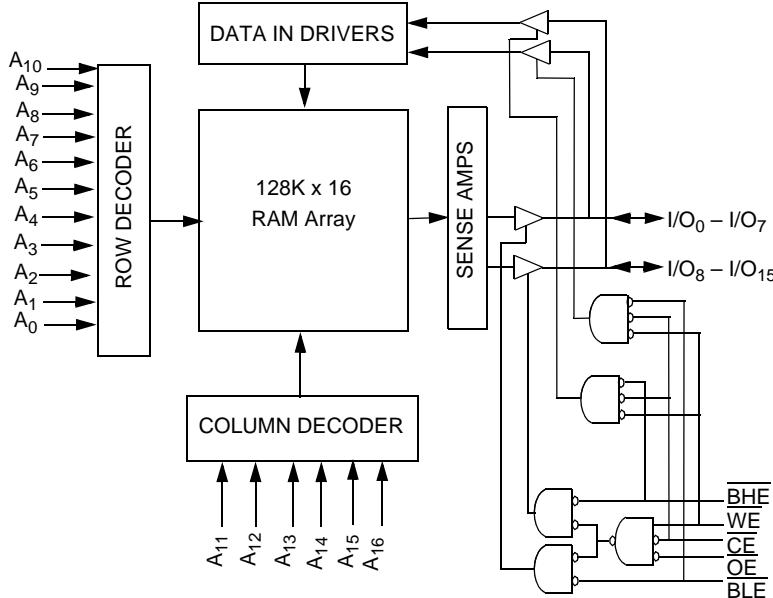


2-Mbit (128K x 16) Static RAM


Features

- Temperature Ranges
 - Industrial: -40°C to 85°C
 - Automotive-A: -40°C to 85°C
 - Automotive-E: -40°C to 125°C
- High speed: 55 ns
- Wide voltage range: 2.7V–3.6V
- Ultra-low active, standby power
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features
- TTL-compatible inputs and outputs
- Automatic power-down when deselected
- CMOS for optimum speed/power
- Available in standard Pb-free 44-pin TSOP Type II,
Pb-free and non Pb-free 48-ball FBGA packages

Functional Description^[1]

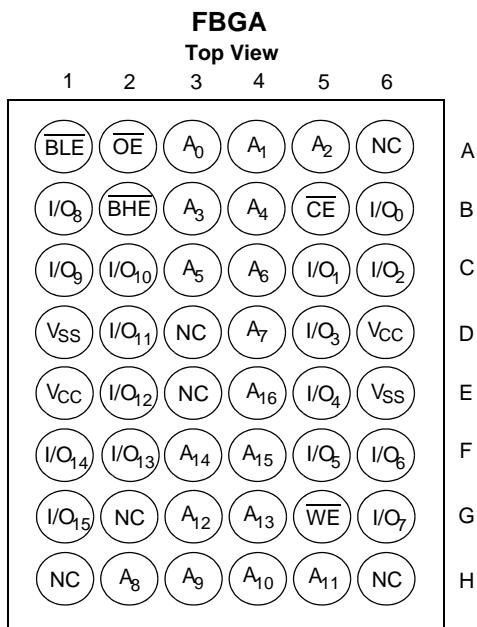
The CY62136VN is a high-performance CMOS static RAM organized as 128K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in

Logic Block Diagram

PinConfigurations^[3]

TSOP II (Forward) Top View

A ₄	1	44	A ₅
A ₃	2	43	A ₆
A ₂	3	42	A ₇
A ₁	4	41	OE
A ₀	5	40	BHE
CE	6	39	BLE
I/O ₀	7	38	I/O ₁₅
I/O ₁	8	37	I/O ₁₄
I/O ₂	9	36	I/O ₁₃
I/O ₃	10	35	I/O ₁₂
V _{CC}	11	34	V _{SS}
V _{SS}	12	33	V _{CC}
I/O ₄	13	32	I/O ₁
I/O ₅	14	31	I/O ₁₀
I/O ₆	15	30	I/O ₉
I/O ₇	16	29	I/O ₈
WE	17	28	NC
A ₁₆	18	27	A ₈
A ₁₅	19	26	A ₉
A ₁₄	20	25	A ₁₀
A ₁₃	21	24	A ₁₁
A ₁₂	22	23	NC


Note:

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on <http://www.cypress.com>.

Product Portfolio

Product	V _{CC} Range (V)			Speed	Ranges	Power Dissipation			
						Operating, I _{CC} (mA)		Standby, I _{SB2} (μA)	
	Min	Typ. ^[2]	Max			Typ. ^[2]	Maximum	Typ. ^[2]	Maximum
CY62136VNLL	2.7	3.0	3.6	55	Industrial	7	20	1	15
				55	Automotive-A	7	20	1	15
				70	Industrial	7	15	1	15
				70	Automotive-A	7	15	1	15
				70	Automotive-E	7	20	1	20

Pin Configurations^[3]

Notes:

2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} Typ, T_A = 25°C.
3. NC pins are not connected on the die.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature -65°C to $+150^{\circ}\text{C}$

