing Co., Ltd.

20. Regulatory requirements

If the OEM or system integrator incorporates the 1MD module into their final product and wishes to reuse the 1MD module's FCC certification, it is the OEM/system integrator's responsibility to ensure compliance is met on production units.

20.1. FCC Warning Notice

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference and (2) this device must accept any interference received, including interference that may cause undesired operation.

Information to Be Supplied to the End User by the OEM or Integrator

The following regulatory and safety notices must be published in documentation supplied to the end user of the product or system incorporating an adapter in compliance with local regulations. Host system must be labeled with "Contains FCC ID: VPYLB1MDIMP004. This imp004m module is to be used only for mobile and fixed application. In order to re-use the imp004m module FCC approvals, the antenna must be installed to provide a separation distance of at least 20cm from all persons and must not be co-located with any other antenna or transmitter. If the module is installed with a separation distance of less than 20cm from all person or is co-located or operating in conjunction with any other antenna or transmitter then additional FCC testing and certification may be required. End-Users must be provided with transmitter operation conditions for satisfying RF exposure compliance.

OEM integrators must ensure that the end user has no manual instructions to remove or install the imp004m module.

20.2. IC Warning Notice

This device complies with Industry Canada license-exempt RSS standard(s).

a. Common information Operation is subject to the following two conditions:

1. This device may not cause interference, and
2. This device must accept any interference, including interference that may cause undesired operation of the device.

Cet appareil est conforme à la norme(normes) RSS exempte de licence d'Industrie Canada

a. Informations communes Son fonctionnement est soumis aux deux conditions suivantes:

1. Ce dispositif ne peut causer des interférences, et
2. Ce dispositif doit accepter toute interférence, y compris les interférences qui peuvent causer un mauvais fonctionnement du dispositif.

Information to Be Supplied to the End User by the OEM or Integrator Modular information form OEM

Information to be Supplied to the End User by the OEM or Integrator

The following regulatory and safety notices must be published in documentation supplied to the end user of the product or system incorporating an adapter in compliance with local regulations. Host system must be labeled with "Contains IC: 772C-LB1MDIMP004" This imp004m module is to be used only for mobile and fixed application. In order to re-use the imp004m module IC approvals, the antenna(s) used in this transmitter must be installed to provide a separation distance of at least 20cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter. If antenna is installed with a separation distance of less than 20cm from all person or is co-located or operating in conjunction with any other antenna or transmitter then additional IC testing and certification may be required. End-Users must be provided with transmitter operation conditions for satisfying RF exposure compliance.

OEM integrators must ensure that the end user has no manual instructions to remove or install the imp004m module.