

features

- Multi-Rate Operation from 155 Mbps Up to 2.5 Gbps
- Ultralow Power Consumption
- Input Offset Cancellation
- High Input Dynamic Range
- Output Disable
- Output Polarity Select
- CML Data Outputs

- Single 3.3-V Supply

- Surface Mount Small Footprint 3 mm × 3 mm 16-Pin QFN Package

applications

- SONET/SDH Transmission Systems at OC3, OC12, OC24, OC48
- 1.0625-Gbps and 2.125-Gbps Fibre Channel Receivers
- Gigabit Ethernet Receivers

description

The ONET2511PA is a versatile high-speed limiting amplifier for multiple fiber optic applications with data rates up to 2.5 Gbps.

This device provides a gain of about 50 dB, which ensures a fully differential output swing for input signals as low as 3 mV_{p-p}.

The high input signal dynamic range ensures low jitter output signals even when overdriven with input signal swings as high as 1800 mV_{p-p}.

The ONET2511PA is available in a small footprint 3 mm × 3 mm 16-pin QFN package. The circuit requires a single 3.3-V supply.

This power efficient limiting amplifier is characterized for operation from –40°C to 85°C.

available options

T _A	PACKAGED DEVICE	FEATURES
–40°C to 85°C	ONET2511PARGT	16-pin 3 mm x 3 mm QFN, tube
–40°C to 85°C	ONET2511PARGTR	16-pin 3 mm x 3 mm QFN, tape and reel

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ONET2511PA

155-Mbps TO 2.5-Gbps LIMITING AMPLIFIER

SLLS604B – MARCH 2004 – DECEMBER 2004

block diagram

A simplified block diagram of the ONET2511PA is shown in Figure 1.

This compact, low power 2.5-Gbps limiting amplifier consists of a high-speed data path with offset cancellation block, a loss of signal and RSSI detection block, and a bandgap voltage reference and bias current generation block.

The limiting amplifier requires a single 3.3-V supply voltage. All circuit parts are described in detail below.

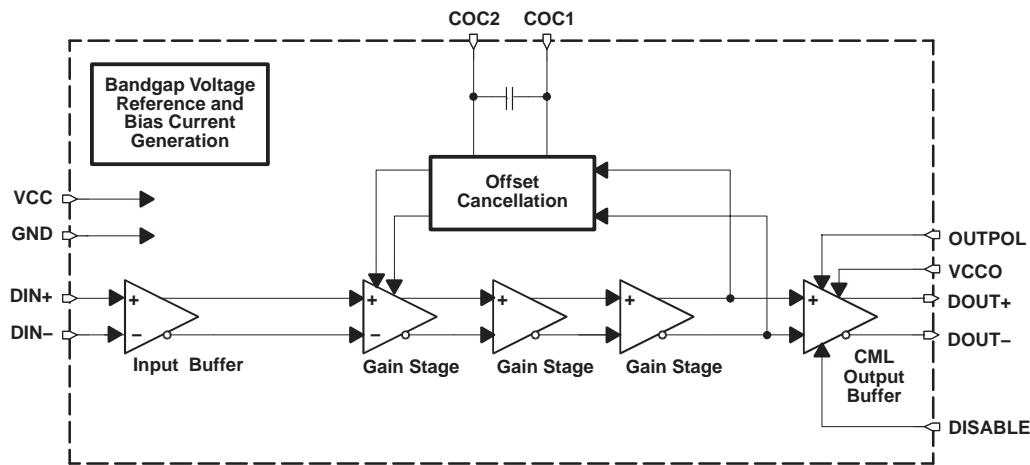


Figure 1. Block Diagram

high-speed data path

The high-speed data signal is applied to the data path by means of the input signal pins DIN+/DIN-. The data path consists of the input stage with $2 \times 50\text{-}\Omega$ on-chip line termination to VCC, three gain stages which provide the required typical gain of about 50 dB, and a CML output stage. The amplified data output signal is available at the output pins DOUT+/DOUT-, which provide $2 \times 50\text{-}\Omega$ back-termination to VCCO. The output stage also includes a data polarity switching function, which is controlled by the OUTPOL input and a disable function, controlled by the signal applied to the DISABLE input pin.

An offset cancellation compensates inevitable internal offset voltages and thus ensures proper operation even for small input data signals.

The low frequency cutoff is as low as 45 kHz with the built-in filter capacitor.

