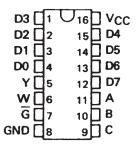
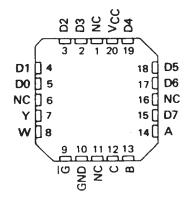
- Three-State Versions of '151, 'LS151, 'S151
- Three-State Outputs Interface Directly with System Bus
- Perform Parallel-to-Serial Conversion
- Permit Multiplexing from N-lines to One Line
- Complementary Outputs Provide True and Inverted Data
- Fully Compatible with Most TTL Circuits


TYPE	MAX NO. OF COMMON OUTPUTS	TYPICAL AVG PROP DELAY TIME (D TO Y)	TYPICAL POWER DISSIPATION
SN54251	49	17 ns	250 mW
SN74251	129	17 ns	250 mW
SN54LS251	49	17 ns	35 mW
SN74LS251	129	17 ns	35 mW
SN54S251	39	8 ns	275 mW
SN74S251	129	8 ns	275 mW

description


These monolithic data selectors/multiplexers contain full on-chip binary decoding to select one-of-eight data sources and feature a strobe-controlled three-state output. The strobe must be at a low logic level to enable these devices. The three-state outputs permit a number of outputs to be connected to a common bus. When the strobe input is high, both outputs are in a high-impedance state in which both the upper and lower transistors of each totem-pole output are off, and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TTL totem-pole outputs.

To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the 'average output disable time is shorter than the average output enable time. The SN54251 and SN74251 have output clamp diodes to attenuate reflections on the bus line.

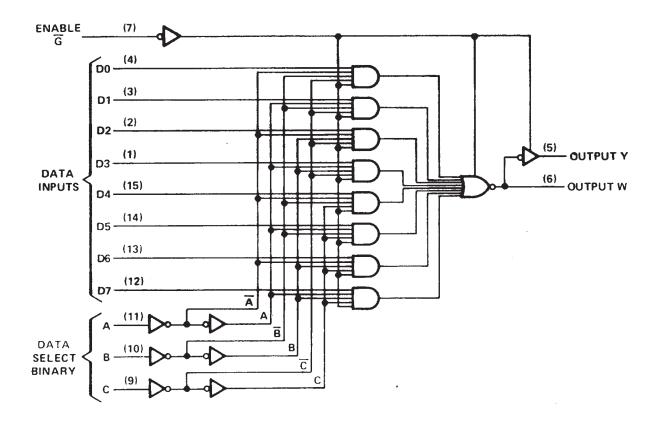
SN54251, SN54LS251, SN54S251 . . . J OR W PACKAGE SN74251 . . . N PACKAGE SN74LS251, SN74S251 . . . D OR N PACKAGE (TOP VIEW)

SN54LS251, SN54S251 . . . FK PACKAGE (TOP VIEW)

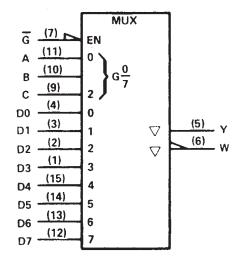
NC - No internal connection

FUNCTION TABLE

	11	VPUT	S	OUT	PUTS
S	ELEC	T	ENABLE	v	w
С	В	Α	G	. •	**
X	Х	×	н	z	Z
L	L	L	L	D0	DO
L	L	н	L	D1	DI
L	н	Ł	L	D2	D2
L	н	Н	L	D3	D3
н	L	L	L	D4	D4
н	L	н	L	D5	D5
н	н	L	L	D6	D6
н	н	н	L	D7	D7


H = high logic level, L = low logic level

X = irrelevant, Z = high impedance (off)


D0, D1 . . . D7 = the level of the respective D input

logic diagram (positive logic)

logic symbol†

 $^{^{\}dagger}$ This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

SN54251 SN74251, DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

SDLS085 - DECEMBER 1972 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)																				7 V
Input voltage																				5.5 V
Off-state output voltage																				5.5 V
Operating free-air temperature range	: 5	SN	54	25	1											_Ę	55°	C	to	125°C
																				o 70°C
Storage temperature range																-6	35°	C	to	150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN5425	1		SN7425	1	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	DIVIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-2			-5.2	mA
Low-level output current, IOL			16			16	mA
Operating free-air temperature, TA	-55		125	0		70	°c

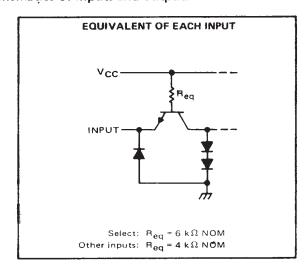
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

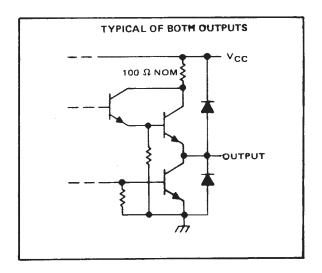
	PARAMETER	TEST COND	ITIONS [†]	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage			2	-		V
VIL	Low-level input voltage	•				0.8	V
VIK	Input clamp voltage	V _{CC} = MIN, 1 ₁	= -12 mA			-1.5	V
Vон	High-level output voltage	**	H = 2 V, H = MAX	2.4	3.2		٧
VOL	Low-level output voltage	, ,	H = 2 V, L = 16 mA		0.2	0.4	٧
loz	Off-state (high-impedance-state) output current	V _{CC} = MAX, V _{IH} = 2 V	V _O = 2.4 V V _O = 0.4 V			40 -40	μА
v _o	Output clamp voltage	V _{CC} = MAX, V _{IH} = 4.5 V	I _O = -12 mA		V	-1.5 CC+1.5	٧
Ťį	Input current at maximum input voltage	V _{CC} = MAX, V _I	= 5.5 V			1	mA
hн	High-level input current	V _{CC} = MAX, V _I	= 2.4 V			40	μА
HL	Low-level input current	V _{CC} = MAX, V _I	= 0.4 V			-1.6	mA
los	Short-circuit output current §	V _{CC} = MAX		-18		-55	mA
Icc	Supply current	V _{CC} = MAX, All All outputs open	l inputs at 4.5 V,		38	62	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{C}$.

Not more than one output should be shorted at a time.


switching characteristics, VCC = 5 V, TA = 25°C


PARAMETER†	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH	A, B, or C	· Y		29	45	ns
^t PHL	(4 levels)	'	j	28	45	1115
やLH	A, B, or C	w	1	20	33	ns
^t PHL	(3 levels)			21	33] ''3
'	Any D	Y	Cլ = 50 pF,	17	28	ns
ФHL) Aiiy b	,	R _L = 400 Ω,	18	28	"
^t PLH	Any D	w	See Note 2	10	15	ns
ФНL	1 Ally D		oce ivote 2	9	15	L'''.
^t PZH	ē ·	Y		17	27	
^t PZL	9	1		26	40	ns
^t PZH	G	W]	17	27	ns
tPZL		"		24	40] '''
^t PHZ	₫.	Y	Cլ = 5 pF,	5	8	ns
t _{PLZ}			$R_L = 400 \Omega$,	15	23	
^t PHZ	G	W	See Note 2	5	8	ns
tPLZ	1	**	See Note 2	15	23] '''

 $^{^{\}dagger}t_{PLH}$ = Propagation delay time, low-to-high-level output

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

schematics of inputs and outputs

tpHL = Propagation delay time, high-to-low-level output

tpZH = Output enable time to high level

tpZL = Output enable time to low level

tpHZ = Output disable time from high level

tPLZ = Output disable time from low level

SN54LS251 SN74LS251, DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

SDLS085 - DECEMBER 1972 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) .		 												. 7 V
Input voltage										.•				. 7 V
Off-state output voltage		 												. 5.5 V
Operating free-air temperature range:	SN54LS251										5	5°	C to	o 125°C
	SN74LS251											0	°C	to 70°C
Storage temperature range														

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		S	N54LS2	51	S	N74LS2	251	LINIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			0.8	V
Тон	High-level output current			- 1			- 2.6	mA
IOL	Low-level output current			4			8	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED		TEST COM	DITIONST		S	N54LS2	51	SI	6.1 10	UNIT	
PARAMETER		TEST CON	DITIONS		MIN	TYP ‡	MAX	MIN	TYP\$	MAX	UNIT
V _{IK}	V _{CC} = MIN,	I _I = - 18 mA					- 1.5			- 1.5	V
V _{OH}	V _{CC} = MIN, I _{OH} = MAX	V _{IH} = 2 V,	VIL = MAX		2.4	3.4		2.4	3.1		V
	VCC = MIN,	V _{1H} = 2 V,		IOL = 4 mA		0.25	0.4		. 0.25	0.4	V
VOL	VIL = MAX			10L = 8 mA					0.35	0.5	1 *
1	V _{CC} = MAX,	V = 2 V		V _O = 2.7 V			- 20			20	μА
loz	VCC - MAA,	VIH - 2 V		V _O = 0.4 V			20			- 20	μΑ.
11	V _{CC} = MAX,	V _I = 7 V					0.1			0.1	mA
Чн	V _{CC} = MAX,	V ₁ = 2.7 V					20			20	μА
Enable G	V _{CC} = MAX,	\/. = 0.4	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				- 0.2			0.2	mA
All other	VCC - MAA,	V 1 - 0.4					- 0.4			- 0.4	100
los§	V _{CC} = MAX				- 30		- 130	- 30		- 130	mA
				Condition A		6.1	10		6.1	10	mA
¹cc	V _{CC} = MAX,	See Note 3		Condition B		7.1	12		7.1	12	IIIA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 3: I_{CC} is measured with the outputs open and all data and select inputs at 4.5 V under the following conditions:

A. Enable grounded.

B. Strobe at 4.5 V.

SN54LS251 SN74LS251, (TIM9905), DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

SDLS085 - DECEMBER 1972 - REVISED MARCH 1988

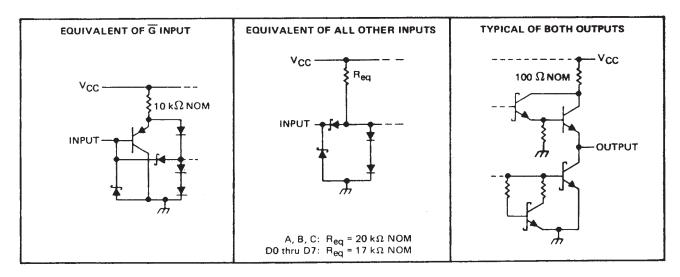
switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER†	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH .	A, B, or C	Y			29	45	
^t PHL	(4 levels)	'			28	45	ns
tPLH .	A, B, or C	w			20 .	33	ns
^t PHL	(3 levels)	"			. 21	33	l lis
ФLH	Any D	Y]		17	28	กร
ФНL	Ally b	<u>'</u>	C _L = 15 pF,		29	28	113
^t PLH	Any D	w	$R_L = 2 k\Omega$,			15	กร
^t PHL		**	See Note 2		9	15	'''
^t PZH	G	Y	7		30	45	ns
^t PZL		'			26	40	113
^t PZH	G	w	7		17	27	ns
^t PZL		"			24	40	'''
^t PHZ	Ğ	Υ	C: - E = E		30	45	ns
tPLZ	G	1	C _L = 5 pF,		15	25	113
^t PHZ	Ğ	w	$R_{L} = 2 k\Omega,$ See Note 2		37	55	ns
tPLZ		, , ,	See Note 2		15	25	

†tpLH = Propagation delay time, low-to-high-level output

tpHL = Propagation delay time, high-to-low-level output

tpZH = Output enable time to high level


 t_{PZL} = Output enable time to low level

tpHZ = Output disable time from high level

tpLZ = Output disable time from low level

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

schematics of inputs and outputs

SN54S251 SN74S251, DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

SDLS085 - DECEMBER 1972 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		•													7 V
Input voltage															5.5 V
Off-state output voltage															5.5 V
Operating free-air temperature range: SN54S25	51							. ,			_	55	°C	to	125°C
SN74S25	51											(0°0	Ct	o 70°C
Storage temperature range											_	65	°C	to	150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	S	N54S25	1	5	N74S2	51 ₋	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	- 5.5	4.75	5	5.25	V
High-level output current, IOH			-2			-6.5	mA
Low-level output current, IOL		· · · · · · · · · · · · · · · · · · ·	20			20	mA
Operating free-air temperature, TA	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS†			MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			V
VIL	Low-level input voltage						0.8	٧
VIK	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA				-1.2	٧
VOH	High-level output voltage	V _{CC} = MIN,	V _{IH} = 2 V,	SN54S'	2.4	3.4		٧
		V _{IL} = 0.8 V,	IOH = MAX	SN745'	2.4	3.2		
VOL	Low-level output voltage	V _{CC} = MIN,	V _{IH} = 2 V,		1		0.5	V
		V _{1L} = 0.8 V,	1 _{OL} = 20 mA		ļ	0.5		
loz	Off-state (high-impedance-state) output current	V _{CC} = MAX,	Vo = 2.4 V				50	-I uA
		V _{IH} = 2 V	V _O = 0.5 V				-50	
4	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V				1	mA	
Чн	High-level input current	VCC - MAX,	V ₁ = 2.7 V				50	μА
IIL.	Low-level input current	V _{CC} = MAX,	V _I = 0.5 V	-			-2	mA .
los	Short-circuit output current	V _{CC} = MAX			-40		-100	mA
¹ CC	Supply current	V _{CC} = MAX,	All inputs at 4.5 V,		T	55	85	mA
		All outputs open	en			33	05	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. ‡ AII typical values are at $^{\lor}$ CC = 5 $^{\lor}$ C.

[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

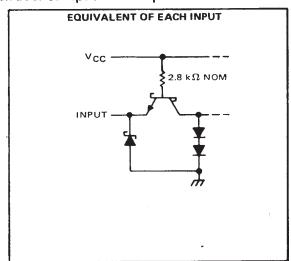
switching characteristics, VCC = 5 V, TA = 25°C

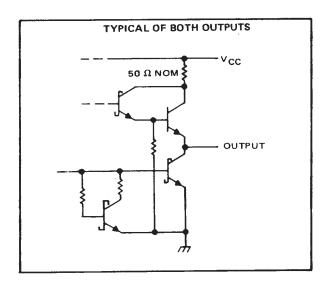
PARAMETER [†]	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TY	MAX	UNIT
tPLH	A, B, or C (4 levels)	Y	CL = 15 pF, RL = 280 Ω, See Note 2	12	18	ns
tPHL		'		13	19.5	
^t PLH	A, B, or C	w		10	15	ns
tphl.	(3 levels)	**		9	13.5	
^t PLH	Any D	Υ		8	12	ns
[‡] PHL	7 71190			8	12	
^t PLH	Any D	w		4.5	7	ns
^t PHL				4.5	7	
^t PZH	G	Y	C _L = 50 pF, R _L = 280 Ω, See Note 2	13	19.5	ns
^t PZL	7 "			14	21	
^t PZH		w		13	19.5	ns
[†] PZL				14	21	
[†] PHZ	G	Y	C _L = 5 pF, R _L = 280 Ω, See Note 2	5.5	8.5	ns
tPLZ				(14	
[†] PHZ	G	W		5.5	8.5	ns
†PLZ	7			9	14	

[†]tpLH = Propagation delay time, low-to-high-level output

tpHL = Propagation delay time, high-to-low-level output

t_{PZH} = Output enable time to high level


 t_{PZL} = Output enable time to low level


tpHZ = Output disable time from high level

 t_{PLZ} = Output disable time from low level

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

schematics of inputs and outputs

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated