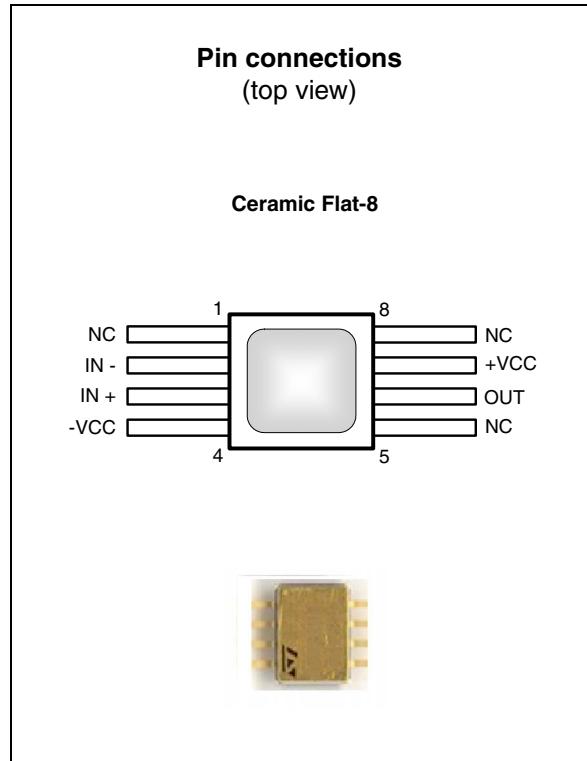


Rad-hard 400 μ A high-speed operational amplifier

Preliminary data

Features


- OptimWattTM device featuring ultra-low 2 mW consumption and low 400 μ A quiescent current^(a)
- Bandwidth: 120 MHz (gain = 2)
- Slew rate: 115 V/ μ s
- Specified on 1 k Ω
- Input noise: 7.5 nV/ $\sqrt{\text{Hz}}$
- Tested with 5 V power supply
- 300 krad MIL-STD-883 1019.7 ELDRS free compliant
- SEL immune at 125° C, LET up to 110 MEV.cm²/mg
- SET characterized, LET up to 110 MEV.cm²/mg

Applications

- Low-power, high-speed systems
- Communication and space equipment
- Harsh radiation environments
- ADC drivers

Description

The RHF310 is a very low power, high-speed operational amplifier. A bandwidth of 120 MHz is achieved while drawing only 400 μ A of quiescent current. This low-power characteristic is particularly suitable for high-speed, battery-powered equipment requiring dynamic performance. The RHF310 is a single operator available in Flat-8 package, saving board room as well as providing excellent thermal performance.

a. OptimWattTM is an STMicroelectronics registered trademark that applies to products with specific features that optimize energy efficiency.

Contents

1	Absolute maximum ratings and operating conditions	3
2	Electrical characteristics	4
3	Power supply considerations	10
3.1	Single power supply	10
4	Noise measurements	12
4.1	Measurement of the input voltage noise eN	13
4.2	Measurement of the negative input current noise iNn	13
4.3	Measurement of the positive input current noise iNp	13
5	Intermodulation distortion product	14
6	Bias of an inverting amplifier	16
7	Active filtering	17
8	Package information	18
8.1	Ceramic Flat-8 package information	19
9	Ordering information	20
10	Revision history	21

1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage ⁽¹⁾ (voltage difference between $-V_{CC}$ and $+V_{CC}$ pins)	6	V
V_{id}	Differential input voltage ⁽²⁾	$+-0.5$	V
V_{in}	Input voltage range ⁽³⁾	$+-2.5$	V
T_{stg}	Storage temperature	-65 to +150	°C
T_j	Maximum junction temperature	150	°C
R_{thja}	Thermal resistance junction to ambient area	125	°C/W
R_{thjc}	Thermal resistance junction to case	40	°C/W
P_{max}	Maximum power dissipation ⁽⁴⁾ (at $T_{amb} = 25^\circ C$) for $T_j = 150^\circ C$	250	mW
ESD	HBM: human body model ⁽⁵⁾ pins 1, 4, 5, 6, 7 and 8 pins 2 and 3	2 0.5	kV
	MM: machine model ⁽⁶⁾ pins 1, 4, 5, 6, 7 and 8 pins 2 and 3	200 60	V
	CDM: charged device model (all pins) ⁽⁷⁾	1.5	kV
	Latch-up immunity	200	mA

1. All voltages values are measured with respect to the ground pin.
2. Differential voltage is the non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltage must never exceed $V_{CC} + 0.3$ V.
4. Short-circuits can cause excessive heating. Destructive dissipation can result from short circuit on amplifiers.
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
6. This is a minimum value. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
7. Charged device model: all pins and package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	4.5 to 5.5	V
V_{icm}	Common mode input voltage	$-V_{CC} + 1.5$ V to $+V_{CC} - 1.5$ V	V
T_j	Operating junction temperature range	-55 to +125	°C

2 Electrical characteristics

Table 3. Electrical characteristics for $V_{CC} = \pm 2.5$ V, $T_{amb} = 25^\circ$ C (unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
DC performance						
V_{io}	Input offset voltage	T_{amb}		1.7	6.5	mV
	Offset voltage between both inputs	$T_{min} < T_{amb} < T_{max}$			3.9	
ΔV_{io}	V_{io} drift vs. temperature	$T_{min} < T_{amb} < T_{max}$		4		$\mu V/^\circ C$
I_{ib+}	Non-inverting input bias current	T_{amb}		3.1	12	μA
	DC current necessary to bias the + input	$T_{min} < T_{amb} < T_{max}$			6.8	
I_{ib-}	Inverting input bias current	T_{amb}		0.1	5	μA
	DC current necessary to bias the - input	$T_{min} < T_{amb} < T_{max}$			1.57	
CMR	Common mode rejection ratio	$\Delta V_{ic} = \pm 1$ V	57	61		dB
	$20 \log (\Delta V_{ic}/\Delta V_{io})$	$T_{min} < T_{amb} < T_{max}$	58			
SVR	Supply voltage rejection ratio	$\Delta V_{CC} = 3.5$ V to 5 V	65	82		dB
	$20 \log (\Delta V_{CC}/\Delta V_{io})$	$T_{min} < T_{amb} < T_{max}$	77			
PSRR	Power supply rejection ratio	$A_V = +1, \Delta V_{CC} = \pm 100$ mV at 1 kHz		50		dB
I_{CC}	Positive supply current	No load		400	530	μA
	DC consumption with no input signal	$T_{min} < T_{amb} < T_{max}$			479	
Dynamic performance and output characteristics						
R_{OL}	Transimpedance	$R_L = 1$ k Ω , $V_{out} = \pm 1$ V	0.6	1.45		$M\Omega$
	Output voltage/input current gain in open loop of a CFA. For a VFA, the analog of this feature is the open loop gain (A_{VD})	$T_{min} < T_{amb} < T_{max}$	0.64			$M\Omega$
Bw	-3 dB bandwidth Frequency where the gain is 3 dB below the DC gain $A_V^{(1)}$	Small signal $R_L = 1$ k Ω $A_V = +1, R_{fb} = 3$ k Ω $A_V = +2, R_{fb} = 3$ k Ω $A_V = +10, R_{fb} = 510$ Ω	80	230 120 26		MHz
		$A_V = +2, R_{fb} = 3$ k Ω $T_{min} < T_{amb} < T_{max}$	TBD			
	Gain flatness at 0.1 dB Band of frequency where the gain variation does not exceed 0.1 dB	Small signal $V_{out} = 20$ mV _{p-p} $A_V = +2, R_L = 1$ k Ω		25		
SR	Slew rate Maximum output speed of sweep in large signal	$V_{out} = 2$ V _{p-p} , $A_V = +2$, $R_L = 1$ k Ω	75	115		V/ μ s
		$T_{min} < T_{amb} < T_{max}$		90		

Table 3. Electrical characteristics for $V_{CC} = \pm 2.5$ V, $T_{amb} = 25^\circ C$ (unless otherwise specified) (continued)

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{OH}	High level output voltage	$R_L = 1 \text{ k}\Omega$	1.55	1.65		V
		$T_{min} < T_{amb} < T_{max}$		1.56		
V_{OL}	Low level output voltage	$R_L = 1 \text{ k}\Omega$		-1.66	-1.55	V
		$T_{min} < T_{amb} < T_{max}$		-1.58		
I_{out}	I_{sink} Short-circuit output current coming into the op-amp ⁽²⁾	Output to GND	70	110		mA
		$T_{min} < T_{amb} < T_{max}$	88			
	I_{source} Output current coming out of the op-amp ⁽³⁾	Output to GND	60	100		
		$T_{min} < T_{amb} < T_{max}$	75			
Noise and distortion						
eN	Equivalent input noise voltage ⁽⁴⁾	$F = 100 \text{ kHz}$		7.5		$\text{nV}/\sqrt{\text{Hz}}$
iN	Equivalent input noise current (+) ⁽⁴⁾	$F = 100 \text{ kHz}$		13		$\text{pA}/\sqrt{\text{Hz}}$
	Equivalent input noise current (-) ⁽⁴⁾	$F = 100 \text{ kHz}$		6		$\text{pA}/\sqrt{\text{Hz}}$
SFDR	Spurious free dynamic range The highest harmonic of the output spectrum when injecting a filtered sine wave	$V_{out} = 2 \text{ V}_{p-p}$, $A_V = +2$, $R_L = 1 \text{ k}\Omega$ $F = 1 \text{ MHz}$ $F = 10 \text{ MHz}$		-87 -55		dBc dBc

1. Gain bandwidth product criterion is not applicable for CFA.

2. See [Figure 10](#).3. See [Figure 11](#).4. See [Chapter 5 on page 14](#).

Note: For $T_{min} < T_{amb} < T_{max}$, minimum and maximum values are the worst case of the parameter on a standard lot along the entire temperature variation. The evaluation is performed on 50 units in Flat-8 package. The temperature curves on pages 6, 7 and 8 are a representation of the average of these 50 units.

Table 4. Closed-loop gain and feedback components

V_{CC} (V)	Gain	R_{fb} (Ω)
± 2.5	+10	100
	-10	180
	+4	150
	-4	300
	+2	1.2k
	-2	1k
	+1	3k
	-1	3k

Figure 1. Frequency response, positive gain Figure 2. Frequency response vs. capa-load

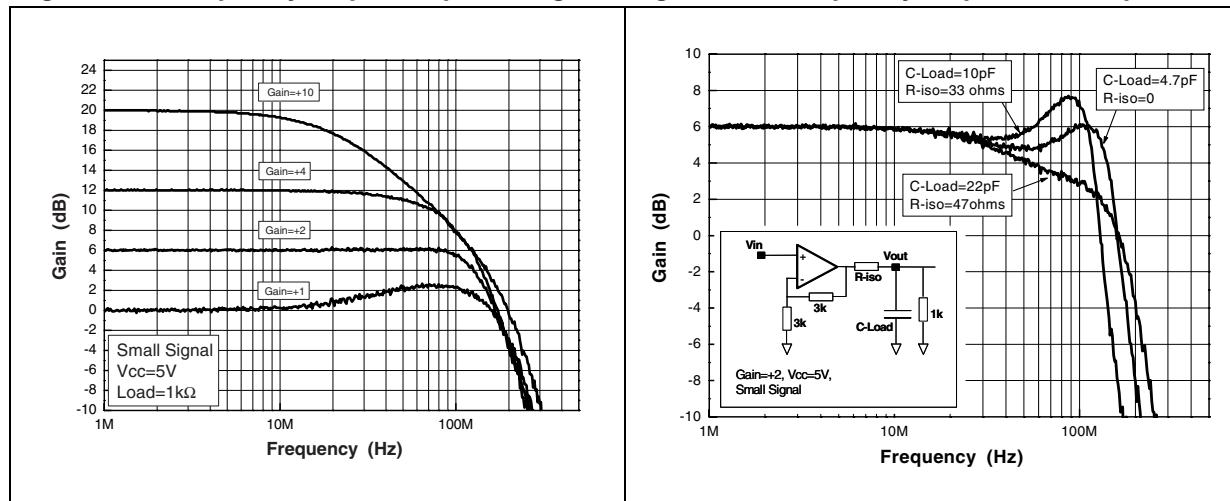


Figure 3. Output amplitude vs. load

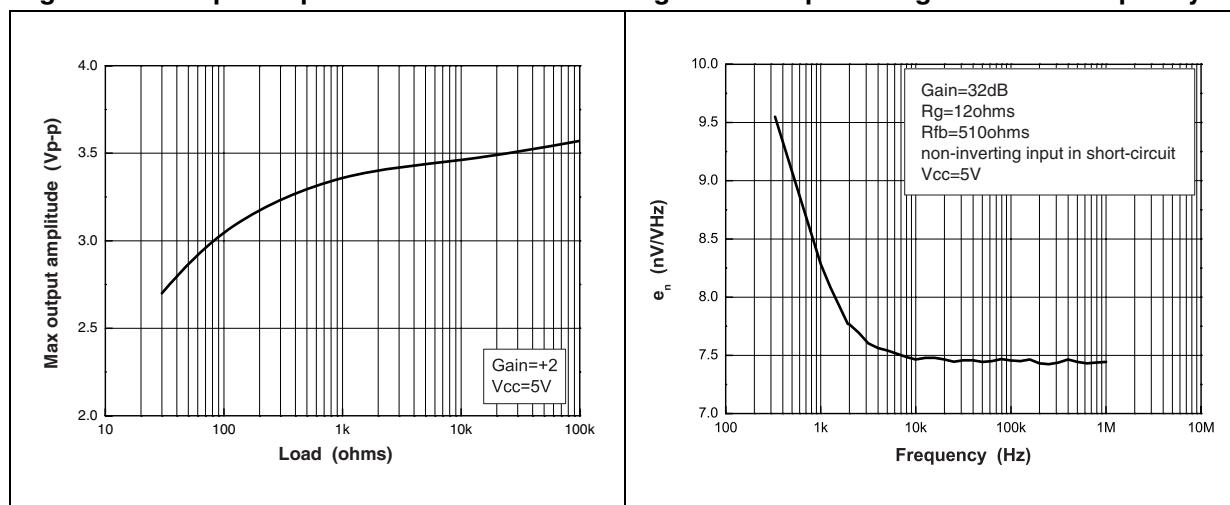


Figure 5. Distortion at 1 MHz

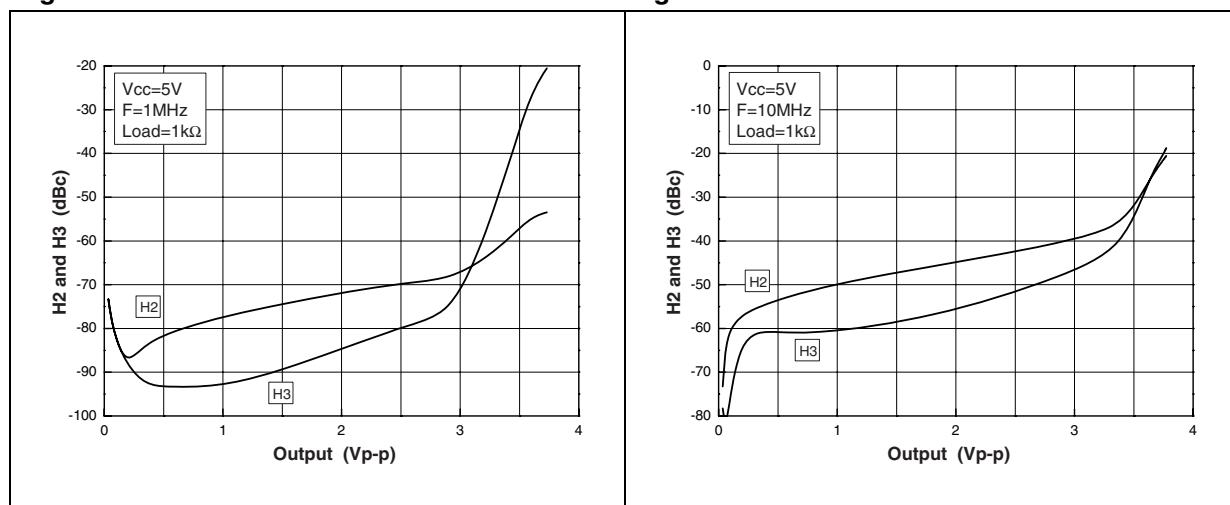


Figure 7. Positive slew-rate on 1 kΩ load

Figure 8. Negative slew-rate on 1 kΩ load

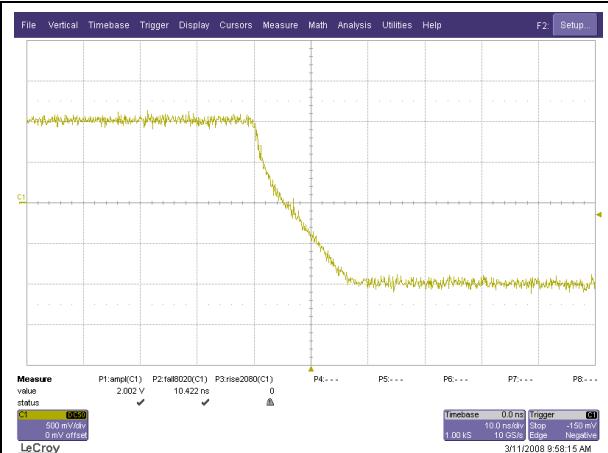
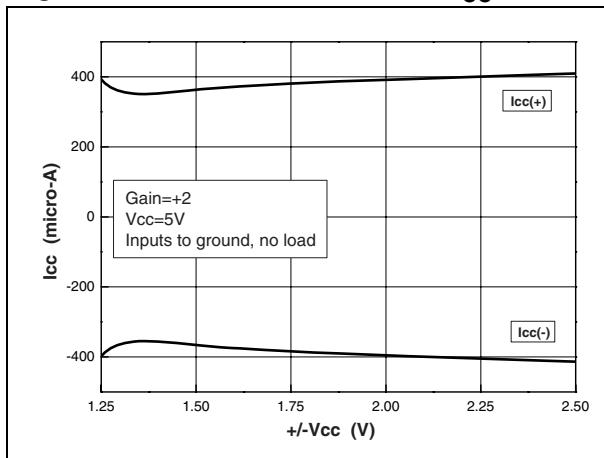
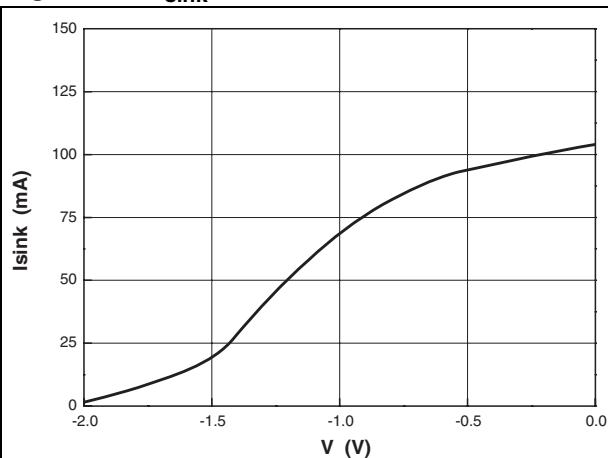
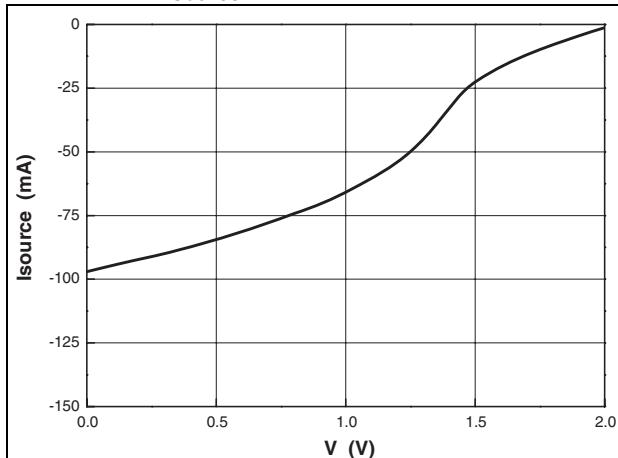




Figure 9. Quiescent current vs. V_{CC} Figure 10. I_{sink} Figure 11. I_{source}

Figure 12. Bandwidth vs. temperature

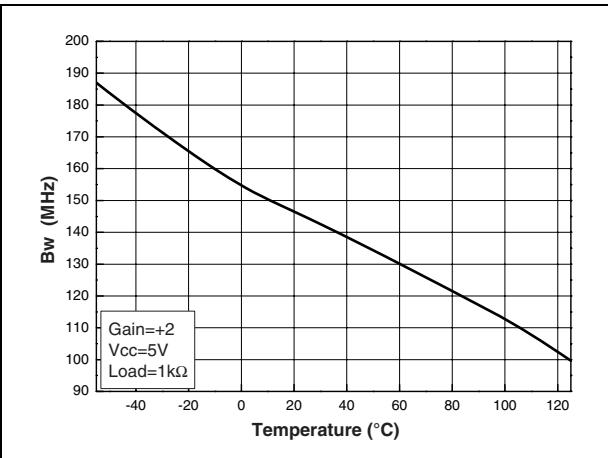


Figure 13. CMR vs. temperature

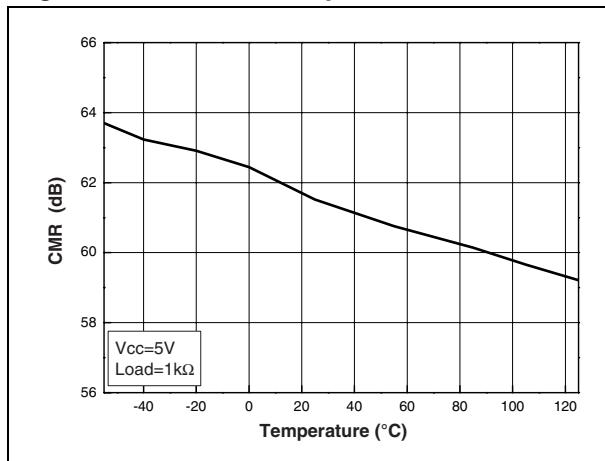


Figure 14. SVR vs. temperature

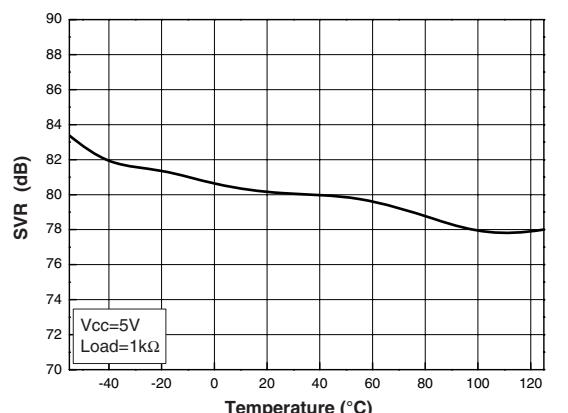


Figure 15. Slew rate vs. temperature

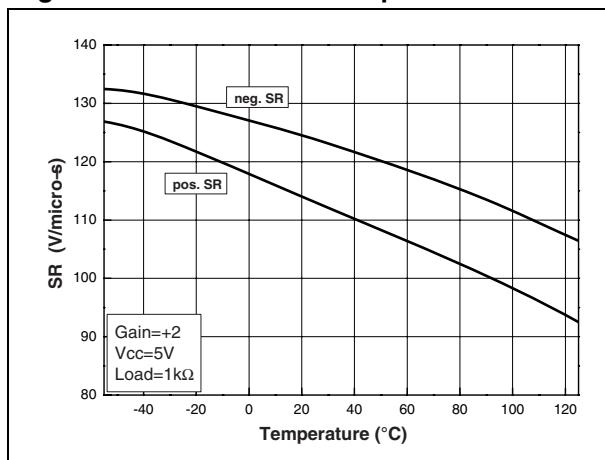
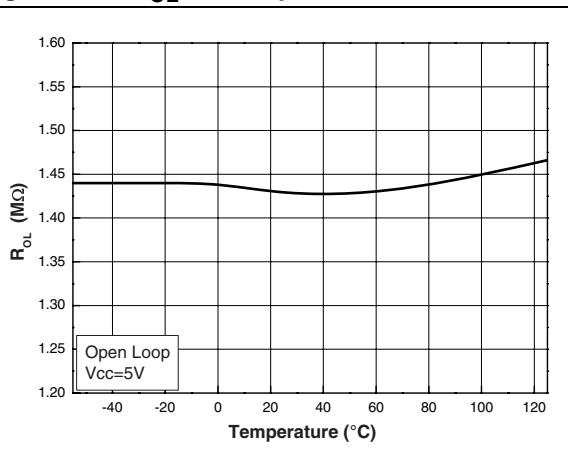
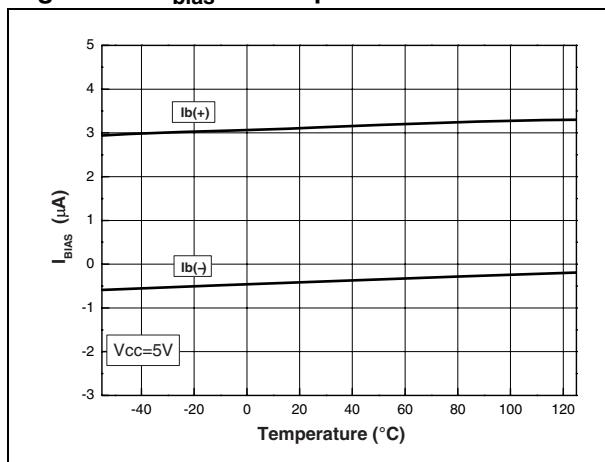
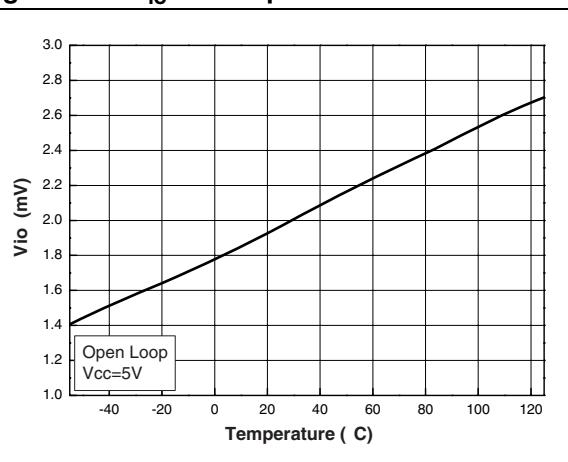
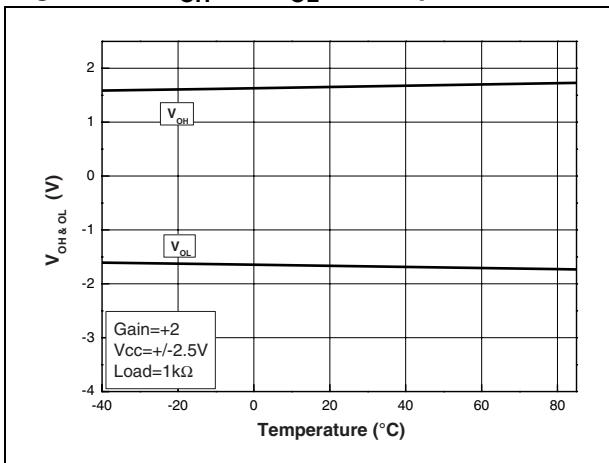
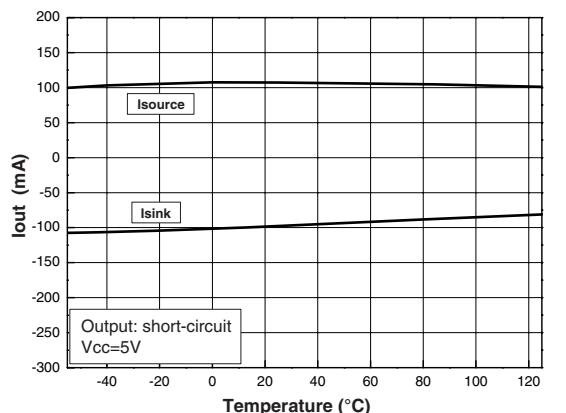
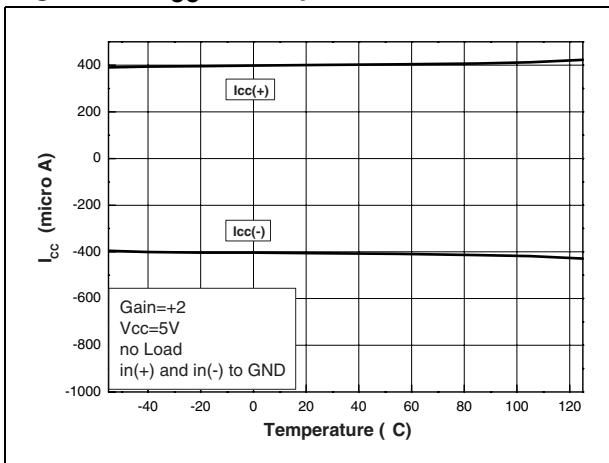
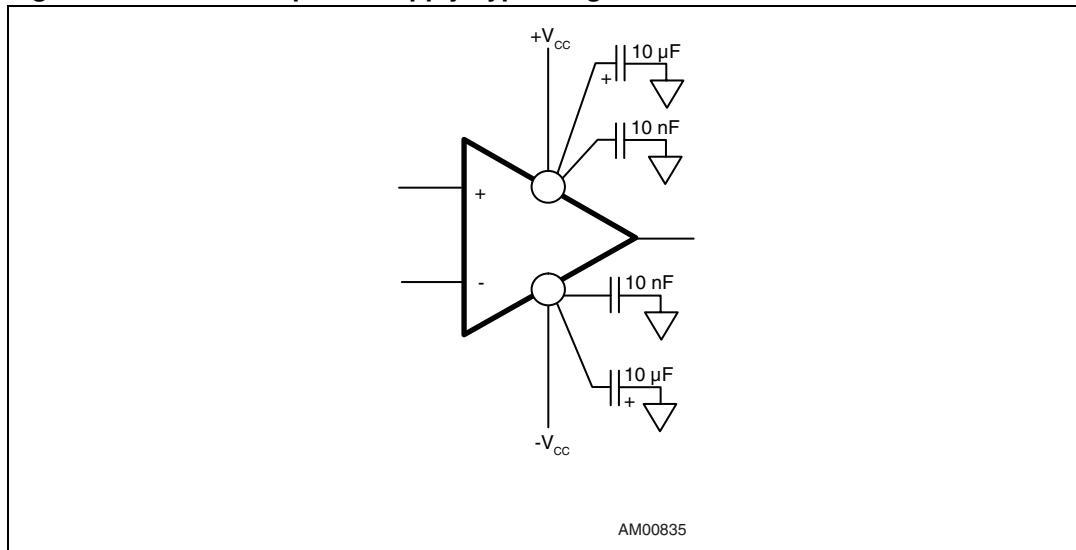








Figure 16. R_{OL} vs. temperatureFigure 17. I_{bias} vs. temperatureFigure 18. V_{io} vs. temperature

Figure 19. V_{OH} and V_{OL} vs. temperatureFigure 20. I_{out} vs. temperatureFigure 21. I_{CC} vs. temperature

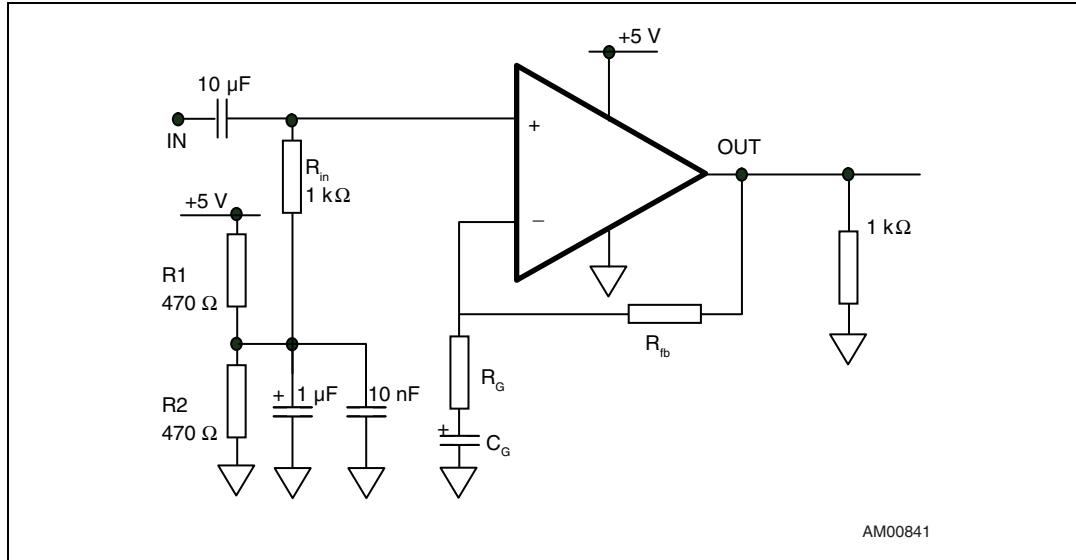
3 Power supply considerations

Correct power supply bypassing is very important to optimize the performance in high-frequency ranges. The bypass capacitors should be placed as close as possible to the IC pins to improve high-frequency bypassing. A capacitor greater than 1 μ F is necessary to minimize the distortion. For better quality bypassing, a capacitor of 10 nF can be added. It should also be placed as close as possible to the IC pins. The bypass capacitors must be incorporated for both the negative and positive supply.

Figure 22. Circuit for power supply bypassing

3.1 Single power supply

If you use a single supply system, biasing is necessary to obtain a positive output dynamic range between 0 V and $+V_{CC}$ supply rails. Considering the values of V_{OH} and V_{OL} , the amplifier will provide an output swing from +0.9 V to +4.1 V on 1 $k\Omega$ loads.

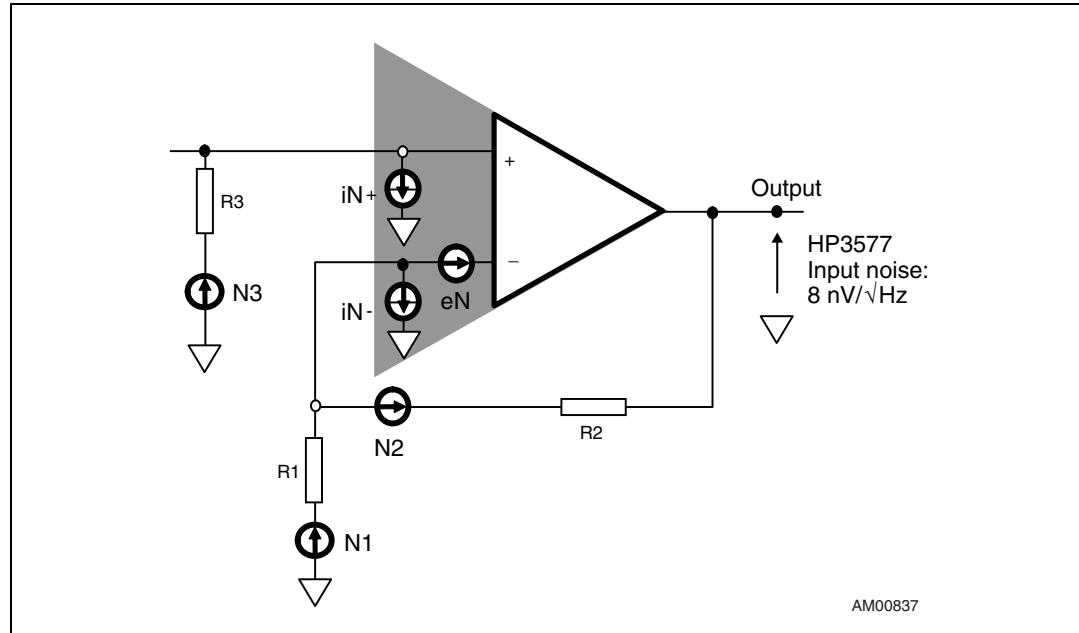

The amplifier must be biased with a mid-supply (nominally $+V_{CC}/2$), in order to maintain the DC component of the signal at this value. Several options are possible to provide this bias supply, such as a virtual ground using an operational amplifier or a two-resistance divider (which is the cheapest solution). A high resistance value is required to limit the current consumption. On the other hand, the current must be high enough to bias the non-inverting input of the amplifier. If we consider this bias current (55 μ A maximum) as 1% of the current through the resistance divider, to keep a stable mid-supply, two resistances of 470 Ω can be used.

The input provides a high-pass filter with a break frequency below 10 Hz, which is necessary to remove the original 0 V DC component of the input signal, and to set it at $+V_{CC}/2$.

Figure 23 on page 11 illustrates a 5 V single power supply configuration.

A capacitor C_G is added in the gain network to ensure a unity gain in low frequencies to keep the right DC component at the output. C_G contributes to a high-pass filter with R_{fb}/R_G and its value is calculated with a consideration of the cut-off frequency of this low-pass filter.

Figure 23. Circuit for +5 V single supply



4 Noise measurements

The noise model is shown in [Figure 24](#).

- eN : input voltage noise of the amplifier.
- iN_n : negative input current noise of the amplifier.
- iN_p : positive input current noise of the amplifier.

Figure 24. Noise model

The thermal noise of a resistance R is:

$$\sqrt{4kTR\Delta F}$$

where ΔF is the specified bandwidth, and k is the Boltzmann's constant, equal to $1,374.10^{-23} \text{ J/K}$. T is the temperature ($^{\circ}\text{K}$).

On a 1 Hz bandwidth the thermal noise is reduced to:

$$\sqrt{4kTR}$$

The output noise eNo is calculated using the superposition theorem. However, eNo is not the simple sum of all noise sources, but rather the square root of the sum of the square of each noise source, as shown in [Equation 1](#).

Equation 1

$$eNo = \sqrt{V1^2 + V2^2 + V3^2 + V4^2 + V5^2 + V6^2}$$

Equation 2

$$eNo^2 = eN^2 \times g^2 + iNn^2 \times R2^2 + iNp^2 \times R3^2 \times g^2 + \frac{R2^2}{R1} \times 4kTR1 + 4kTR2 + 1 + \frac{R2^2}{R1} \times 4kTR3$$

The input noise of the instrumentation must be extracted from the measured noise value. The real output noise value of the driver is:

Equation 3

$$eNo = \sqrt{(Measured)^2 - (instrumentation)^2}$$

The input noise is called **equivalent input noise** because it is not directly measured but is evaluated from the measurement of the output divided by the closed loop gain (eNo/g).

After simplification of the fourth and fifth terms of [Equation 2](#), you obtain:

Equation 4

$$eNo^2 = eN^2 \times g^2 + iNn^2 \times R2^2 + iNp^2 \times R3^2 \times g^2 + g \times 4kTR2 + 1 + \frac{R2^2}{R1} \times 4kTR3$$

4.1 Measurement of the input voltage noise eN

Assuming a short-circuit on the non-inverting input ($R3=0$), from [Equation 4](#) you can derive:

Equation 5

$$eNo = \sqrt{eN^2 \times g^2 + iNn^2 \times R2^2 + g \times 4kTR2}$$

In order to easily extract the value of eN , the resistance $R2$ must be chosen to be as low as possible. On the other hand, the gain must be high enough.

$R3=0$, gain: $g=100$

4.2 Measurement of the negative input current noise iNn

To measure the negative input current noise iNn , $R3$ is set to zero and [Equation 5](#) is used. This time, the gain must be lower in order to decrease the thermal noise contribution.

$R3=0$, gain: $g=10$

4.3 Measurement of the positive input current noise iNp

To extract iNp from [Equation 3](#), a resistance $R3$ is connected to the non-inverting input. The value of $R3$ must be chosen in order to keep its thermal noise contribution as low as possible against the iNp contribution.

$R3=100 \Omega$, gain: $g=10$

5 Intermodulation distortion product

The non-ideal output of the amplifier can be described by the following series of equations.

$$V_{\text{out}} = C_0 + C_1 V_{\text{in}} + C_2 V_{\text{in}}^2 + \dots + C_n V_{\text{in}}^n$$

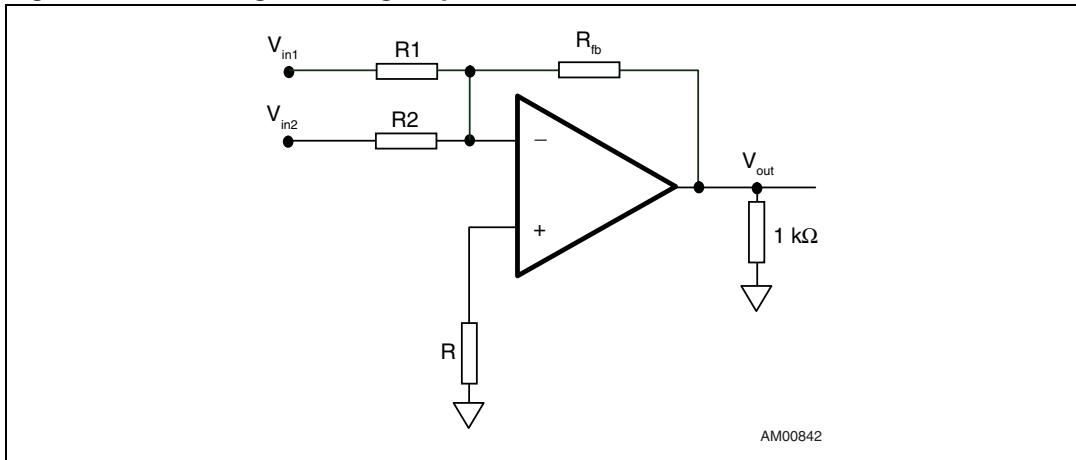
where the input is $V_{\text{in}} = A \sin \omega t$, C_0 is the DC component, $C_1(V_{\text{in}})$ is the fundamental and C_n is the amplitude of the harmonics of the output signal V_{out} .

A one-frequency (one-tone) input signal contributes to harmonic distortion. A two-tone input signal contributes to harmonic distortion and to the intermodulation product.

The study of the intermodulation and distortion for a two-tone input signal is the first step in characterizing the driving capability of multi-tone input signals.

In this case:

$$V_{\text{in}} = A \sin \omega_1 t + A \sin \omega_2 t$$


therefore:

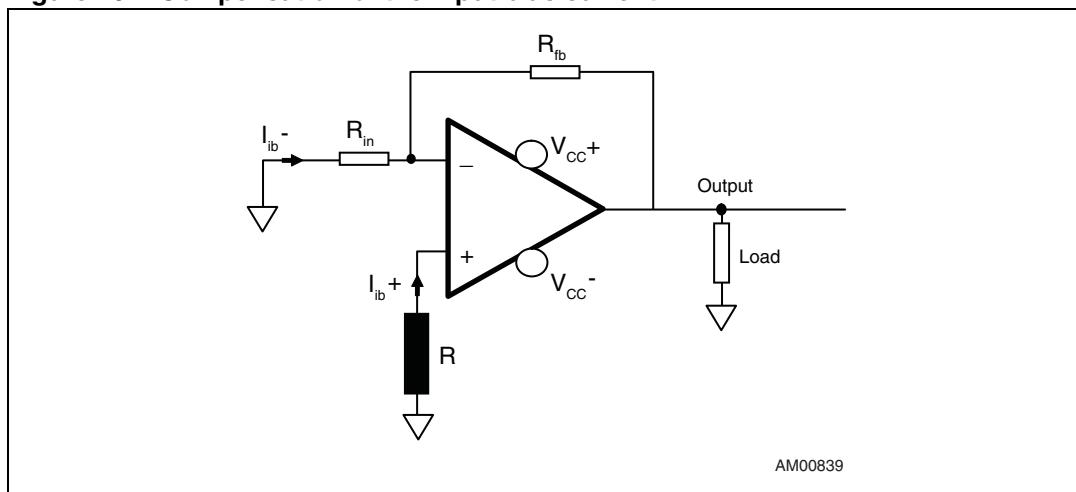
$$V_{\text{out}} = C_0 + C_1(A \sin \omega_1 t + A \sin \omega_2 t) + C_2(A \sin \omega_1 t + A \sin \omega_2 t)^2 + \dots + C_n(A \sin \omega_1 t + A \sin \omega_2 t)^n$$

From this expression, we can extract the distortion terms, and the intermodulation terms from a single sine wave.

- Second-order intermodulation terms IM2 by the frequencies $(\omega_1 - \omega_2)$ and $(\omega_1 + \omega_2)$ with an amplitude of $C_2 A^2$.
- Third-order intermodulation terms IM3 by the frequencies $(2\omega_1 - \omega_2)$, $(2\omega_1 + \omega_2)$, $(-\omega_1 + 2\omega_2)$ and $(\omega_1 - 2\omega_2)$ with an amplitude of $(3/4)C_3 A^3$.

The intermodulation product of the driver is measured by using the driver as a mixer in a summing amplifier configuration ([Figure 25](#)). In this way, the non-linearity problem of an external mixing device is avoided.

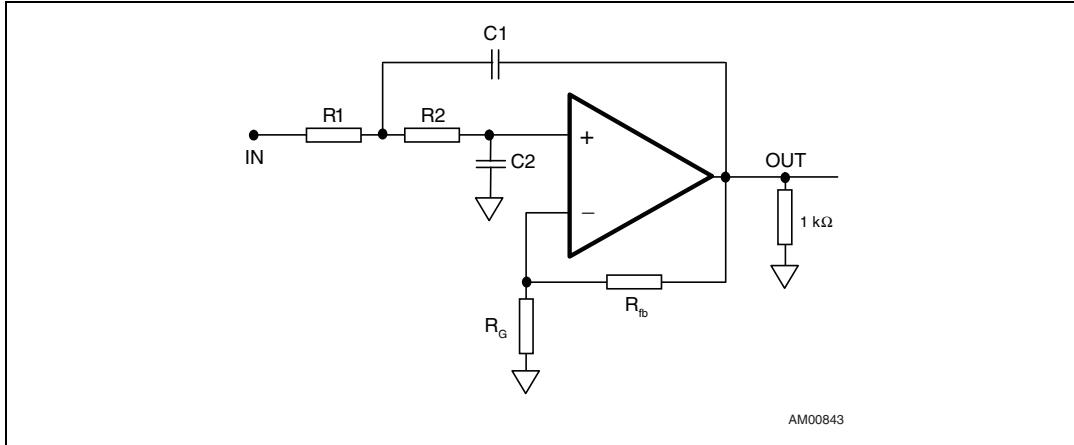
Figure 25. Inverting summing amplifier


6 Bias of an inverting amplifier

A resistance is necessary to achieve good input biasing, such as resistance R shown in [Figure 26](#).

The value of this resistance is calculated from the negative and positive input bias current. The aim is to compensate for the offset bias current, which can affect the input offset voltage and the output DC component. Assuming I_{ib-} , I_{ib+} , R_{in} , R_{fb} and a 0 V output, the resistance R is:

$$R = \frac{R_{in} \times R_{fb}}{R_{in} + R_{fb}}$$


Figure 26. Compensation of the input bias current

AM00839

7 Active filtering

Figure 27. Low-pass active filtering, Sallen-Key

From the resistors R_{fb} and R_g , it is possible to directly calculate the gain of the filter in a classic non-inverting amplification configuration.

$$A_V = g = 1 + \frac{R_{fb}}{R_g}$$

The response of the system is assumed to be:

$$T_{j\omega} = \frac{V_{out,j\omega}}{V_{in,j\omega}} = \frac{g}{1 + 2\zeta \frac{j\omega}{\omega_c} + \frac{(j\omega)^2}{\omega_c^2}}$$

The cut-off frequency is not gain-dependent and so becomes:

$$\omega_c = \frac{1}{\sqrt{R_1 R_2 C_1 C_2}}$$

The damping factor is calculated using the following expression.

$$\zeta = \frac{1}{2} \omega_c (C_1 R_1 + C_1 R_2 + C_2 R_1 - C_1 R_1 g)$$

The higher the gain, the more sensitive the damping factor. When the gain is higher than 1, it is preferable to use very stable resistor and capacitor values. In the case of $R_1=R_2=R$:

$$\zeta = \frac{\frac{R_{fb}}{2C_2 - C_1 R_g}}{2\sqrt{C_1 C_2}}$$

Due to a limited selection of capacitor values in comparison with the resistors, you can set $C_1=C_2=C$, so that:

$$\zeta = \frac{\frac{2R_2 - R_1 R_g}{2\sqrt{R_1 R_2}}}{2\sqrt{R_1 R_2}}$$

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.

8.1 Ceramic Flat-8 package information

Figure 28. Ceramic Flat-8 package mechanical drawing

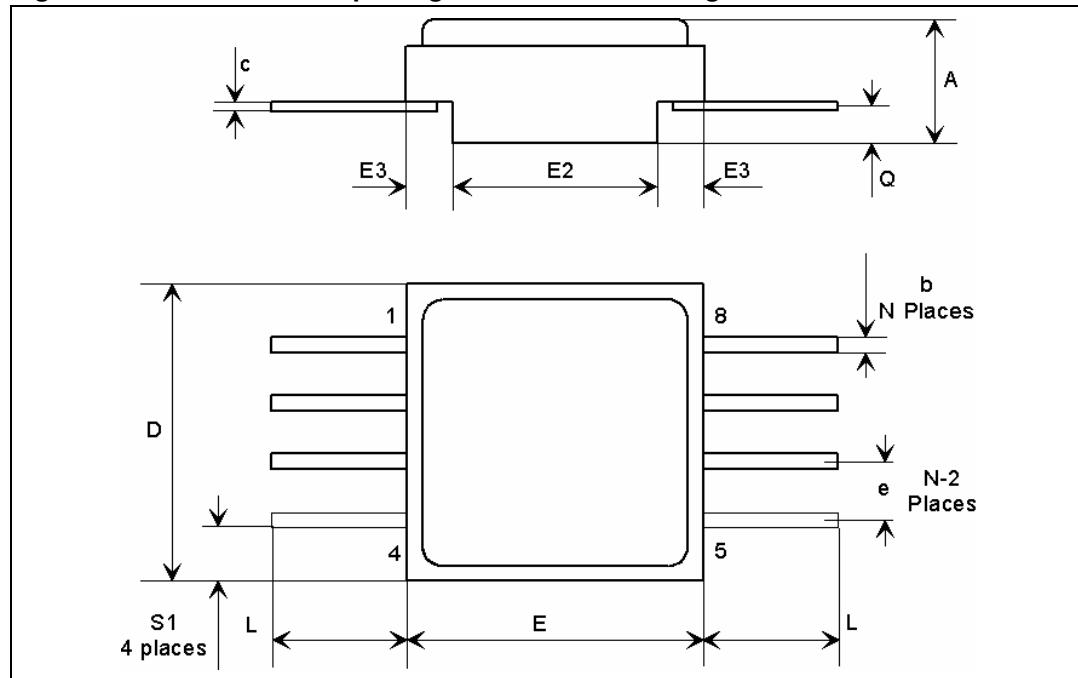


Table 5. Ceramic Flat-8 package mechanical data

Ref.	Dimensions					
	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	2.24	2.44	2.64	0.088	0.096	0.104
b	0.38	0.43	0.48	0.015	0.017	0.019
c	0.10	0.13	0.16	0.004	0.005	0.006
D	6.35	6.48	6.61	0.250	0.255	0.260
E	6.35	6.48	6.61	0.250	0.255	0.260
E2	4.32	4.45	4.58	0.170	0.175	0.180
E3	0.88	1.01	1.14	0.035	0.040	0.045
e		1.27			0.050	
L		3.00			0.118	
Q	0.66	0.79	0.92	0.026	0.031	0.092
S1	0.92	1.12	1.32	0.036	0.044	0.052
N	08			08		

9 Ordering information

Table 6. Order codes

Order code	Description	Temperature range	Package	Terminal finish	Marking
RHF310K-01V	Flight parts (QMLV)	-55°C to +125°C	Flat-8	Gold	TBD
RHF310K-02V	Flight parts (QMLV)	-55°C to +125°C	Flat-8	Solder	TBD
RHF310K1	Engineering samples	-55°C to +125°C	Flat-8	Gold	RHF310K1
RHF310K2	Engineering samples with 48-hour burn-in	-55°C to +125°C	Flat-8	Gold	RHF310K2
RHF310DIE2V	Flight parts (QMLV)	-55°C to +125°C	Bare die	-	No marking

10 Revision history

Table 7. Document revision history

Date	Revision	Changes
26-May-2009	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com