For applications, which require even lower cutoff frequencies, an additional external filter capacitor may be connected to the COC1/COC2 pins.

bandgap voltage and bias generation

The ONET2511PA limiting amplifier is supplied by a single 3.3-V $\pm 10\%$ supply voltage connected to the VCC and VCCO pins. This voltage is referred to ground (GND).

An on-chip bandgap voltage circuitry generates a supply voltage independent reference from which all other internally required voltages and bias currents are derived.

package

For the ONET2511PA a small footprint 3 mm × 3 mm 16-pin QFN package is used, with a lead pitch of 0,5 mm. The pinout is shown in Figure 2.

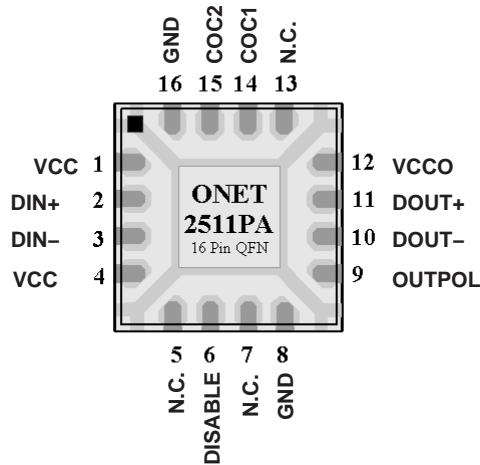


Figure 2. Pinout of ONET2511PA in a 3 mm × 3 mm 16-Pin QFN Package

terminal functions

The following table shows a pin description for the ONET2511PA in a 3 mm x 3 mm 16-pin QFN package.

TERMINAL		TYPE	DESCRIPTION
NAME	NO.		
VCC	1, 4	Supply	3.3-V ±10% supply voltage
DIN+	2	Analog in	Noninverted data input. On-chip 50-Ω terminated to VCC
DIN-	3	Analog in	Inverted data input. On-chip 50-Ω terminated to VCC
N.C.	5, 7, 13		Not connected
DISABLE	6	CMOS in	Disables CML output stage when set to high level
GND	8, 16, EP	Supply	Circuit ground. Exposed die pad (EP) must be grounded.
OUTPOL	9	CMOS in	Output data signal polarity select (internally pulled up): Setting to high level or leaving pin open selects normal polarity. Low level selects inverted polarity.
DOUT-	10	CML out	Inverted data output. On-chip 50-Ω back-terminated to VCCO
DOUT+	11	CML out	Noninverted data output. On-chip 50-Ω back-terminated to VCCO
VCCO	12	Supply	3.3-V ±10% supply voltage for output stage
COC1	14	Analog	Offset cancellation filter capacitor terminal 1. Connect an additional filter capacitor between this pin and COC2 (pin 15). To disable the offset cancellation loop connect COC1 and COC2 (pins 14 and 15).
COC2	15	Analog	Offset cancellation filter capacitor terminal 2. Connect an additional filter capacitor between this pin and COC1 (pin 14). To disable the offset cancellation loop connect COC1 and COC2 (pins 14 and 15).

ONET2511PA

155-Mbps TO 2.5-Gbps LIMITING AMPLIFIER

SLLS604B – MARCH 2004 – DECEMBER 2004

absolute maximum ratings

over operating free-air temperature range unless otherwise noted[†]

		VALUE	UNIT
V _{CC} , V _{CCO}	Supply voltage, See Note 1	-0.3 to 4	V
V _{DIN+} , V _{DIN-}	Voltage at DIN+, DIN-, See Note 1	0.5 to 4	V
V _{DISABLE} , V _{OUTPOL} , V _{DOUT+} , V _{DOUT-} , V _{COC1} , V _{COC2}	Voltage at TH, DISABLE, OUTPOL, DOUT+, DOUT-, COC1, and COC2, See Note 1	-0.3 to 4	V
V _{COC_DIFF}	Differential voltage between COC1 and COC2	±1	V
V _{DIN_DIFF}	Differential voltage between DIN+ and DIN-	±2.5	V
I _{DIN+} , I _{DIN-} , I _{DOUT+} , I _{DOUT-}	Continuous current at inputs and outputs	-25 to 25	mA
ESD	ESD rating at all pins except V _{CCO}	3	kV (HBM)
	ESD rating at V _{CCO}	1.1	
T _{J(max)}	Maximum junction temperature	125	°C
T _{stg}	Storage temperature range	-65 to 85	°C
T _A	Characterized free-air operating temperature range	-40 to 85	°C
T _L	Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	260	°C

