



SLOS394B – JULY 2002 – REVISED NOVEMBER 2009

### LOW-DISTORTION, HIGH SLEW RATE, CURRENT-FEEDBACK AMPLIFIERS

Check for Samples: THS3061 THS3062

#### **FEATURES**

Unity Gain Bandwidth: 300 MHz
0.1-dB Bandwidth: 120 MHz (G = 2)

UMENTS

High Slew Rate: 7000 V/µs

• HD3 at 10 MHz: -81 dBc (G = 2, R<sub>L</sub> = 150  $\Omega$ )

• High Output Current: ±145 mA into 50 Ω

Power-Supply Voltage Range: ±5 V to ±15 V

#### **APPLICATIONS**

High-Speed Signal Processing

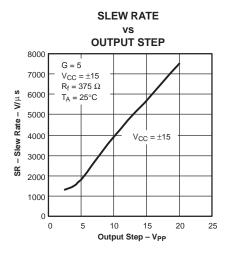
• Test and Measurement Systems

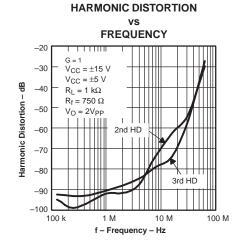
VDSL Line Driver

High-Voltage ADC Preamplifier

Video Line Driver

#### **DESCRIPTION**


The THS3061 (single) and THS3062 (dual) are high-voltage, high slew-rate current feedback amplifiers utilizing Texas Instruments' BICOM-1 process. Designed for low-distortion with a high slew rate of 7000 V/µs, the THS306x amplifiers are ideally suited for applications requiring large, linear output signals such as video line drivers and VDSL line drivers.


The THS3061 and THS3062 provide well-regulated ac performance characteristics with power supplies ranging from ±5-V operation up to ±15-V supplies. Most notably, the 0.1-dB flat bandwidth is exceedingly high, reaching beyond 100 MHz, and the THS306x has less than 0.3 dB of peaking in the frequency response when configured in unity gain. The unity-gain bandwidth of 300 MHz provides excellent distortion characteristics at 10 MHz. The flexibility of the current-feedback design allows a 220-MHz, -3-dB bandwidth in a gain of 10, indicating excellent performance even at high gains.

The THS306x consumes 8.3 mA per-channel quiescent current at room temperature, and has the capability of producing up to ±145 mA of output current. The THS3061 is packaged in an 8-pin SOIC and an 8-pin MSOP with PowerPAD™. The THS3062 is available in an 8-pin SOIC with PowerPAD and an 8-pin MSP with PowerPAD.

#### **RELATED DEVICES AND DESCRIPTIONS**

| DEVICE  | DESCRIPTION                                              |
|---------|----------------------------------------------------------|
| THS3001 | Low Distortion<br>Current-Feedback Amplifier             |
| THS3112 | Dual Current-Feedback<br>Amplifier With 175 mA Drive     |
| THS3122 | Dual Current-Feedback<br>Amplifier With 350 mA Drive     |
| OPA691  | Wideband Current-Feedback<br>Amplifier with 350 mA Drive |





Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.





This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

#### **ABSOLUTE MAXIMUM RATINGS**

Over operating free-air temperature range unless otherwise noted. (1)

| Vs                 | Supply voltage                                                            | ±16.5 V                       |
|--------------------|---------------------------------------------------------------------------|-------------------------------|
| VI                 | Input voltage                                                             | ±V <sub>S</sub>               |
| Io                 | Output current                                                            | 200 mA                        |
| $V_{\text{ID}}$    | Differential input voltage                                                | ±3 V                          |
|                    | Continuous power dissipation                                              | See Dissipation Ratings Table |
| TJ                 | Maximum junction temperature                                              | +150°C                        |
| T <sub>J</sub> (2) | Maximum junction temperature, continuous operation, long term reliability | +125°C                        |
| T <sub>stg</sub>   | Storage temperature range                                                 | −65°C to +150°C               |

<sup>(1)</sup> The absolute maximum ratings under any condition is limited by the constraints of the silicon process. Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

#### PACKAGE DISSIPATION RATINGS

| PACKAGE                    | θ <sub>JC</sub><br>(°C/W) | θ <sub>JA</sub><br>(°C/W) <sup>(1)</sup> | POWER RATING<br>(T <sub>J</sub> = +125°C) <sup>(2)</sup> |                        |  |  |
|----------------------------|---------------------------|------------------------------------------|----------------------------------------------------------|------------------------|--|--|
|                            | ( C/VV)                   | ( C/W)\ /                                | T <sub>A</sub> ≤ +25°C                                   | T <sub>A</sub> = +85°C |  |  |
| D (8 pin)                  | 38.3                      | 97.5                                     | 1.02 W                                                   | 410 mW                 |  |  |
| DDA (8 pin) <sup>(3)</sup> | 9.2                       | 45.8                                     | 2.18 W                                                   | 873 mW                 |  |  |
| DGN (8 pin) <sup>(3)</sup> | 4.7                       | 58.4                                     | 1.71 W                                                   | 680 mW                 |  |  |

<sup>(1)</sup> This data was taken using the JEDEC High-K test PCB.

(2) This data was taken using 2 oz. trace and copper pad that is soldered directly to a 3 in x 3 in PCB.

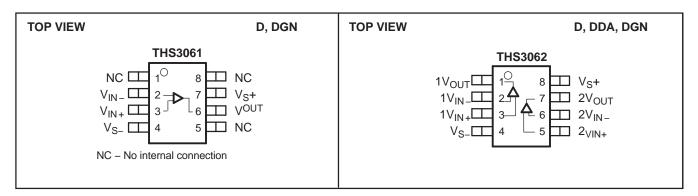
#### RECOMMENDED OPERATING CONDITIONS

|                |               | MIN | MAX | UNIT |
|----------------|---------------|-----|-----|------|
| Cumply yeltogo | Dual supply   | ±5  | ±15 | V    |
| Supply voltage | Single supply | 10  | 30  | V    |

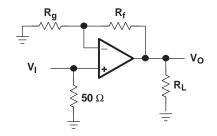
Submit Documentation Feedback

<sup>(2)</sup> The maximum junction temperature for continuous operation is limited by package constraints. Operation above this temperature may result in reduced reliability and/or lifetime of the device.

<sup>(3)</sup> The THS306x may incorporate a PowerPAD on the underside of the chip. This acts as a heatsink and must be connected to a thermally dissipative plane for proper power dissipation. Failure to do so may result in exceeding the maximum junction temperature which could permanently damage the device. See TI technical brief SLMA002 for more information about utilizing the PowerPAD thermally enhanced package.




#### ORDERING INFORMATION(1)


| PART NUMBER | PACKAGE TYPE             | PACKAGE MARKING | TRANSPORT MEDIA, QUANTITY |
|-------------|--------------------------|-----------------|---------------------------|
| Single      | ·                        |                 |                           |
| THS3061D    | SOIC-8                   |                 | Rails, 75                 |
| THS3061DR   | SOIC-0                   | _               | Tape and Reel, 2500       |
| THS3061DGN  | MSOP-8-PP <sup>(2)</sup> | DID             | Rails, 80                 |
| THS3061DGNR | WISOP-6-PP\/             | BIB             | Tape and Reel, 2500       |
| Dual        |                          |                 |                           |
| THS3062D    | SOIC-8                   |                 | Rails, 75                 |
| THS3062DR   | 3010-0                   | _               | Tape and Reel, 2500       |
| THS3062DDA  | SOIC-8-PP <sup>(2)</sup> |                 | Rails, 75                 |
| THS3062DDAR | 3010-8-PP                | _               | Tape and Reel, 2500       |
| THS3062DGN  | MSOP-8-PP <sup>(2)</sup> | BIC             | Rails, 80                 |
| THS3062DGNR | IVISOP-6-PP(=/           | BIC             | Tape and Reel, 2500       |

- (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- (2) The PowerPAD is electrically isolated from all other pins.

#### **PIN ASSIGNMENTS**



#### PARAMETER MEASUREMENT INFORMATION





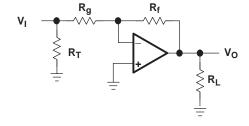



Figure 2. Inverting Test Circuit



#### **ELECTRICAL CHARACTERISTICS**

At  $V_S = \pm 15$  V:  $R_f = 560 \Omega$ ,  $R_L = 150 \Omega$ , and G = 2, unless otherwise noted.

|                                        |                                   |                                                                          |                        |       |                  | THS3061         |                      |                    |                     |
|----------------------------------------|-----------------------------------|--------------------------------------------------------------------------|------------------------|-------|------------------|-----------------|----------------------|--------------------|---------------------|
|                                        |                                   |                                                                          |                        | TYP   | OVER TEMPERATURE |                 |                      |                    |                     |
| PARAMETER                              |                                   | TEST CONDITIONS                                                          |                        | +25°C | +25°C            | 0°C to<br>+70°C | -40°C<br>to<br>+85°C | UNITS              | MIN/<br>TYP/<br>MAX |
| AC PERF                                | FORMANCE                          |                                                                          |                        |       |                  |                 |                      |                    |                     |
|                                        |                                   | $G=1,\ R_f=750\Omega$                                                    |                        | 300   |                  |                 |                      |                    |                     |
|                                        | nal bandwidth                     | $G = 2$ , $R_f = 560 \Omega$                                             |                        | 275   |                  |                 |                      | MHz                | Tyro                |
| $(V_0 = 100)$<br>Peaking <             |                                   | G = 5, $R_f = 357 \Omega$                                                |                        | 260   |                  |                 |                      | IVITIZ             | Тур                 |
| · ·                                    | ,                                 | $G = 10, R_f = 200 \Omega$                                               |                        | 220   |                  |                 |                      |                    |                     |
| Bandwidt                               | h for 0.1-dB flatness             | $G = 2, V_O = 100 \text{mV}_{PP}$                                        |                        | 120   |                  |                 |                      | MHz                | Тур                 |
| Peaking a                              | at a gain of 1                    | $V_O = 100 \text{ mV}_{PP}$                                              |                        | 0.3   |                  |                 |                      | dB                 | Тур                 |
| Large-sig                              | nal bandwidth                     | $G = 2, V_O = 4 V_{PP}$                                                  |                        | 120   |                  |                 |                      | MHz                | Тур                 |
| Claw rata                              | (050/ to 750/ lovel)              | G = 5, 20 V-Step                                                         |                        | 7000  |                  |                 |                      | 1////              | Tun                 |
| Siew rate                              | (25% to 75% level)                | G = 2, 10 V-Step                                                         |                        | 5700  |                  |                 |                      | V/µs               | Тур                 |
| Rise and                               | fall time                         | G = 2, V <sub>O</sub> = 10 V-Step                                        |                        | 1     |                  |                 |                      | ns                 | Тур                 |
| Settling                               | 0.1%                              | 0 0 1/ 0 1/ 0/                                                           |                        | 30    |                  |                 |                      | ns                 | Тур                 |
| time to                                | 0.01%                             | $G = -2$ , $V_O = 2$ V-Step                                              |                        | 125   |                  |                 |                      | ns                 | Тур                 |
| Harmonic                               | distortion                        |                                                                          |                        |       |                  |                 |                      |                    |                     |
| 2nd order harmonic  3rd order harmonic |                                   | $G = 2$ , $f = 10$ MHz, $R_L = 1$                                        | R <sub>L</sub> = 150 Ω | -78   |                  |                 |                      | dBc                | <b>T</b>            |
|                                        |                                   |                                                                          | $R_L = 1 k\Omega$      | -73   |                  |                 |                      |                    | Тур                 |
|                                        |                                   |                                                                          | $R_L = 150 \Omega$     | -81   |                  |                 |                      |                    | _                   |
|                                        |                                   |                                                                          | $R_L = 1 k\Omega$      | -82   |                  |                 |                      | dBc                | Тур                 |
| 3rd order                              | intermodulation distortion        | $G = 2$ , $f_c = 10$ MHz,<br>$V_O = 2$ $V_{PP(envelope)}$ $\Delta f = 2$ | 00 kHz                 | -93   |                  |                 |                      | dBc                | Тур                 |
| Input volta                            | age noise                         | f > 10 kHz                                                               |                        | 2.6   |                  |                 |                      | nV/√ <del>Hz</del> | Тур                 |
| Input curr                             | rent noise (noninverting)         | f > 10 kHz                                                               |                        | 20    |                  |                 |                      | pA/√Hz             | Тур                 |
| Input curr                             | rent noise (inverting)            |                                                                          |                        | 36    |                  |                 |                      | pA/√Hz             | Тур                 |
| Differentia                            | al gain (NTSC, PAL)               | C 0 D 450 O                                                              |                        | 0.02% |                  |                 |                      |                    | Тур                 |
| Differentia                            | al phase (NTSC, PAL)              | $G = 2, R_L = 150 \Omega$                                                |                        | 0.01° |                  |                 |                      |                    | Тур                 |
| DC PERF                                | FORMANCE                          |                                                                          |                        |       |                  |                 |                      |                    |                     |
| Open-loo                               | p transimpedance gain             | $V_O = 0 \text{ V}, R_L = 1 \text{ k}\Omega$                             |                        | 1     | 0.7              | 0.6             | 0.6                  | ΜΩ                 | Min                 |
| Input offs                             | et voltage                        |                                                                          |                        | ±0.7  | ±3.5             | ±4.4            | ±4.5                 | mV                 | Max                 |
|                                        | Average offset voltage drift      | 1                                                                        |                        |       |                  | ±10             | ±10                  | μV/°C              | Тур                 |
| Input bias                             | s current (inverting)             |                                                                          |                        | ±2.0  | ±20              | ±32             | ±35                  | μA                 | Max                 |
|                                        | Average bias current drift (-)    | $V_{CM} = 0 V$                                                           |                        |       |                  | ±25             | ±30                  | nA/°C              | Тур                 |
| Input bias                             | Input bias current (noninverting) |                                                                          |                        | ±6.0  | ±25              | ±38             | ±40                  | Α                  | Max                 |
| Average bias current drift (+)         |                                   | †                                                                        |                        |       |                  | ±45             | ±50                  | nA/°C              | Тур                 |
| INPUT                                  |                                   |                                                                          |                        |       |                  |                 |                      |                    |                     |
| Common-                                | -mode input range                 |                                                                          |                        | ±13.9 | ±13.1            | ±13.1           | ±13.1                | V                  | Min                 |
| Common-                                | -mode rejection ratio             | $V_{CM} = \pm 0.5 \text{ V}$                                             |                        | 72    | 60               | 58              | 58                   | dB                 | Min                 |
|                                        |                                   | Noninverting                                                             |                        | 518   |                  |                 |                      | kΩ                 | Тур                 |
| Input resi                             | stance                            | Inverting                                                                |                        | 71    |                  |                 |                      | Ω                  | Тур                 |
| Input capa                             | acitance                          | Noninverting                                                             |                        | 1     |                  |                 |                      | pF                 | Тур                 |



At V  $_{S}$  = ±15 V:  $R_{f}$  = 560  $\Omega,~R_{L}$  = 150  $\Omega,$  and G = 2, unless otherwise noted.

|                                   |                                                  |       | THS3061, THS3062 |                 |                      |       |                     |  |  |
|-----------------------------------|--------------------------------------------------|-------|------------------|-----------------|----------------------|-------|---------------------|--|--|
| 2.2                               |                                                  | TYP   | OVER TEMPERATURE |                 |                      |       |                     |  |  |
| PARAMETER                         | TEST CONDITIONS +25                              |       | +25°C            | 0°C to<br>+70°C | -40°C<br>to<br>+85°C | UNITS | MIN/<br>TYP/<br>MAX |  |  |
| OUTPUT                            |                                                  |       |                  |                 |                      |       |                     |  |  |
| Voltage output owing              | $R_L = 1 \text{ k}\Omega$                        | ±13.7 | ±13.4            | ±13.4           | ±13.3                | V     | Min                 |  |  |
| Voltage output swing              | $R_L = 150 \Omega$                               | ±13   | ±12.6            | ±12.4           | ±12.3                |       | IVIIII              |  |  |
| Current output, sourcing          | $R_L = 50 \Omega$                                | 145   | 140              | 135             | 130                  | mA    | Min                 |  |  |
| Current output, sinking           | $R_L = 50 \Omega$                                | -145  | -140             | -135            | -130                 | mA    | Min                 |  |  |
| POWER SUPPLY                      |                                                  |       |                  |                 |                      |       |                     |  |  |
| Closed-loop output impedance      | G = 1, f = 1 MHz                                 | 0.1   |                  |                 |                      | Ω     | Тур                 |  |  |
| Specified operating voltage       |                                                  | ±15   |                  |                 |                      | V     | Тур                 |  |  |
| Maximum operating voltage         |                                                  |       | ±16.5            | ±16.5           | ±16.5                | V     | Max                 |  |  |
| Maximum quiescent current/channel |                                                  | 8.3   | 10               | 11.7            | 12                   | mA    | Max                 |  |  |
| Minimum quiescent current/channel |                                                  | 8.3   | 6.1              | 6               | 6                    | mA    | Min                 |  |  |
| Power-supply rejection (+PSRR)    | V <sub>S+</sub> = 14.50 V to 15.50 V             | 76    | 65               | 63              | 63                   | dB    | Min                 |  |  |
| Power-supply rejection (-PSRR)    | $V_{S-} = -14.50 \text{ V to } -15.50 \text{ V}$ | 74    | 65               | 63              | 63                   | dB    | Min                 |  |  |



#### **ELECTRICAL CHARACTERISTICS**

At  $V_S = \pm 5$  V:  $R_f = 560 \Omega$ ,  $R_L = 150 \Omega$ , and G = 2, unless otherwise noted.

|                     | $^{5}$ V: R <sub>f</sub> = 560 Ω, R <sub>L</sub> = 150 Ω |                                              |                        |        |       | THS3061         | , THS306             | 52     |                     |
|---------------------|----------------------------------------------------------|----------------------------------------------|------------------------|--------|-------|-----------------|----------------------|--------|---------------------|
|                     |                                                          | TEST CONDITIONS                              |                        | TYP    |       |                 | TEMPER               |        |                     |
| PARAMETER TEST CO   |                                                          | TEST COND                                    | TIONS                  | +25°C  | +25°C | 0°C to<br>+70°C | -40°C<br>to<br>+85°C | UNITS  | MIN/<br>TYP/<br>MAX |
| AC PERF             | FORMANCE                                                 |                                              |                        |        |       |                 | 1                    |        | 1                   |
|                     |                                                          | $G = 1$ , $R_f = 750$ Ω                      |                        | 275    |       |                 |                      |        |                     |
| Small-sig           | nal bandwidth                                            | $G = 2$ , $R_f = 560$ Ω                      |                        | 250    |       |                 |                      |        | _                   |
|                     | mV <sub>PP</sub> , peaking < 0.3 dB)                     | $G = 5, R_f = 383 \Omega$                    |                        | 230    |       |                 |                      | MHz    | Тур                 |
|                     |                                                          | G = 10, R <sub>f</sub> = 200 Ω               |                        | 210    |       |                 |                      |        |                     |
| Bandwidt            | h for 0.1-dB flatness                                    | $G = 2$ , $V_O = 100 \text{ mV}_{PP}$        |                        | 100    |       |                 |                      | MHz    | Тур                 |
| Peaking a           | at a gain of 1                                           | $V_O = 100 \text{ mV}_{PP}$                  |                        | < 0.3  |       |                 |                      | dB     | Тур                 |
| Large-sig           | nal bandwidth                                            | $G = 2, V_O = 4 V_{PP}$                      |                        | 100    |       |                 |                      | MHz    | Тур                 |
| Class sata          | (050/ to 350/ level)                                     | G = 1, 5-V Step, R <sub>f</sub> = 7          | 50 Ω                   | 2700   |       |                 |                      | 1//    | T                   |
| Siew rate           | (25% to 75% level)                                       | G = 5, 5-V Step, R <sub>f</sub> = 3          | 57 Ω                   | 1300   |       |                 |                      | V/µs   | Тур                 |
| Rise and            | fall time                                                | G = 2, V <sub>O</sub> = 5-V Step             |                        | 2      |       |                 |                      | ns     | Тур                 |
| Settling            | 0.1%                                                     | C = 2 V = 2 V C+                             |                        | 20     |       |                 |                      |        | T                   |
| time to             | 0.01%                                                    | $G = -2$ , $V_O = 2-V$ Step                  |                        | 160    |       |                 |                      | ns     | Тур                 |
| Harmonic            | distortion                                               |                                              |                        |        |       |                 |                      |        |                     |
|                     | 2nd order harmonic                                       |                                              | R <sub>L</sub> = 150 Ω | -76    |       |                 |                      | dBc    | Тур                 |
|                     | Zild Older Hamilonic                                     | G = 2, f = 10  MHz,<br>$V_O = 2 V_{PP}$      | $R_L = 1 k\Omega$      | -70    |       |                 |                      |        |                     |
| Ord ander have ania | Ord order harmonia                                       |                                              | $R_L = 150 \Omega$     | -79    |       |                 |                      |        | Tun                 |
| 3rd order harmonic  |                                                          | $R_L = 1 k\Omega$                            | -77                    |        |       |                 | dBc                  | Тур    |                     |
| 3rd order           | rd order intermodulation distortion                      |                                              | -91                    |        |       |                 | dBc                  | Тур    |                     |
| Input volta         | age noise                                                | f > 10 kHz                                   |                        | 2.6    |       |                 |                      | nV/√Hz | Тур                 |
|                     | ent noise (noninverting)                                 | f > 10 kHz                                   |                        | 20     |       |                 |                      | pA/√Hz | Тур                 |
|                     | ent noise (inverting)                                    |                                              |                        | 36     |       |                 |                      | pA/√Hz | Тур                 |
| Differentia         | al gain (NTSC, PAL)                                      | 0 0 0 450 0                                  |                        | 0.025% |       |                 |                      |        | Тур                 |
| Differentia         | al phase (NTSC, PAL)                                     | $G = 2$ , $R_L = 150 \Omega$                 |                        | 0.01°  |       |                 |                      |        | Тур                 |
| DC PERF             | FORMANCE                                                 | ı                                            |                        |        |       |                 |                      |        |                     |
| Open-loo            | p transimpedance gain                                    | $V_O = 0 \text{ V}, R_L = 1 \text{ k}\Omega$ |                        | 0.8    | 0.6   | 0.5             | 0.5                  | ΜΩ     | Min                 |
| Input offs          | et voltage                                               |                                              |                        | ±0.3   | ±3.5  | ±4.4            | ±4.5                 | mV     | Max                 |
|                     | Average offset voltage drift                             |                                              |                        |        |       | ±9              | ±9                   | μV/°C  | Тур                 |
| Input bias          | s current (inverting)                                    |                                              |                        | ±2.0   | ±20   | ±32             | ±35                  | μΑ     | Max                 |
|                     | Average bias current drift (-)                           | $V_{CM} = 0 V$                               |                        |        |       | ±20             | ±25                  | nA/°C  | Тур                 |
| Input bias          | s current (noninverting)                                 |                                              |                        | ±6.0   | ±25   | ±38             | ±40                  | μΑ     | Max                 |
|                     | Average bias current drift (+)                           |                                              |                        |        |       | ±30             | ±35                  | nA/°C  | Тур                 |
| INPUT               |                                                          |                                              |                        |        |       |                 |                      |        |                     |
| Common-             | -mode input range                                        |                                              |                        | ±3.9   | ±3.1  | ±3.1            | ±3.1                 | V      | Min                 |
| Common-             | -mode rejection ratio                                    | $V_{CM} = \pm 0.5 \text{ V}$                 |                        | 70     | 60    | 58              | 58                   | dB     | Min                 |
| Input resi          | stance                                                   | Noninverting                                 |                        | 518    |       |                 |                      | kΩ     | Тур                 |
|                     |                                                          | Inverting                                    |                        | 71     |       |                 |                      | Ω      | Тур                 |
| Input cap           |                                                          | Noninverting                                 |                        | 1      |       |                 |                      | pF     | Тур                 |
| OUTPUT              |                                                          | T                                            |                        |        | T     |                 | 1                    | I      | 1                   |
| Voltage o           | output swing                                             | $R_L = 1 k\Omega$                            |                        | ±4.1   | ±3.8  | ±3.8            | ±3.7                 | V      | Min                 |
| . onago o           |                                                          | $R_L = 150 \Omega$                           |                        | ±4.0   | ±3.6  | ±3.6            | ±3.5                 | v      |                     |



At V  $_{S}$  = ±5 V:  $R_{f}$  = 560  $\Omega,~R_{L}$  = 150  $\Omega$  , and G = 2, unless otherwise noted.

|                                |                                                |       | THS3061, THS3062 |                 |                      |       |                     |  |  |
|--------------------------------|------------------------------------------------|-------|------------------|-----------------|----------------------|-------|---------------------|--|--|
| PARAMETER                      |                                                | TYP   | OVER TEMPERATURE |                 |                      |       |                     |  |  |
|                                | TEST CONDITIONS                                | +25°C | +25°C            | 0°C to<br>+70°C | -40°C<br>to<br>+85°C | UNITS | MIN/<br>TYP/<br>MAX |  |  |
| Current output, sourcing       | R <sub>L</sub> = 50 Ω                          | 63    | 61               | 60              | 59                   | mA    | Min                 |  |  |
| Current output, sinking        |                                                | -63   | -61              | -60             | -59                  | mA    | Min                 |  |  |
| Closed-loop output impedance   | G = 1, f = 1 MHz                               | 0.1   |                  |                 |                      | Ω     | Тур                 |  |  |
| POWER SUPPLY                   |                                                |       |                  |                 |                      |       |                     |  |  |
| Specified operating voltage    |                                                | ±5    |                  |                 |                      | V     | Тур                 |  |  |
| Minimum operating voltage      |                                                |       | ±4.5             | ±4.5            | ±4.5                 | V     | Min                 |  |  |
| Maximum quiescent current      |                                                | 6.3   | 8.0              | 9.2             | 9.5                  | mA    | Max                 |  |  |
| Minimum quiescent current      |                                                | 6.3   | 5.0              | 4.7             | 4.6                  | mA    | Min                 |  |  |
| Power-supply rejection (+PSRR) | V <sub>S+</sub> = 4.50 V to 5.50 V             | 73    | 65               | 63              | 63                   | dB    | Min                 |  |  |
| Power-supply rejection (-PSRR) | $V_{S-} = -4.50 \text{ V to } -5.50 \text{ V}$ | 75    | 65               | 63              | 63                   | dB    | Min                 |  |  |

#### TYPICAL CHARACTERISTICS

### **Table of Graphs**

|                                  |                            | FIGURE |
|----------------------------------|----------------------------|--------|
| Small-signal frequency response  |                            | 3-14   |
| Large-signal frequency response  |                            | 15, 16 |
| Harmonic distortion              | vs Frequency               | 17-23  |
| Harmonic distortion              | vs Output voltage          | 24-29  |
| Output impedance                 | vs Frequency               | 30     |
| Common-mode rejection ratio      | vs Frequency               | 31     |
| Input current noise              | vs Frequency               | 32     |
| Voltage noise density            | vs Frequency               | 33     |
| Power-supply rejection ratio     | vs Frequency               | 34     |
| Common-mode rejection ratio (DC) | vs Input common-mode range | 35     |
| Supply current                   | vs Power-supply voltage    | 36, 37 |
| Slew rate                        | vs Output voltage          | 38, 39 |
| Slew rate                        | vs Output step             | 40     |
| Input offset voltage             | vs Output voltage swing    | 41     |
| Overdrive recovery time          |                            | 42, 43 |
| Differential gain                | vs Number of 150-Ω loads   | 44, 45 |
| Differential phase               | vs Number of 150-Ω loads   | 46, 47 |



# SMALL-SIGNAL FREQUENCY RESPONSE

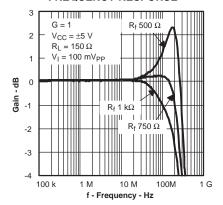



Figure 3.

#### TYPICAL CHARACTERISTICS

# SMALL-SIGNAL FREQUENCY RESPONSE

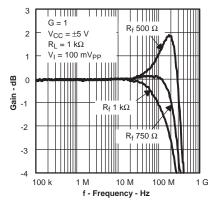



Figure 4.

# SMALL-SIGNAL FREQUENCY RESPONSE

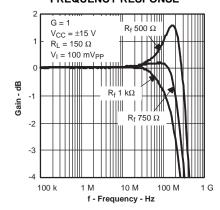



Figure 5.

### SMALL-SIGNAL FREQUENCY RESPONSE

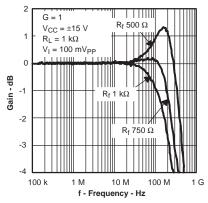



Figure 6.

#### SMALL-SIGNAL FREQUENCY RESPONSE

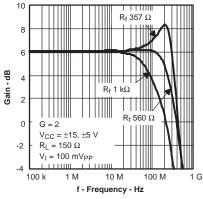



Figure 7.

# SMALL-SIGNAL FREQUENCY RESPONSE

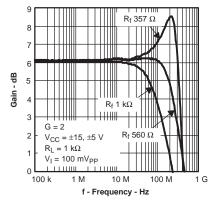



Figure 8.

# SMALL-SIGNAL FREQUENCY RESPONSE

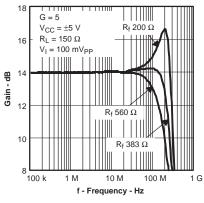



Figure 9.

# SMALL-SIGNAL FREQUENCY RESPONSE

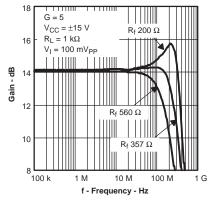



Figure 10.

# SMALL-SIGNAL FREQUENCY RESPONSE

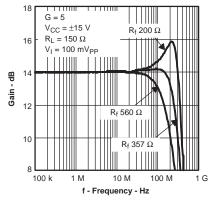



Figure 11.



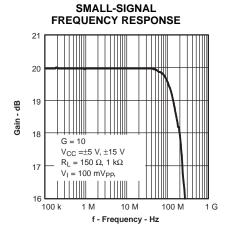



Figure 12.

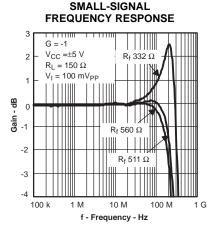



Figure 13.

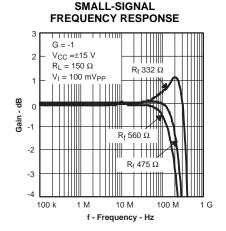



Figure 14.

THS3061

HARMONIC DISTORTION

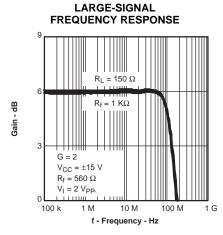



Figure 15.

THS3062

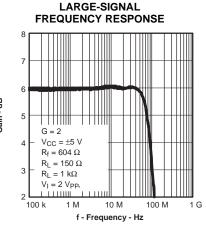



Figure 16.

HARMONIC DISTORTION

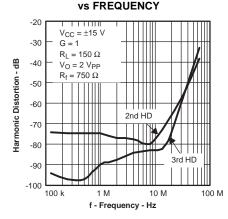



Figure 17.

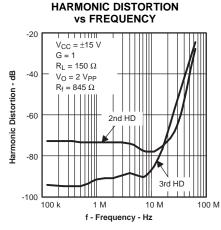



Figure 18.

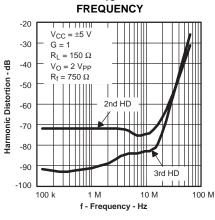



Figure 19.

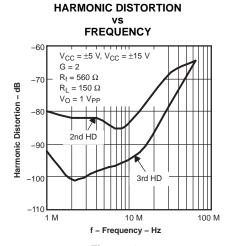
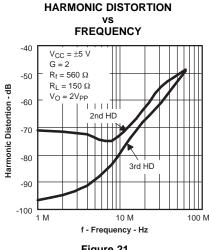
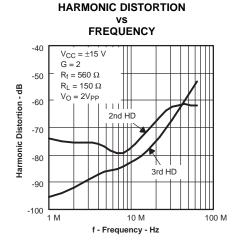
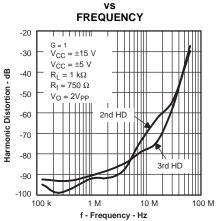






Figure 20.



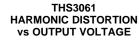


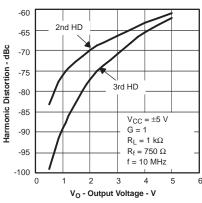


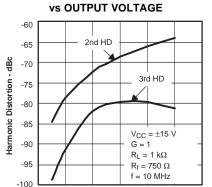


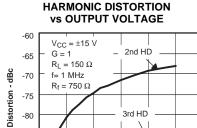
HARMONIC DISTORTION

Figure 21.


Figure 22.


THS3061


HARMONIC DISTORTION


Figure 23.

THS3061









Harmonic

-85

-90

-95

-100

0

3

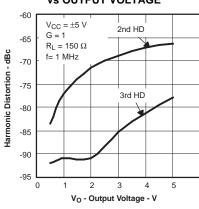
V<sub>O</sub> - Output Voltage - V

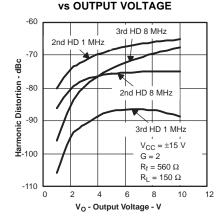
Figure 24.



HARMONIC DISTORTION

0


Figure 26.


HARMONIC DISTORTION

Vo - Output Voltage - V

5

#### THS3061 HARMONIC DISTORTION **vs OUTPUT VOLTAGE**





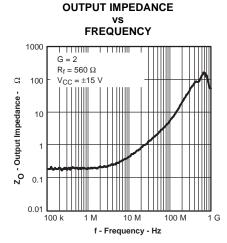

#### **VS OUTPUT VOLTAGE** -60 2nd HD 1 MHz -70 фB 2nd HD f = 8 MHz Harmonic Distortion --80 3rd HD 8 MHz -90 3rd HD f = 1 MHz V<sub>CC</sub> = ±5 V -100 $R_f = 560 \Omega$ $R_L = 150 \Omega$ 5 V<sub>O</sub> - Output Voltage - V

Figure 27.

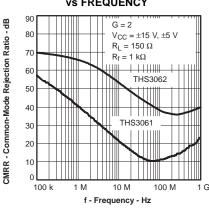

Figure 28.

Figure 29.





COMMON-MODE REJECTION RATIO vs FREQUENCY



INPUT CURRENT NOISE
vs
FREQUENCY

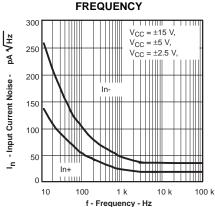
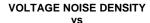
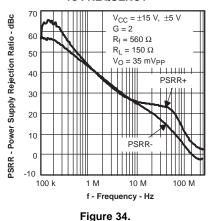
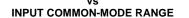



Figure 31.

Figure 32.







Figure 30.



POWER-SUPPLY REJECTION RATIO vs FREQUENCY



COMMON-MODE REJECTION RATIO (DC)



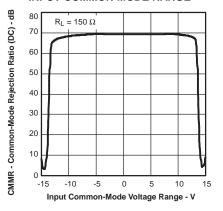
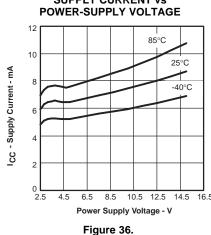




Figure 33.





THS3062 SUPPLY CURRENT vs POWER-SUPPLY VOLTAGE

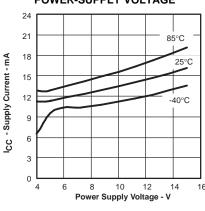



Figure 37.

Figure 35.

# SLEW RATE vs OUTPUT VOLTAGE

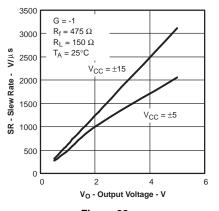
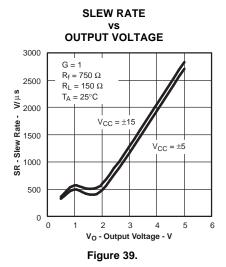




Figure 38.





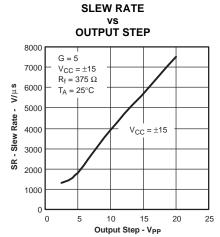
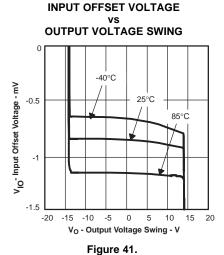
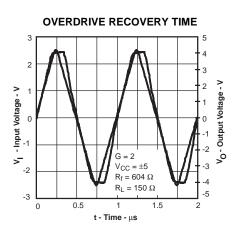
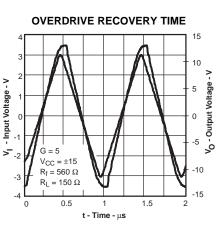
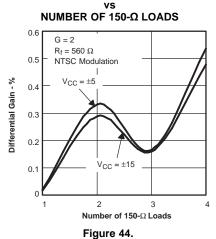
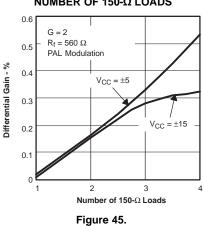







Figure 40.










**DIFFERENTIAL GAIN** 

DIFFERENTIAL GAIN
vs
NUMBER OF 150-Ω LOADS

Figure 42.



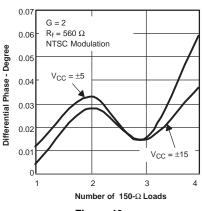




Figure 43.



0.08 G=2  $R_f=560~\Omega$  PAL Modulation O=0.04 O=0.04

**DIFFERENTIAL PHASE** 

VS

NUMBER OF 150-Ω LOADS

Figure 46.

Figure 47.



#### APPLICATION INFORMATION

#### INTRODUCTION

The THS306x is a high-speed operational amplifier configured in a current-feedback architecture. The device is built using Texas Instruments' BiCOM-I 30-V. dielectrically process. а complementary bipolar process with NPN and PNP transistors possessing  $f_Ts$  of several GHz. This configuration implements exceptionally an high-performance amplifier that has a wide bandwidth, high slew rate, fast settling time, and low distortion.

# MAXIMUM SLEW RATE FOR REPETITIVE SIGNALS

The THS3061 and THS3062 are recommended for high slew rate, pulsed applications where the internal nodes of the amplifier have time to stabilize between pulses. It is recommended to have at least a 20-ns delay between pulses.

The THS3061 and THS3062 are not recommended for applications with repetitive signals (sine, square, sawtooth, or other types) that exceed 900 V/µs. Using this device in these types of applications results in an excessive current draw from the power supply and possible device damage. For applications with a high slew rate and repetitive signals, the THS3091 and THS3095 (singles) or the THS3092 and THS3096 (duals) are recommended instead.

# RECOMMENDED FEEDBACK AND GAIN RESISTOR VALUES

As with all current-feedback amplifiers, the bandwidth of the THS306x is an inversely proportional function of the value of the feedback resistor. The recommended resistors for optimum frequency response are shown in Table 1. These should be used as a starting point, and once optimum values are found, 1% tolerance resistors should be used to

maintain frequency response characteristics. For most applications, a feedback-resistor value of 750  $\Omega$  is recommended—a good compromise between bandwidth and phase margin that yields a very stable amplifier.

As shown in Table 1, to maintain the highest bandwidth with increasing gain, the feedback resistor is reduced. The advantage of dropping the feedback resistance (and the gain-resistor value) is that the noise of the system is also reduced compared to no reduction of these resistor values (see NOISE CALCULATIONS). Thus, keeping the bandwidth as high as possible maintains very good distortion performance of the amplifier by keeping the excess loop gain as high as possible.

Table 1. Recommended Resistor Values for Optimum Frequency Response

| GAIN  | $R_F$ for $V_{CC} = \pm 15 \text{ V}$ | $R_F$ for $V_{CC} = \pm 5 V$ |
|-------|---------------------------------------|------------------------------|
| 1     | 750 Ω                                 | 750 Ω                        |
| 2, –1 | 560 Ω                                 | 560 Ω                        |
| 5     | 357 Ω                                 | 383 Ω                        |
| 10    | 200 Ω                                 | 200 Ω                        |

Care must be taken to not set these values too low. The amplifier's output must drive the feedback resistance (and gain resistance), and this may place a burden on the amplifier. The end result is that distortion may actually increase due to the low-impedance load presented to the amplifier. The designer must carefully manage the amplifier bandwidth and the associated loading effects for optimum performance.

The THS3061/62 amplifiers exhibit very good distortion performance and bandwidth, and can use power supplies up to 15 V. The excellent current-drive capability of up to 145 mA into a 50- $\Omega$  load allows many versatile applications. One application is driving a twisted pair line (that is, a telephone line). Figure 48 shows a simple circuit for driving a twisted pair differentially.



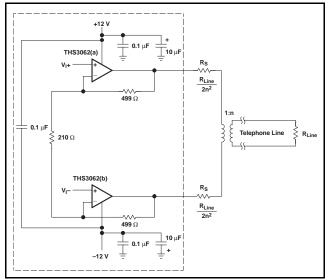



Figure 48. Simple Line Driver With THS3062

Figure 49. Noise Model

Due to the high supply voltages and the large current-drive capability, the power dissipation of the amplifier must be carefully considered. To have as much power dissipation as possible in a small package, the THS3062 is available only in a MSOP-8 PowerPAD package (DGN), and an even lower thermal-impedance SOIC-8 PowerPAD (DDA). The thermal impedance of a standard SOIC package is too large to allow useful applications with up to 30 V across the power-supply terminals with this dual amplifier. But the THS3061 (a single amplifier) can be used in the standard SOIC package. Again, the amplifier power dissipation must be carefully examined, or else the amplifiers could overheat, severely degrading performance. See the Power Dissipation and Thermal Considerations section for more information on thermal management.

#### **NOISE CALCULATIONS**

Noise can cause errors on very small signals. This is especially true for amplifying small signals coming over a transmission line or an antenna. The noise model for current-feedback amplifiers (CFB) is the same as for voltage feedback amplifiers (VFB). The only difference between the two is that CFB amplifiers generally specify different current-noise parameters for each input, while VFB amplifiers usually only specify one noise-current parameter. The noise model is shown in Figure 49. This model includes all of the noise sources as follows:

- en = Amplifier internal voltage noise (nV/ $\sqrt{\text{Hz}}$ )
- IN+ = Noninverting current noise (pA/ $\sqrt{\text{Hz}}$ )
- IN— = Inverting current noise (pA/√Hz)
- eRx = Thermal voltage noise associated with each resistor (eRx = 4 kTRx)

The total equivalent input noise density (eni) is calculated by using the following equation:

$$\begin{split} & \text{e}_{ni} = \sqrt{\left(\text{e}_{n}\right)^{2} + \left(\text{IN} + \times \text{R}_{S}\right)^{2} + \left(\text{IN} - \times \left(\text{R}_{f} \, \| \, \text{R}_{g}\right)\right)^{2} + 4 \, \text{kTR}_{S} + 4 \, \text{kT}\left(\text{R}_{f} \, \| \, \text{R}_{g}\right)} \\ & \text{where} \\ & \text{k} = \text{Boltzmann's constant} = 1.380658 \times 10^{-23} \\ & \text{T} = \text{Temperature in degrees Kelvin (273 + ^{\circ}\text{C})} \\ & \text{R}_{f} \, \| \, \text{R}_{g} = \text{Parallel resistance of R}_{f} \, \text{and R}_{g} \end{split}$$

To calculate the equivalent output noise of the amplifier, multiply the equivalent input noise density  $(e_{ni})$  by the overall amplifier gain  $(A_{V})$ .

$$e_{no} = e_{ni} A_V = e_{ni} \left( 1 + \frac{R_f}{R_g} \right)$$
 (Noninverting Case)

As the previous equations show, to keep noise at a minimum, small value resistors should be used. As the closed-loop gain is increased (by reducing  $R_{\text{F}}$  and  $R_{\text{G}}$ ), the input noise is reduced considerably because of the parallel resistance term. This leads to the general conclusion that the most dominant noise sources are the source resistor  $(R_{\text{S}})$  and the internal amplifier noise voltage  $(e_{\text{n}})$ . Because noise is summed in a root-mean-squares method, noise sources smaller than 25% of the largest noise source can be effectively ignored. This can greatly simplify the formula and make noise calculations much easier.

# PCB LAYOUT TECHNIQUES FOR OPTIMAL PERFORMANCE

Achieving optimum performance with high-frequency devices in the THS306x family requires careful attention to board layout, parasitic effects, and external component types.

Recommendations to optimize performance include:



- Minimize parasitic capacitance to any ac ground for all signal I/O pins. Parasitic capacitance on the output and input pins can cause instability. To reduce unwanted capacitance, a window around the signal I/O pins should be opened in all of the ground and power planes around those pins. Ground and power planes should be unbroken elsewhere on the board.
- Minimize the distance (< 0.25") from the power supply pins to high frequency 0.1-µF decoupling capacitors. At the device pins, the ground and power plane layout should not be in close proximity to the signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and the decoupling capacitors. The power supply connections should always be decoupled with these capacitors. Larger (6.8 µF or more) tantalum decoupling capacitors, effective at lower frequencies, should also be used on the main supply pins. These may be placed somewhat farther from the device and may be shared among several devices in the same area of the printed circuit board (PCB). The primary goal is to minimize the impedance in the differential-current return paths. For driving differential loads with the THS3062, adding a capacitor between the power-supply improves 2nd-order harmonic-distortion performance. This also minimizes the current loop formed by the differential drive.
- Careful selection and placement of external components preserve the high frequency performance of the THS306x family. Resistors a very low reactance type. Surface-mount resistors work best and allow a tighter overall layout. Again, keep leads and PCB trace lengths as short as possible. Never use wirebound-type resistors in a high-frequency application. Since the output pin and inverting input pins are the most sensitive to parasitic capacitance, always position the feedback and series-output resistors, if any, as close as possible to the inverting-input pins and output pins. Other network components, such as input-termination resistors, should be placed close to the gain-setting resistors. Even with a low parasitic capacitance shunting the external resistors, excessively high resistor values can create significant time constants that can degrade performance. Good axial metal-film surface-mount resistors have approximately 0.2 pF in shunt with the resistor. For resistor values > 2.0 k $\Omega$ , this parasitic capacitance can add a pole and/or a zero that can affect circuit operation. Keep resistor values as low as possible, consistent with load-driving considerations.

- Connections to other wideband devices on the board may be made with short direct traces or through onboard transmission lines. For short connections, consider the trace and the input to the next device as a lumped capacitive load. Relatively wide traces (50 mils to 100 mils) should be used, preferably with ground and power planes opened up around them. Estimate the total capacitive load and determine if isolation resistors on the outputs are necessary. Low parasitic capacitive loads (< 4 pF) may not need an R<sub>S</sub> the THS306x family is nominally compensated to operate with a 2-pF parasitic load. Higher parasitic capacitive loads without an R<sub>S</sub> are allowed as the signal gain increases (increasing the unloaded phase margin). If a long trace is required, and the 6-dB signal loss intrinsic to a doubly-terminated transmission line is acceptable, implement a matched-impedance transmission line using microstrip or stripline techniques (consult an ECL design handbook for microstrip and stripline layout techniques).
  - A  $50-\Omega$  environment is not necessary onboard, and in fact, a higher-impedance environment improves distortion as shown in the distortion-versus-load plots. With a characteristic board-trace impedance based on board material and trace dimensions, a matching series resistor is used in the trace from the output of the THS306x, as well as a terminating shunt resistor at the input of the destination device.
  - Remember also that the terminating impedance is the parallel combination of the shunt resistor and the input impedance of the destination device: this total effective impedance should be set to match the trace impedance. If the 6-dB attenuation of a doubly-terminated transmission line is unacceptable. а long trace can be series-terminated at the source end only. Treat the trace as a capacitive load in this case. This does not preserve signal integrity as well as a doubly-terminated line. If the input impedance of the destination device is low, there is some signal attenuation due to the voltage divider formed by the series output into the terminating impedance.
- Socketing a high speed part like the THS306x family is not recommended. The additional lead length and pin-to-pin capacitance introduced by the socket can create an extremely troublesome parasitic network that can make it almost impossible to achieve a smooth, stable frequency response. Best results are obtained by soldering the THS306x family parts directly onto the board.

#### PowerPAD DESIGN CONSIDERATIONS

The THS306x family is available in a thermally-enhanced PowerPAD family of packages. These packages are constructed using a downset



leadframe upon which the die is mounted [see Figure 50(a) and Figure 50(b)]. This arrangement results in the lead frame being exposed as a thermal pad on the underside of the package [see Figure 50(c)]. Because this thermal pad has direct thermal contact with the die, excellent thermal performance can be achieved by providing a good thermal path away from the thermal pad.

The PowerPAD package allows for both assembly and thermal management in one manufacturing operation. During the surface-mount solder operation (when the leads are being soldered), the thermal pad can also be soldered to a copper area underneath the package. Through the use of thermal paths within this copper area, heat can be conducted away from the package into either a ground plane or other heat dissipating device.

The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of surface mount, compared with awkward mechanical methods of heatsinking.

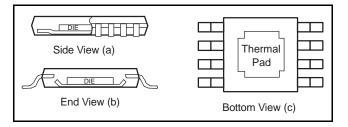



Figure 50. Views of Thermally Enhanced Package

Although there are many ways to properly heatsink the PowerPAD package, the following steps illustrate the recommended approach.

#### PowerPAD PCB LAYOUT CONSIDERATIONS

1. Prepare the PCB with a top-side etch pattern as shown in Figure 51. There should be etch for the leads as well as etch for the thermal pad.

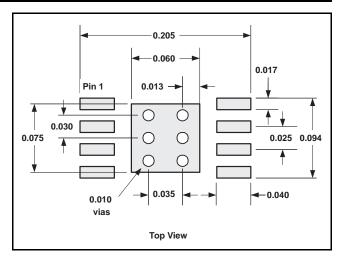



Figure 51. DGN PowerPAD PCB Etch and Via Pattern

- Place five holes in the area of the thermal pad.
   These holes should be 10 mils in diameter. Keep them small so that solder wicking through the holes is not a problem during reflow.
- 3. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area. This helps dissipate the heat generated by the THS306x-family IC. These additional vias may be larger than the 10-mil diameter vias directly under the thermal pad. They can be larger because they are not in the thermal pad area to be soldered, so wicking is not a problem.
- 4. Connect all holes to the internal ground plane.
- 5. When connecting these holes to the ground plane, **do not** use the typical web or spoke via connection methodology. Web connections have a high thermal resistance that is useful for slowing the heat transfer during soldering operations, making the soldering of vias that have plane connections easier. In this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore, the holes under the THS306x family PowerPAD package should make their connection to the internal ground plane with a complete connection around the entire circumference of the plated-through hole.
- 6. The top-side solder mask should leave the terminals of the package and the thermal pad area with its five holes exposed. The bottom-side solder mask should cover the five holes of the thermal pad area. This prevents solder from being pulled away from the thermal pad area during the reflow process.
- 7. Apply solder paste to the exposed thermal pad area and all IC terminals.
- 8. With these preparatory steps in place, the IC is simply placed in position and run through the



solder reflow operation as any standard surface-mount component. This results in a properly-installed device.

# POWER DISSIPATION AND THERMAL CONSIDERATIONS

To maintain maximum output capability, the THS360x does not incorporate automatic thermal shutoff protection. The designer must ensure that the design does not violate the absolute maximum junction temperature of the device. Failure may result if the absolute maximum junction temperature of +150°C is exceeded. For best performance, design for a maximum junction temperature of +125°C. Between +125°C and +150°C, damage does not occur, but the performance of the amplifier begins to degrade.

The thermal characteristics of the device are dictated by the package and the PC board. Maximum power dissipation for a given package can be calculated using Equation 1.

$$P_{\text{Dmax}} = \frac{T_{\text{max}} - T_{\text{A}}}{\theta_{\text{JA}}}$$

where

 $P_{Dmax}$  is the maximum power dissipation in the amplifier (W).

 $\underline{T}_{max}$  is the absolute maximum junction temperature (°C).

T<sub>A</sub> is the ambient temperature (°C).

 $\theta_{JA} = \theta_{JC} + \theta_{CA}$ 

 $\theta_{JC}$  is the thermal coefficient from the silicon junctions to the case (°C/W).

 $\theta_{CA}$  is the thermal coefficient from the case to ambient air (°C/W).

(1)

For systems where heat dissipation is more critical, the THS306x family of devices is offered in an 8-pin MSOP with PowerPAD, and the THS3062 is available in the SOIC-8 PowerPAD package offering even better thermal performance. The thermal coefficients for the PowerPAD packages are substantially improved over traditional SOICs. Maximum power dissipation levels are given in the graph for the available packages. Data for the PowerPAD packages assumes a board layout that follows the PowerPAD layout guidelines referenced above and detailed in the PowerPAD application note number SLMA002. The following graph also illustrates the effect of not soldering the PowerPAD to a PCB. The thermal impedance increases substantially, which can cause serious heat and performance issues. Always be sure to solder the PowerPAD to the PCB for optimum performance.

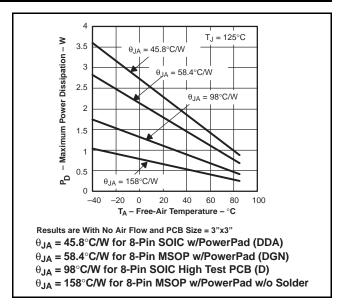



Figure 52. Maximum Power Dissipation vs Ambient Temperature

When determining whether or not the device satisfies the maximum power dissipation requirement, it is important not only to consider quiescent power dissipation, but also dynamic power dissipation. Often, this is difficult to quantify because the signal pattern is inconsistent, but an estimate of the RMS power dissipation can provide visibility into a possible problem.

#### **DRIVING A CAPACITIVE LOAD**

Driving capacitive loads with high-performance amplifiers is not a problem as long as certain precautions are taken. The first is to realize that the THS306x has been internally compensated to maximize its bandwidth and slew-rate performance. When the amplifier is compensated in this manner, capacitive loading directly on the output decreases the device's phase margin, leading to high-frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series with the output of the amplifier as shown in Figure 53. A minimum value of 10  $\Omega$  works well for most applications. For example, transmission 75-Ω systems. settina series-resistor value to 75  $\Omega$  both isolates any capacitive loading and provides the proper line impedance matching at the source end.

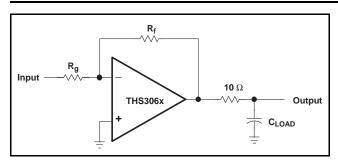



Figure 53. Driving a Capacitive Load

#### **General Configurations**

A common error for the first-time CFB-amplifier user is creating a unity gain buffer amplifier by shorting the output directly to the inverting input. In this configuration, a CFB amplifier oscillates, and is *not* recommended. The THS306x, like all CFB amplifiers, *must* have a feedback resistor for stable operation. Additionally, placing capacitors directly from the output to the inverting input is not recommended, because at high frequencies, a capacitor has a very low impedance. This results in an unstable amplifier

and should not be considered when using a current-feedback amplifier. Because of this, integrators and simple low-pass filters, which are easily implemented on a VFB amplifier, must be designed slightly differently. If filtering is required, simply place an RC-filter at the noninverting terminal of the operational-amplifier (see Figure 54).

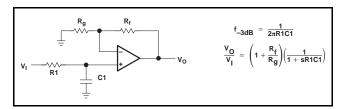



Figure 54. Single-Pole Low-Pass Filter



If a multiple-pole filter is required, a Sallen-Key filter can work very well with CFB amplifiers. This is because the filtering elements are not in the negative feedback loop and stability is not compromised. Because of their high slew rates and high bandwidths, CFB amplifiers can pass very accurate signals and help minimize distortion. An example is shown in Figure 55.

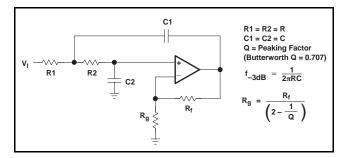



Figure 55. 2-Pole Low-Pass Sallen-Key Filter

There are two simple ways to create an integrator with a CFB amplifier. The first, shown in Figure 56, adds a resistor in series with the capacitor. This is acceptable, because at high frequencies, the resistor is dominant and the feedback impedance never drops below the resistor value. The second, shown in Figure 57, uses positive feedback to create the integration. Caution is advised because oscillations can occur due to the positive feedback.

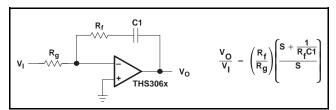



Figure 56. Inverting CFB Integrator

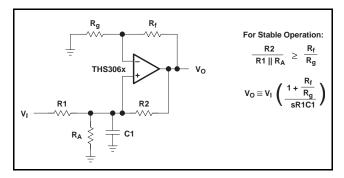



Figure 57. Noninverting CFB Integrator

The THS306x may also be employed as a very good video-distribution amplifier. One characteristic of distribution amplifiers is the fact that the differential phase (dP) and the differential gain (dG) are compromised as the number of lines increases and the closed-loop gain increases. Be sure to use termination resistors throughout the distribution system to minimize reflections and capacitive loading.

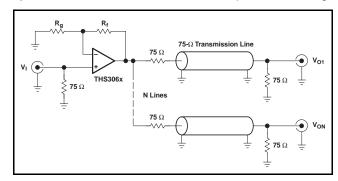



Figure 58. Video Distribution Amplifier Application



#### **REVISION HISTORY**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| CI | changes from Revision A (October, 2002) to Revision B                      |    |  |  |
|----|----------------------------------------------------------------------------|----|--|--|
| •  | Updated document format to current standards                               | 1  |  |  |
| •  | Deleted lead temperature specification from Absolute Maximum Ratings table | 2  |  |  |
| •  | Added Maximum Slew Rate for Repetitive Signals section                     | 13 |  |  |



www.ti.com 24-Jan-2013

#### **PACKAGING INFORMATION**

| Orderable Device | Status | Package Type      | Package<br>Drawing | Pins | Package Qty | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Top-Side Markings | Samples |
|------------------|--------|-------------------|--------------------|------|-------------|----------------------------|------------------|--------------------|--------------|-------------------|---------|
| THS3061D         | ACTIVE | SOIC              | D                  | 8    | 75          | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | 3061              | Samples |
| THS3061DG4       | ACTIVE | SOIC              | D                  | 8    | 75          | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | 3061              | Samples |
| THS3061DGN       | ACTIVE | MSOP-<br>PowerPAD | DGN                | 8    | 80          | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | BIB               | Samples |
| THS3061DGNG4     | ACTIVE | MSOP-<br>PowerPAD | DGN                | 8    | 80          | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | BIB               | Samples |
| THS3061DGNR      | ACTIVE | MSOP-<br>PowerPAD | DGN                | 8    | 2500        | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | BIB               | Samples |
| THS3061DGNRG4    | ACTIVE | MSOP-<br>PowerPAD | DGN                | 8    | 2500        | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | BIB               | Samples |
| THS3061DR        | ACTIVE | SOIC              | D                  | 8    | 2500        | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | 3061              | Samples |
| THS3061DRG4      | ACTIVE | SOIC              | D                  | 8    | 2500        | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | 3061              | Samples |
| THS3062D         | ACTIVE | SOIC              | D                  | 8    | 75          | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | 3062              | Samples |
| THS3062DDA       | ACTIVE | SO PowerPAD       | DDA                | 8    | 75          | Green (RoHS<br>& no Sb/Br) | CU SN            | Level-1-260C-UNLIM | -40 to 85    | 3062              | Samples |
| THS3062DDAG3     | ACTIVE | SO PowerPAD       | DDA                | 8    | 75          | Green (RoHS<br>& no Sb/Br) | CU SN            | Level-1-260C-UNLIM | -40 to 85    | 3062              | Samples |
| THS3062DG4       | ACTIVE | SOIC              | D                  | 8    | 75          | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | 3062              | Samples |
| THS3062DGN       | ACTIVE | MSOP-<br>PowerPAD | DGN                | 8    | 80          | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | BIC               | Samples |
| THS3062DGNG4     | ACTIVE | MSOP-<br>PowerPAD | DGN                | 8    | 80          | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | BIC               | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

**LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.



#### PACKAGE OPTION ADDENDUM

24-Jan-2013

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

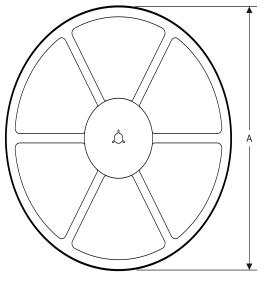
**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

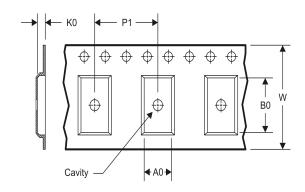
(4) Only one of markings shown within the brackets will appear on the physical device.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

### PACKAGE MATERIALS INFORMATION

14-Jul-2012 www.ti.com


#### TAPE AND REEL INFORMATION

#### **REEL DIMENSIONS**

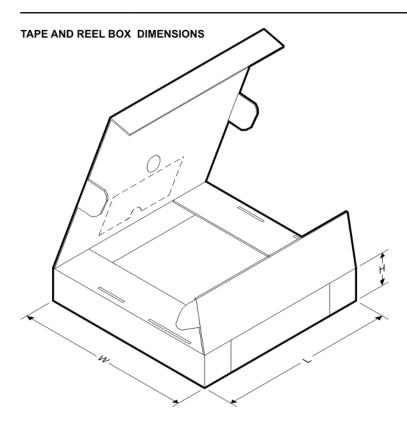




#### **TAPE DIMENSIONS**



| A0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| В0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

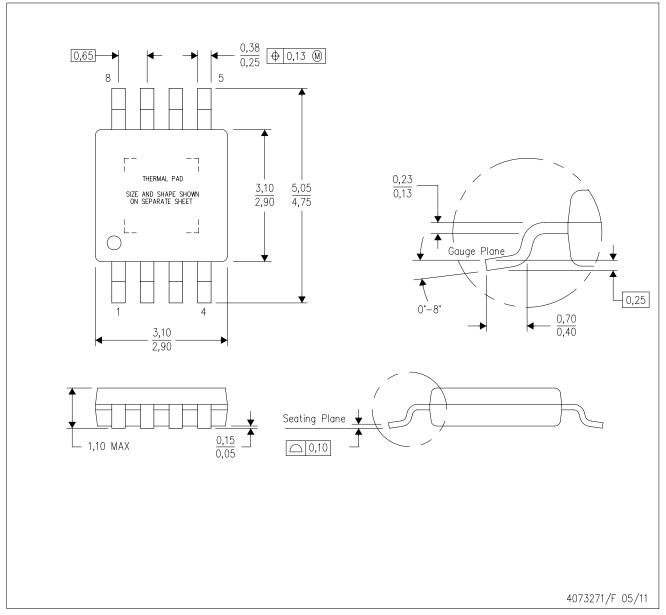

#### TAPE AND REEL INFORMATION

#### \*All dimensions are nominal

| Device      | Package<br>Type       | Package<br>Drawing |   | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-------------|-----------------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| THS3061DGNR | MSOP-<br>Power<br>PAD | DGN                | 8 | 2500 | 330.0                    | 12.4                     | 5.3        | 3.4        | 1.4        | 8.0        | 12.0      | Q1               |
| THS3061DR   | SOIC                  | D                  | 8 | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |

**PACKAGE MATERIALS INFORMATION** 

www.ti.com 14-Jul-2012




#### \*All dimensions are nominal

| Device      | Package Type  | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-------------|---------------|-----------------|------|------|-------------|------------|-------------|
| THS3061DGNR | MSOP-PowerPAD | DGN             | 8    | 2500 | 358.0       | 335.0      | 35.0        |
| THS3061DR   | SOIC          | D               | 8    | 2500 | 367.0       | 367.0      | 35.0        |

DGN (S-PDSO-G8)

### PowerPAD™ PLASTIC SMALL OUTLINE



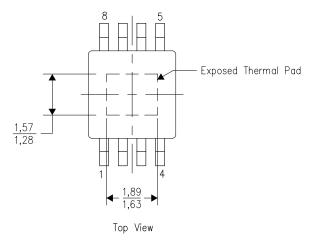
NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com <a href="https://www.ti.com">www.ti.com</a>.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-187 variation AA-T

#### PowerPAD is a trademark of Texas Instruments.



# DGN (S-PDSO-G8)


### PowerPAD™ PLASTIC SMALL OUTLINE

#### THERMAL INFORMATION

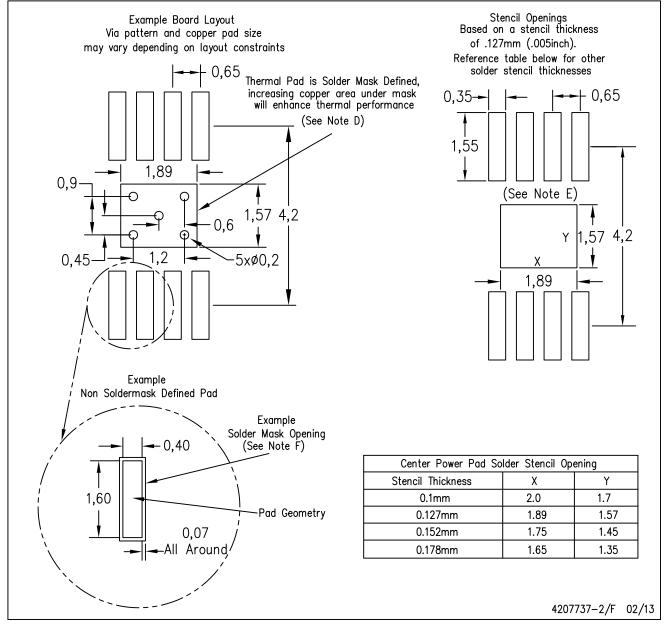
This PowerPAD  $^{\text{M}}$  package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



Exposed Thermal Pad Dimensions


4206323-2/1 12/11

NOTE: All linear dimensions are in millimeters

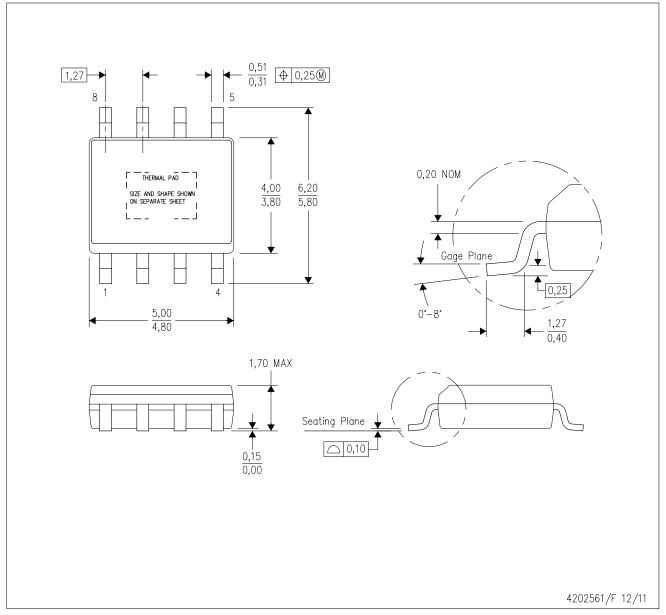


### DGN (R-PDSO-G8)

### PowerPAD™ PLASTIC SMALL OUTLINE



NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <a href="http://www.ti.com">www.ti.com</a>.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD is a trademark of Texas Instruments



### DDA (R-PDSO-G8)

### PowerPAD ™ PLASTIC SMALL-OUTLINE



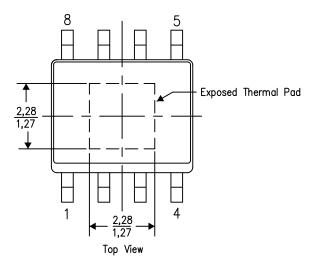
NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com <a href="https://www.ti.com">http://www.ti.com</a>.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. This package complies to JEDEC MS-012 variation BA

PowerPAD is a trademark of Texas Instruments.



### DDA (R-PDSO-G8)


# PowerPAD™ PLASTIC SMALL OUTLINE

#### THERMAL INFORMATION

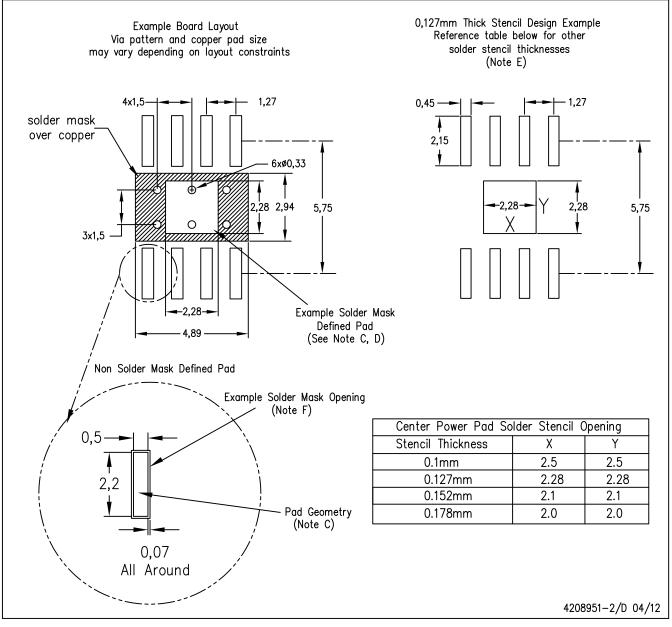
This PowerPAD package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



Exposed Thermal Pad Dimensions


4206322-2/L 05/12

NOTE: A. All linear dimensions are in millimeters

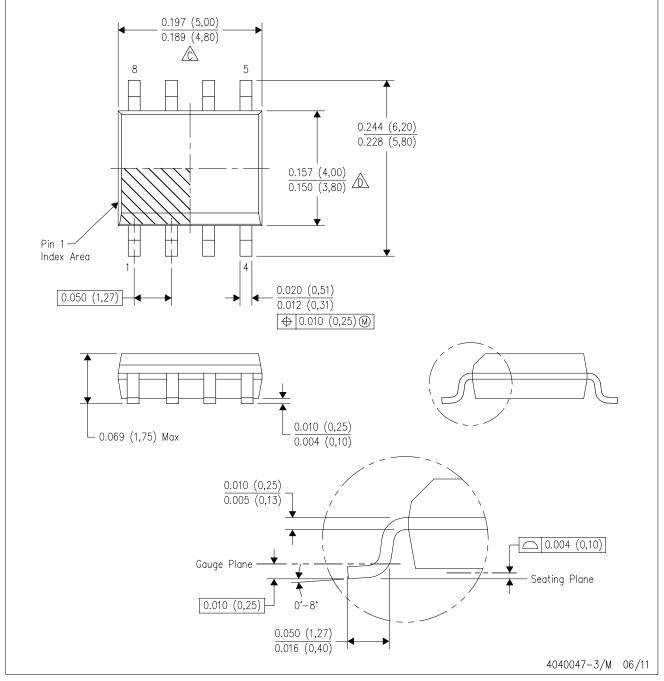


### DDA (R-PDSO-G8)

### PowerPAD™ PLASTIC SMALL OUTLINE



#### NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <a href="http://www.ti.com">http://www.ti.com</a>. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

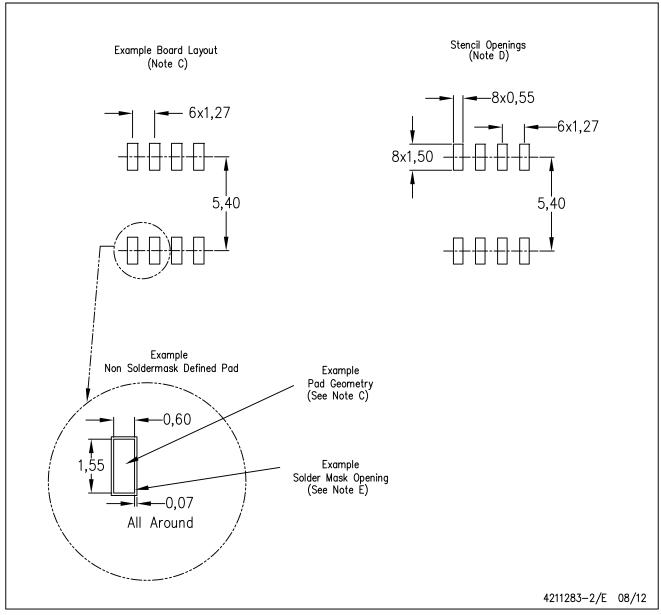
PowerPAD is a trademark of Texas Instruments.



### D (R-PDSO-G8)

#### PLASTIC SMALL OUTLINE




NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.



# D (R-PDSO-G8)

### PLASTIC SMALL OUTLINE



NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors <a href="https://www.ti.com/omap">www.ti.com/omap</a> TI E2E Community <a href="https://example.com/omap">e2e.ti.com/omap</a>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>