Ambient Temperature with

Power Applied -55°C to $+125^{\circ}\text{C}$

Supply Voltage to Ground Potential -0.5V to $+4.6\text{V}$

DC Voltage Applied to Outputs
in High-Z State^[4] -0.5V to $V_{\text{CC}} + 0.5\text{V}$

DC Input Voltage^[4] -0.5V to $V_{\text{CC}} + 0.5\text{V}$

Output Current into Outputs (LOW) 20 mA

Static Discharge Voltage $> 2001\text{V}$
(per MIL-STD-883, Method 3015)

Latch-up Current $> 200\text{ mA}$

Operating Range

Range	Ambient Temperature [T_A] ^[5]	V_{CC}
Industrial	-40°C to $+85^{\circ}\text{C}$	2.7V to 3.6V
Automotive-A	-40°C to $+85^{\circ}\text{C}$	
Automotive-E	-40°C to $+125^{\circ}\text{C}$	

Electrical Characteristics

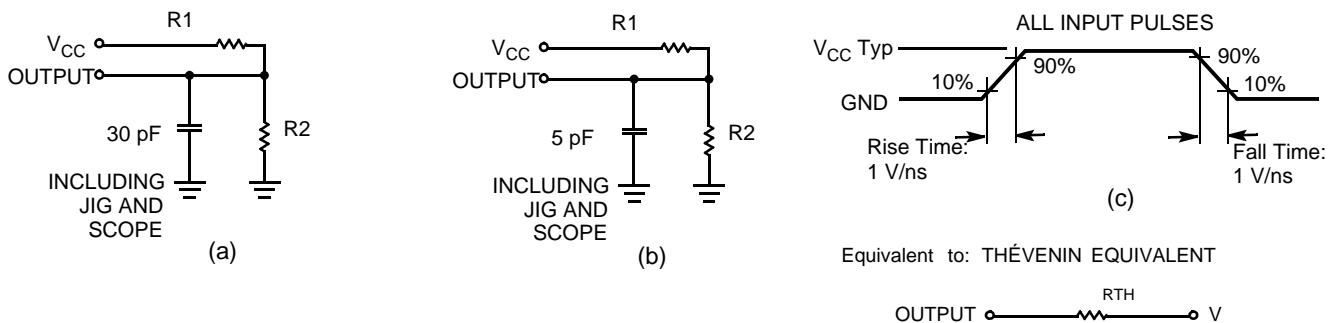
 Over the Operating Range

Parameter	Description	Test Conditions	-55			-70			Unit	
			Min.	Typ. ^[2]	Max.	Min.	Typ. ^[2]	Max.		
V_{OH}	Output HIGH Voltage	$V_{\text{CC}} = 2.7\text{V}$, $I_{\text{OH}} = -1.0\text{ mA}$	2.4			2.4			V	
V_{OL}	Output LOW Voltage	$V_{\text{CC}} = 2.7\text{V}$, $I_{\text{OL}} = 2.1\text{ mA}$			0.4			0.4	V	
V_{IH}	Input HIGH Voltage	$V_{\text{CC}} = 3.6\text{V}$	2.2		$V_{\text{CC}} + 0.5\text{V}$	2.2		$V_{\text{CC}} + 0.5\text{V}$	V	
V_{IL}	Input LOW Voltage	$V_{\text{CC}} = 2.7\text{V}$	-0.5		0.8	-0.5		0.8	V	
I_{IX}	Input Leakage Current	$\text{GND} \leq V_I \leq V_{\text{CC}}$	Ind'l	-1		+1	-1		μA	
			Auto-A	-1		+1	-1		μA	
			Auto-E				-10		μA	
I_{OZ}	Output Leakage Current	$\text{GND} \leq V_O \leq V_{\text{CC}}$, Output Disabled	Ind'l	-1		+1	-1		μA	
			Auto-A	-1		+1	-1		μA	
			Auto-E				-10		μA	
I_{CC}	V_{CC} Operating Supply Current	$f = f_{\text{MAX}} = 1/\tau_{\text{RC}}$	$V_{\text{CC}} = 3.6\text{V}$, $I_{\text{OUT}} = 0\text{ mA}$, CMOS Levels	Ind'l		7	20	7	15	mA
				Auto-A		7	20	7	15	
				Auto-E				7	20	
		$f = 1\text{ MHz}$		Ind'l		1	2	1	2	mA
				Auto-A		1	2	1	2	
				Auto-E				1	2	
I_{SB1}	Automatic CE Power-down Current—CMOS Inputs	$\overline{\text{CE}} \geq V_{\text{CC}} - 0.3\text{V}$, $V_{\text{IN}} \geq V_{\text{CC}} - 0.3\text{V}$ or $V_{\text{IN}} \leq 0.3\text{V}$, $f = f_{\text{MAX}}$		Ind'l			100		100	μA
				Auto-A			100		100	μA
				Auto-E					100	μA
I_{SB2}	Automatic CE Power-down Current—CMOS Inputs	$\overline{\text{CE}} \geq V_{\text{CC}} - 0.3\text{V}$, $V_{\text{IN}} \geq V_{\text{CC}} - 0.3\text{V}$ or $V_{\text{IN}} \leq 0.3\text{V}$, $f = 0$		Ind'l		1	15	1	15	μA
				Auto-A		1	15	1	15	
				Auto-E				1	20	

Capacitance^[6]

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$T_A = 25^{\circ}\text{C}$, $f = 1\text{ MHz}$, $V_{\text{CC}} = V_{\text{CC}(\text{typ})}$	6	pF
C_{OUT}	Output Capacitance		8	pF

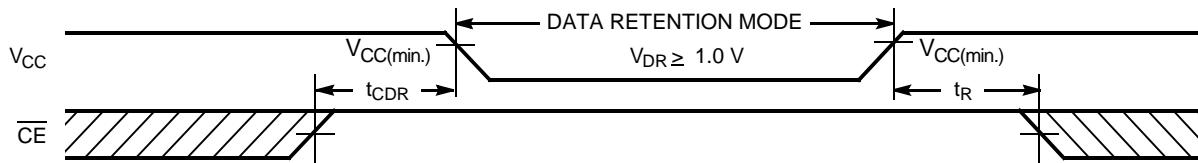
Notes:


4. $V_{\text{IL}}(\text{min}) = -2.0\text{V}$ for pulse durations less than 20 ns.

5. T_A is the "Instant-On" case temperature.

6. Tested initially and after any design or process changes that may affect these parameters.

Thermal Resistance^[6]


Parameter	Description	Test Conditions	TSOPII	FBGA	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	60	55	°C/W
Θ_{JC}	Thermal Resistance (Junction to Case)		22	16	°C/W

AC Test Loads and Waveforms

Parameters	Value	Unit
R_1	1105	Ohms
R_2	1550	Ohms
R_{TH}	645	Ohms
V_{TH}	1.75	Volts

Data Retention Characteristics (Over the Operating Range)

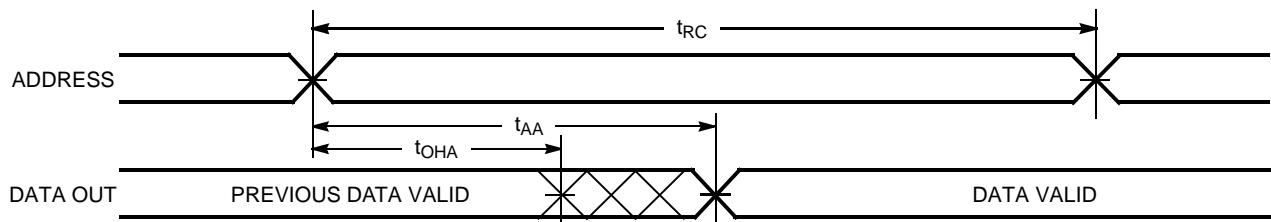
Parameter	Description	Conditions ^[9]	Min.	Typ. ^[2]	Max.	Unit
V_{DR}	V_{CC} for Data Retention		1.0			V
I_{CCDR}	Data Retention Current	$V_{CC} = 1.0V$, $\overline{CE} \geq V_{CC} - 0.3V$, $V_{IN} \geq V_{CC} - 0.3V$ or $V_{IN} \leq 0.3V$,		0.5	7.5	μA
t_{CDR} ^[6]	Chip Deselect to Data Retention Time		0			ns
t_R ^[7]	Operation Recovery Time		70			ns

Data Retention Waveform

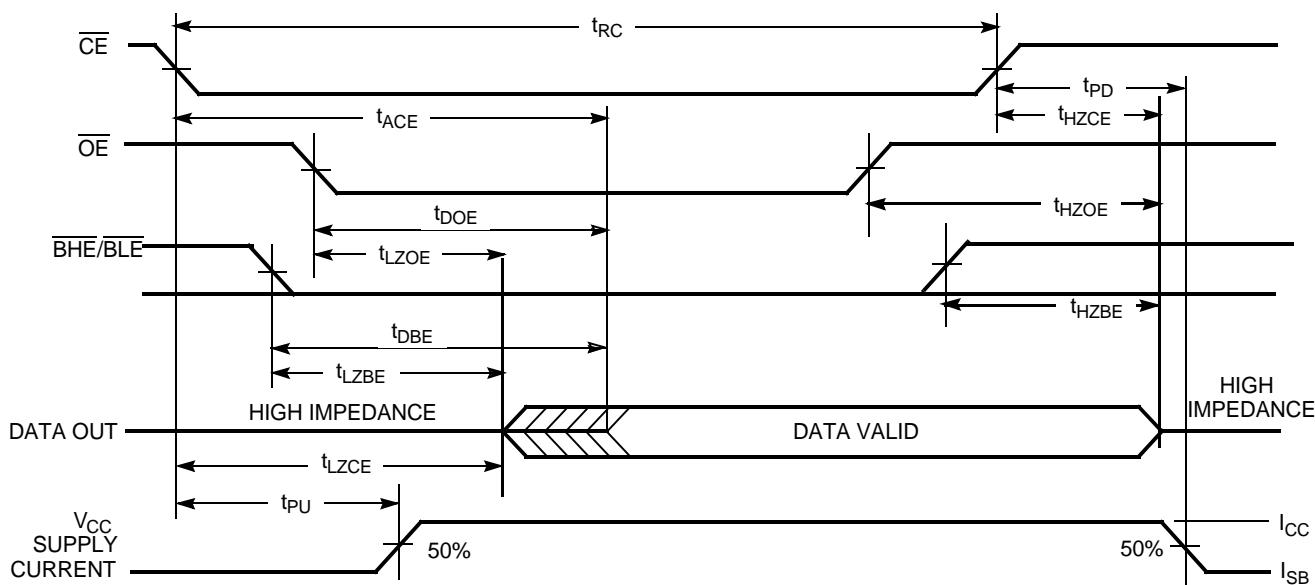
Note:

7. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(\min.)} \geq 100$ ms or stable at $V_{CC(\min.)} \geq 100$ ms.
 8. No input may exceed $V_{CC} + 0.3V$

Switching Characteristics Over the Operating Range [9]


Parameter	Description	55 ns		70 ns		Unit
		Min.	Max.	Min.	Max.	
Read Cycle						
t_{RC}	Read Cycle Time	55		70		ns
t_{AA}	Address to Data Valid		55		70	ns
t_{OHA}	Data Hold from Address Change	10		10		ns
t_{ACE}	\overline{CE} LOW to Data Valid		55		70	ns
t_{DOE}	\overline{OE} LOW to Data Valid		25		35	ns
t_{LZOE}	\overline{OE} LOW to Low-Z ^[10]	5		5		ns
t_{HZOE}	\overline{OE} HIGH to High-Z ^[10, 11]		25		25	ns
t_{LZCE}	\overline{CE} LOW to Low-Z ^[10]	10		10		ns
t_{HZCE}	\overline{CE} HIGH to High-Z ^[10, 11]		25		25	ns
t_{PU}	\overline{CE} LOW to Power-up	0		0		ns
t_{PD}	\overline{CE} HIGH to Power-down		55		70	ns
t_{DBE}	$\overline{BLE} / \overline{BHE}$ LOW to Data Valid		25		35	ns
t_{LZBE}	$\overline{BLE} / \overline{BHE}$ LOW to Low-Z ^[10, 11]	5		5		ns
t_{HZBE}	$\overline{BLE} / \overline{BHE}$ HIGH to High-Z ^[12]		25		25	ns
Write Cycle ^[12, 13]						
t_{WC}	Write Cycle Time	55		70		ns
t_{SCE}	\overline{CE} LOW to Write End	45		60		ns
t_{AW}	Address Set-up to Write End	45		60		ns
t_{HA}	Address Hold from Write End	0		0		ns
t_{SA}	Address Set-up to Write Start	0		0		ns
t_{PWE}	\overline{WE} Pulse Width	40		50		ns
t_{BW}	$\overline{BLE} / \overline{BHE}$ LOW to Write End	50		60		ns
t_{SD}	Data Set-up to Write End	25		30		ns
t_{HD}	Data Hold from Write End	0		0		ns
t_{HZWE}	\overline{WE} LOW to High-Z ^[10, 11]		20		25	ns
t_{LZWE}	\overline{WE} HIGH to Low-Z ^[10]	5		10		ns

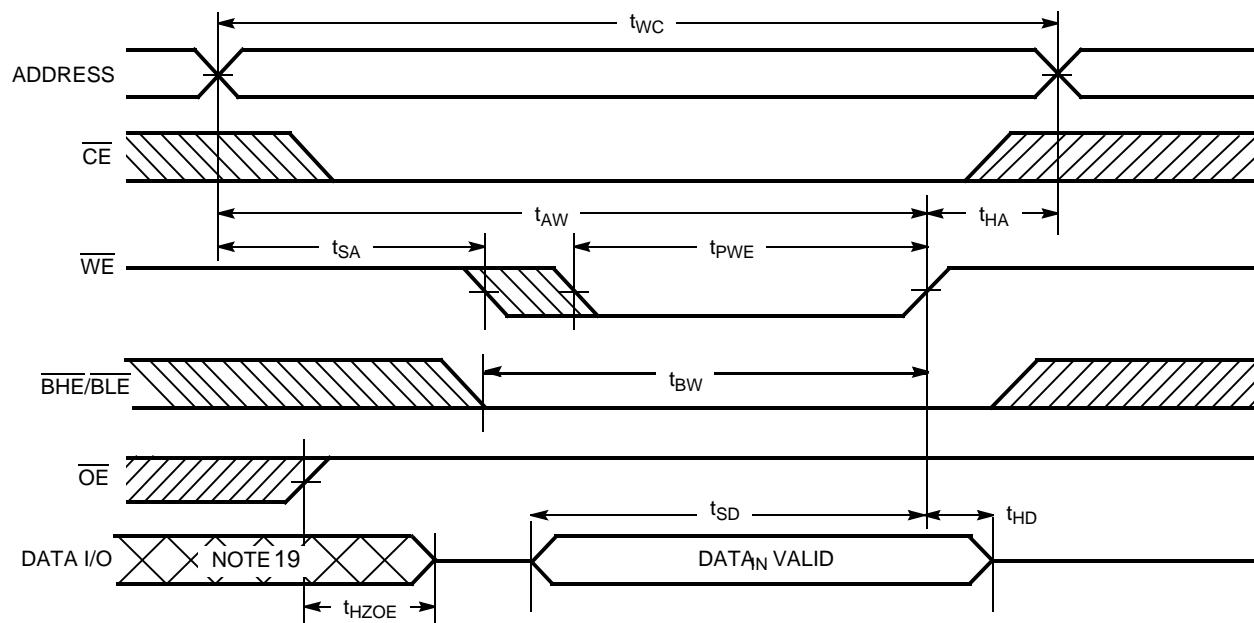
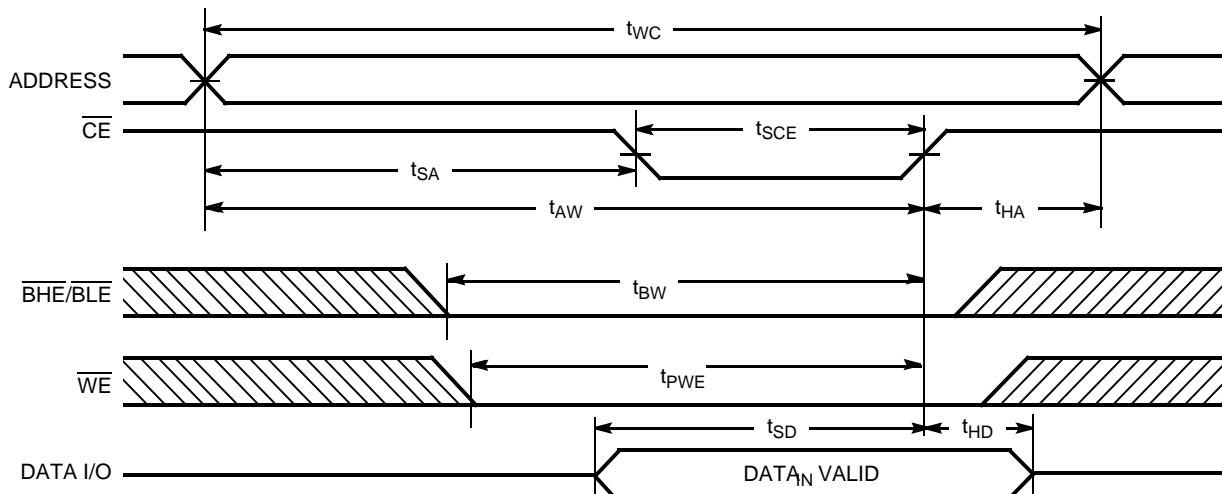
Notes:


9. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC} typ., and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
10. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device.
11. t_{HZOE} , t_{HZCE} , and t_{HZWE} are specified with $C_L = 5$ pF as in (b) of AC Test Loads. Transition is measured ± 500 mV from steady-state voltage.
12. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
13. The minimum write cycle time for write cycle 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD} .

Switching Waveforms

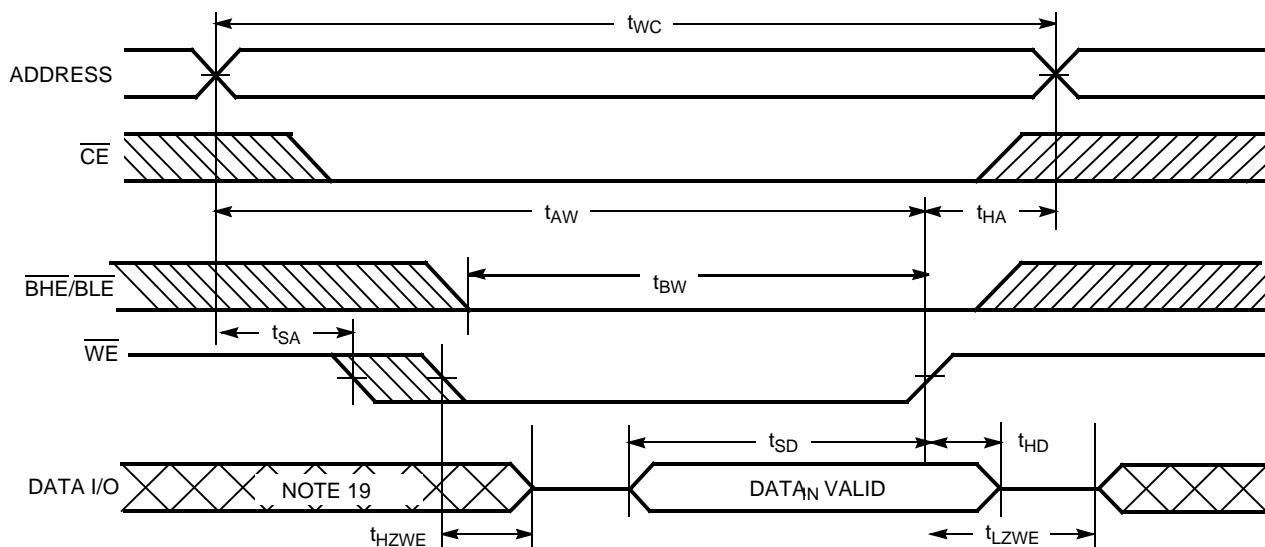
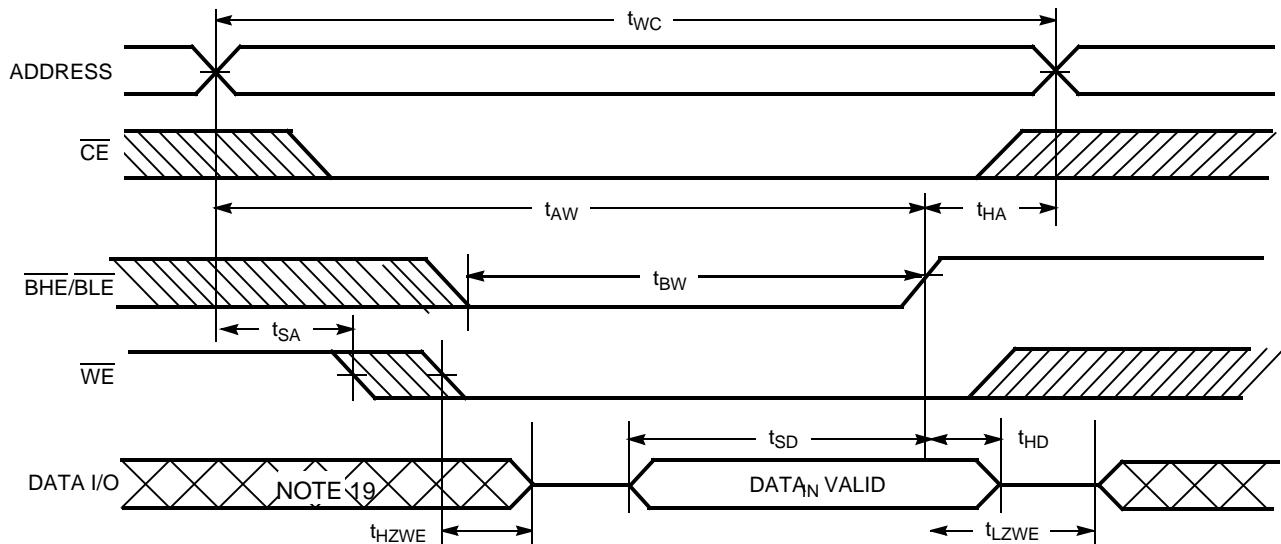
Read Cycle No. 1^[14, 15]

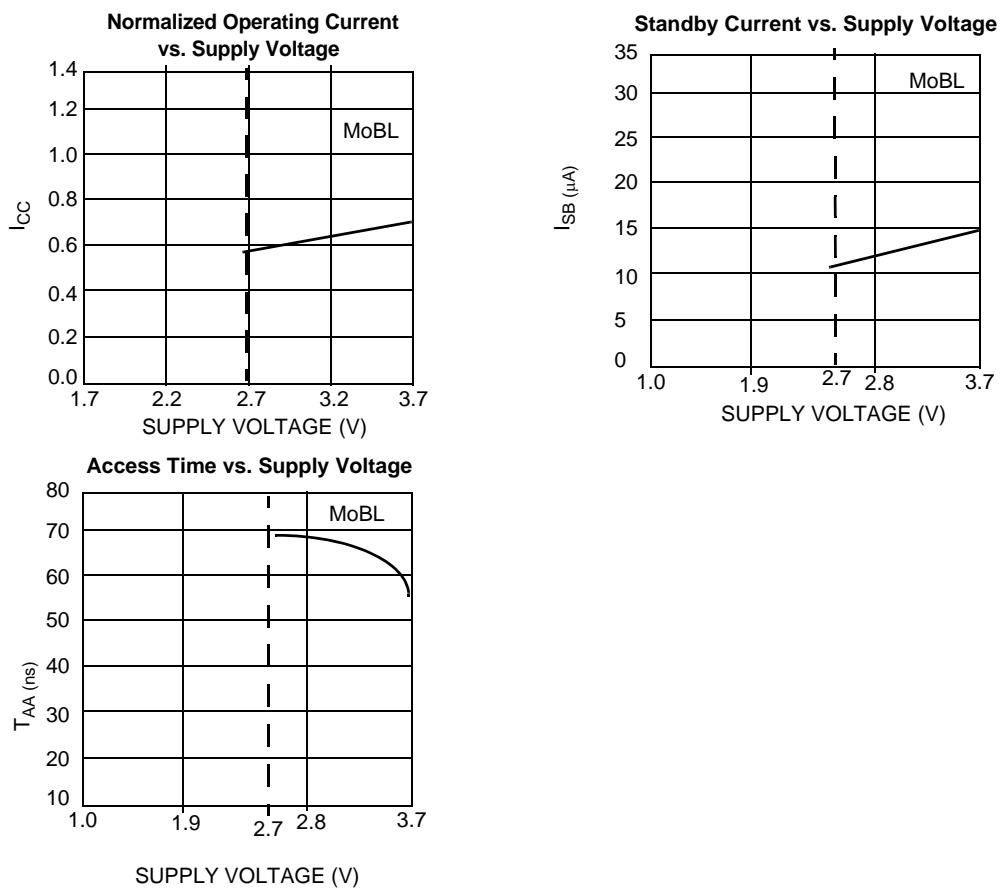
Read Cycle No. 2^[15, 16]



Notes:

14. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.

15. \overline{WE} is HIGH for read cycle.



16. Address valid prior to or coincident with \overline{CE} transition LOW.


Switching Waveforms (continued)

Write Cycle No. 1 (WE Controlled)^[12, 17, 18]

Write Cycle No. 2 (CE Controlled)^[12, 17, 18]

Notes:

17. Data I/O is high impedance if $\overline{OE} = V_{IH}$.
18. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
19. During this period, the I/Os are in output state and input signals should not be applied.

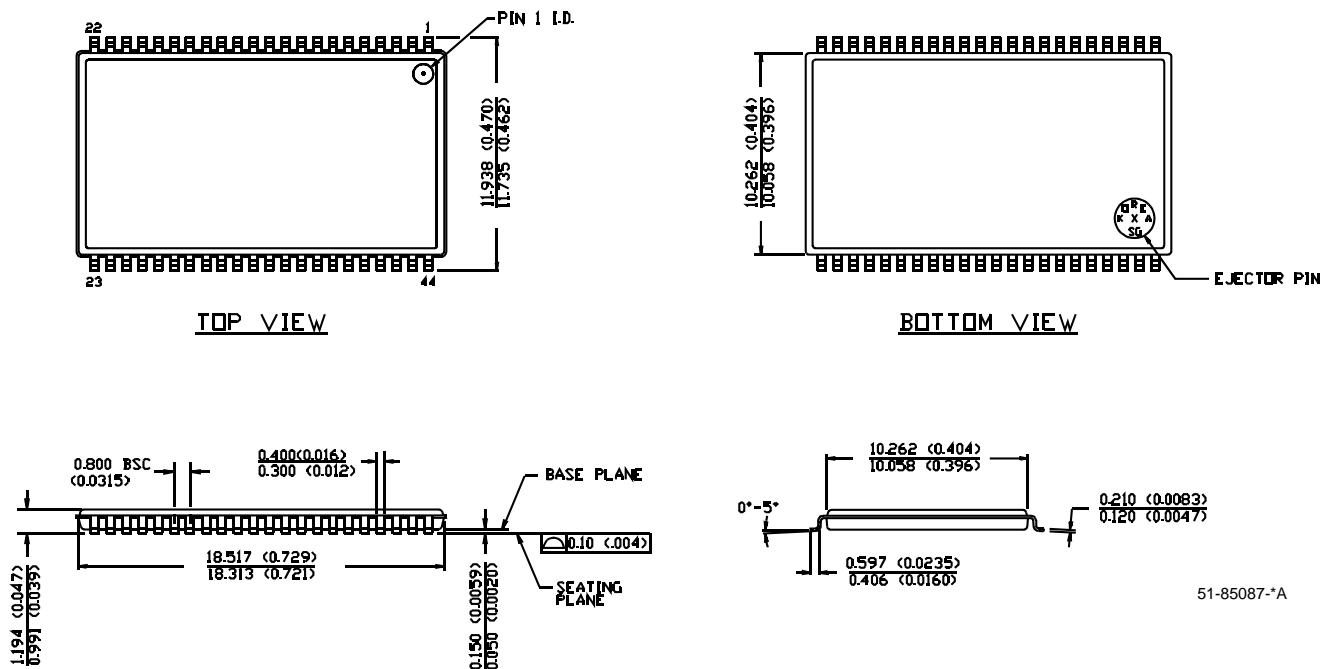
Switching Waveforms (continued)

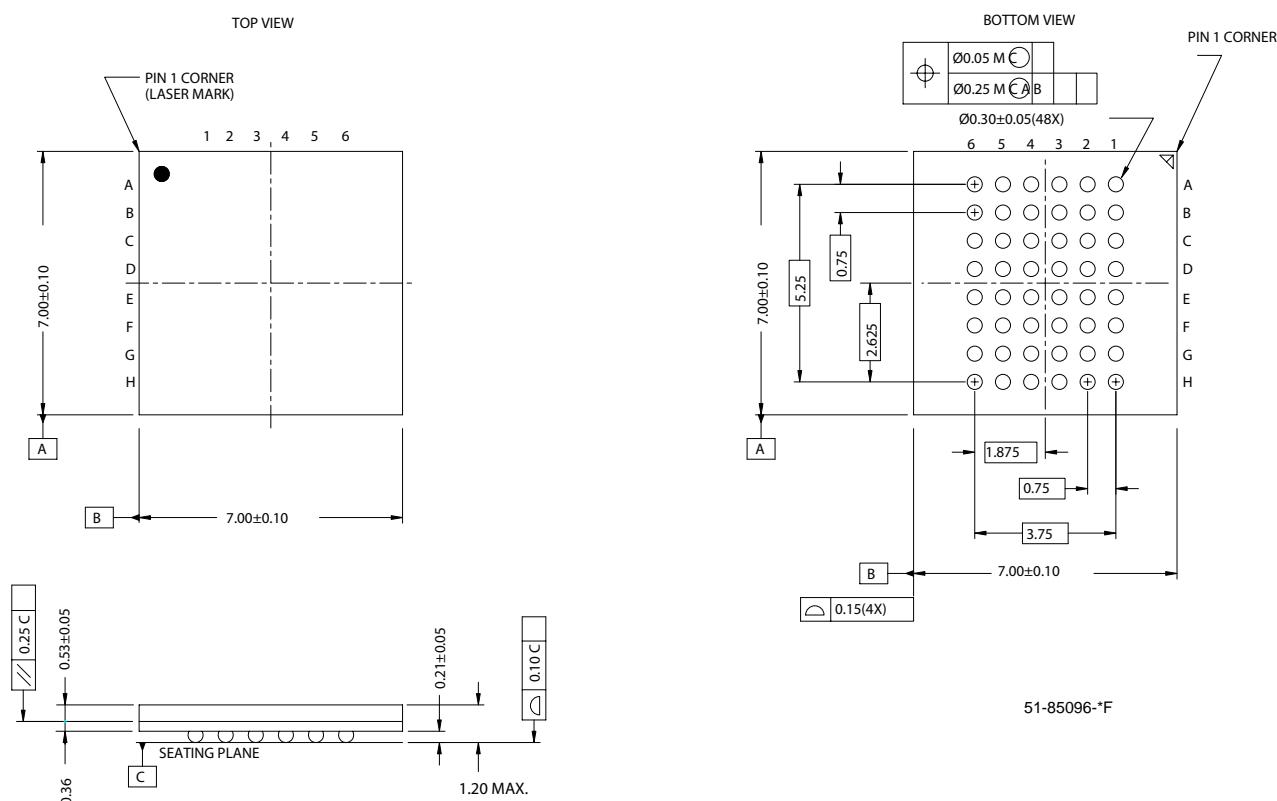
Write Cycle No. 3 (WE Controlled, OE LOW)^[13, 18]

Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)^[19]

Typical DC and AC Characteristics

Truth Table


CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
H	X	X	X	X	High-Z	Deselect/Power-down	Standby (I_{SB})
L	H	L	L	L	Data Out (I/O ₀ –I/O ₁₅)	Read	Active (I_{CC})
L	H	L	H	L	Data Out (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High-Z	Read	Active (I_{CC})
L	H	L	L	H	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High-Z	Read	Active (I_{CC})
L	H	L	H	H	High-Z	Deselect/Output Disabled	Active (I_{CC})
L	H	H	L	L	High-Z	Deselect/Output Disabled	Active (I_{CC})
L	H	H	H	L	High-Z	Deselect/Output Disabled	Active (I_{CC})
L	H	H	L	H	High-Z	Deselect/Output Disabled	Active (I_{CC})
L	L	X	L	L	Data In (I/O ₀ –I/O ₁₅)	Write	Active (I_{CC})
L	L	X	H	L	Data In (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High-Z	Write	Active (I_{CC})
L	L	X	L	H	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High-Z	Write	Active (I_{CC})


Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY62136VNLL-55ZXI	51-85087	44-pin TSOP II (Pb-Free)	Industrial
	CY62136VNLL-55BAI	51-85096	48-Ball (7.00 mm x 7.00 mm) FBGA	
	CY62136VNLL-55ZSXA	51-85087	44-pin TSOP II (Pb-Free)	Automotive-A
70	CY62136VNLL-70ZXI	51-85087	44-pin TSOP II (Pb-Free)	Industrial
	CY62136VNLL-70BAI	51-85096	48-Ball (7.00 mm x 7.00 mm) FBGA	
	CY62136VNLL-70BAXA	51-85096	48-Ball (7.00 mm x 7.00 mm) FBGA (Pb-Free)	Automotive-A
	CY62136VNLL-70ZSXA	51-85087	44-pin TSOP II (Pb-Free)	
	CY62136VNLL-70ZSXE	51-85087	44-pin TSOP II (Pb-Free)	Automotive-E

Please contact your local Cypress sales representative for availability of these parts

Package Diagrams
44-pin TSOP II (51-85087)

 DIMENSION IN MM (INCH)
 MAX
 MIN

Package Diagrams (continued)
48-Ball (7.00 mm x 7.00 mm) FBGA (51-85096)

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the products of their respective holders.

Document History Page

Document Title: CY62136VN MoBL® 2-Mbit (128K x 16) Static RAM
Document Number: 001-06510

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	426503	See ECN	RXU	New Data Sheet
*A	488954	See ECN	NXR	Added Automotive product Updated ordering Information table

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Cypress Semiconductor:

[CY62136VNLL-55ZSXA](#) [CY62136VNLL-55ZSXAT](#) [CY62136VNLL-70BAXA](#) [CY62136VNLL-70BAXAT](#)
[CY62136VNLL-70ZSXA](#) [CY62136VNLL-70ZSXAT](#)