[†] Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to network ground terminal.

recommended operating conditions

	MIN	TYP	MAX	UNIT
Supply voltage, V _{CC} , V _{CCO}	3	3.3	3.6	V
Operating free-air temperature, T _A	-40		85	°C

dc electrical characteristics

over recommended operating conditions (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{CC} , V _{CCO} Supply voltage		3	3.3	3.6	V
I _{VCC} Supply current	DISABLE = low (excludes CML output current)		22	28	mA
V _{OD} Differential data output voltage swing	DISABLE = high		0.25	10	mV _{p-p}
	DISABLE = low	600	780	1200	mV _{p-p}
R _{IN} , R _{OUT} Data input/output resistance	Single ended		50		Ω
V _{IN,MIN} Data input sensitivity	BER < 10 ⁻¹⁰		3	5	mV _{p-p}
V _{IN,MAX} Data input overload		1800			mV _{p-p}
CMOS input high voltage			2.1		V
CMOS input low voltage			0.6		V

ac electrical characteristics

over recommended operating conditions (unless otherwise noted), typical operating condition is at $V_{CC} = 3.3$ V and $T_A = 25^\circ\text{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Low frequency –3-dB bandwidth	$C_{OC} = \text{open}$		45	70	kHz
	$C_{OC} = 2.2 \text{ nF}$		0.8		
Data rate		2.5			Gb/s
V_{NI}	Input referred noise		300		μVRMS
DJ	K28.5 pattern at 2.5 Gbps	8.5	25		ps _{p-p}
	2 ²³ –1 PRBS equivalent pattern at 2.5 Gbps	9.3	30		
	2 ²³ –1 PRBS equivalent pattern at 155 Mbps	25	50		
RJ	Input = 5 mV _{pp}	6.5			ps _{RMS}
	Input = 10 mV _{pp}	3			
t_r	Output rise time	20% to 80%	60	85	ps
t_f	Output fall time	20% to 80%	60	85	ps
PSNR	Power supply noise rejection	$f < 2$ MHz	26		dB
t_{DIS}	Disable response time		20		ns

NOTE 2: Deterministic jitter does not include pulse-width distortion due to residual small output offset voltage.

APPLICATION INFORMATION

Figure 3 shows the ONET2511PA connected with an ac-coupled interface to the data signal source as well as to the output load.

The ac-coupling capacitors C_1 through C_4 in the input and output data signal lines are the only required external components. In addition, an optional external filter capacitor (C_{OC}) may be used if a low cutoff frequency is desired.

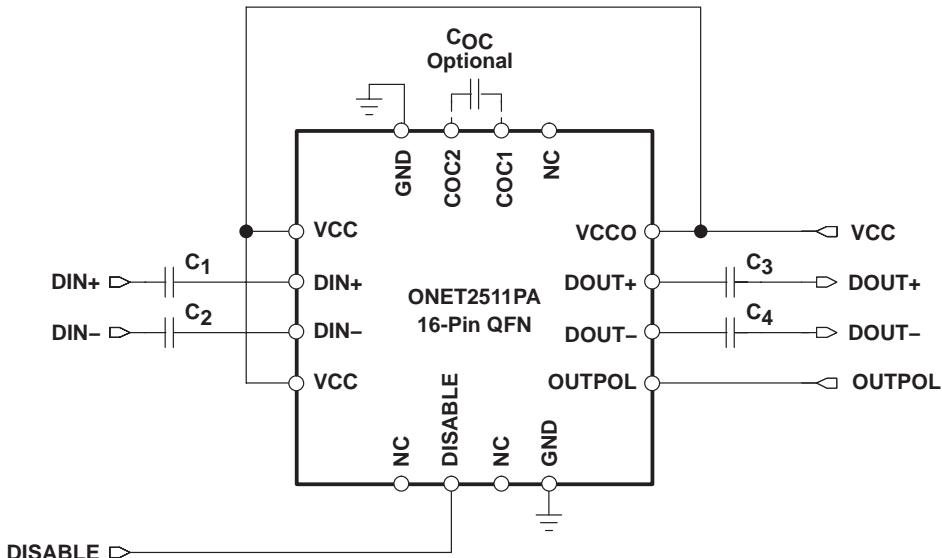


Figure 3. Basic Application Circuit With AC-Coupled I/Os

ONET2511PA 155-Mbps TO 2.5-Gbps LIMITING AMPLIFIER

SLLS604B – MARCH 2004 – DECEMBER 2004

TYPICAL CHARACTERISTICS

Typical operating condition is at $V_{CC} = V_{CCO} = +3.3$ V and $T_A = 25^\circ\text{C}$ (unless otherwise noted)

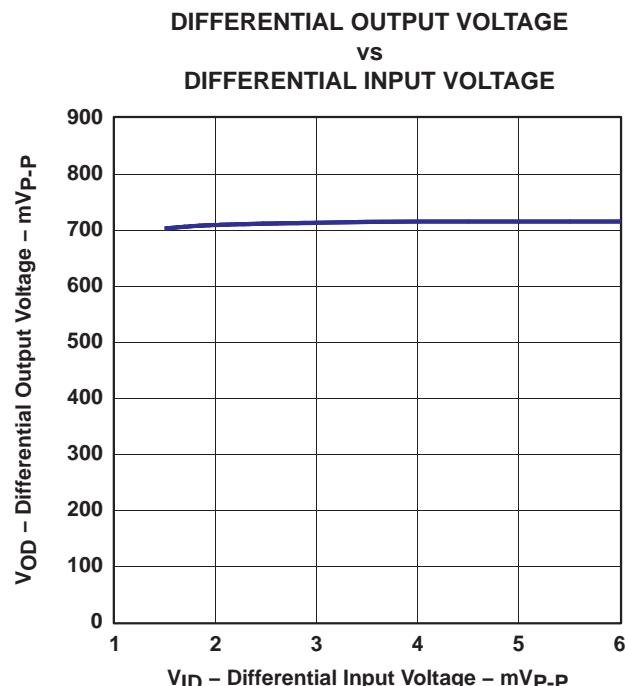


Figure 4

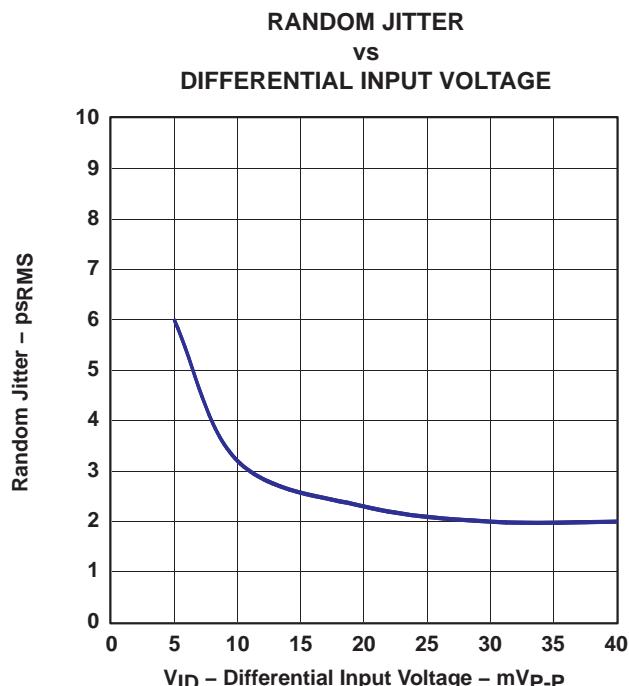


Figure 5

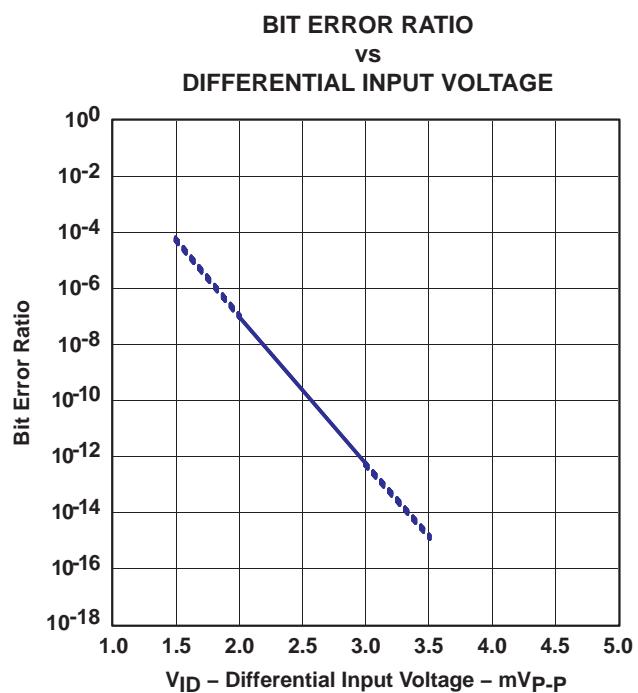


Figure 6

OUTPUT EYE-DIAGRAM AT 2.5 GBPS AND
 MINIMUM INPUT VOLTAGE (5 mV_{p-p})

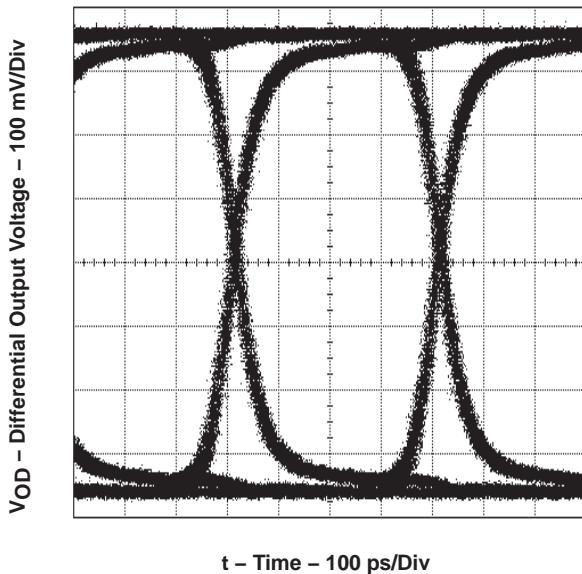


Figure 7

OUTPUT EYE-DIAGRAM AT 2.5 GBPS AND
 MAXIMUM INPUT VOLTAGE (1800 mV_{p-p})

Figure 8

DIFFERENTIAL INPUT RETURN GAIN
 vs
 FREQUENCY

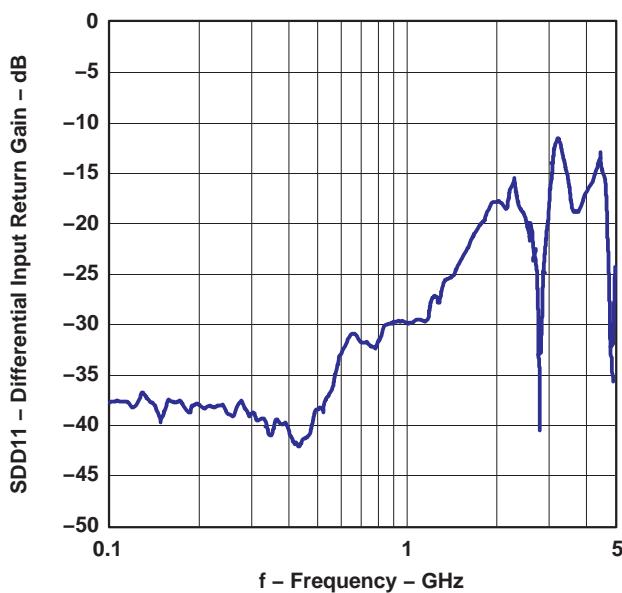


Figure 9

DIFFERENTIAL OUTPUT RETURN GAIN
 vs
 FREQUENCY

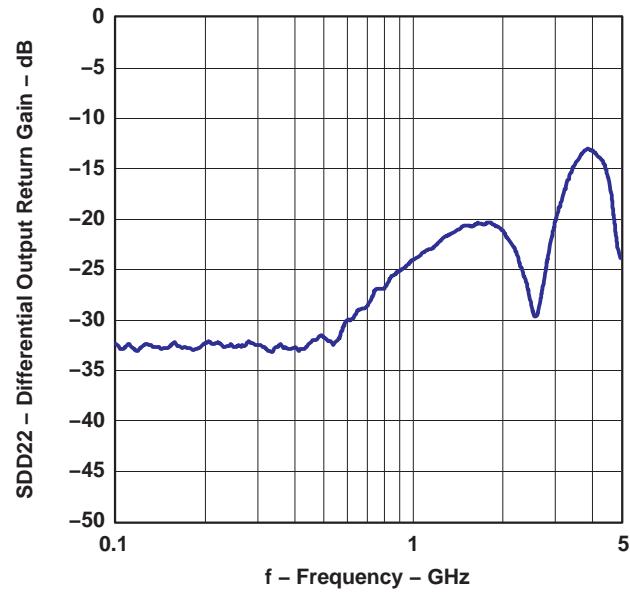


Figure 10

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated