

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: <http://www.renesas.com>

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (<http://www.renesas.com>)

Send any inquiries to <http://www.renesas.com/inquiry>.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M61311SP/M61316SP

I²C BUS Controlled Video Pre-amp for High Resolution Color Display

REJ03F0199-0201

Rev.2.01

Mar 31, 2008

Description

M61311SP/M61316SP is semiconductor integrated circuit for CRT display monitor.

It includes OSD blanking, OSD mixing, retrace blanking, video detector, sync separator, wide band amplifier, brightness control.

Main/sub contrast, video response adjust, ret BLK adjust, 4ch D/A OUT and OSD level adjust function can be controlled by I²C BUS.

Features

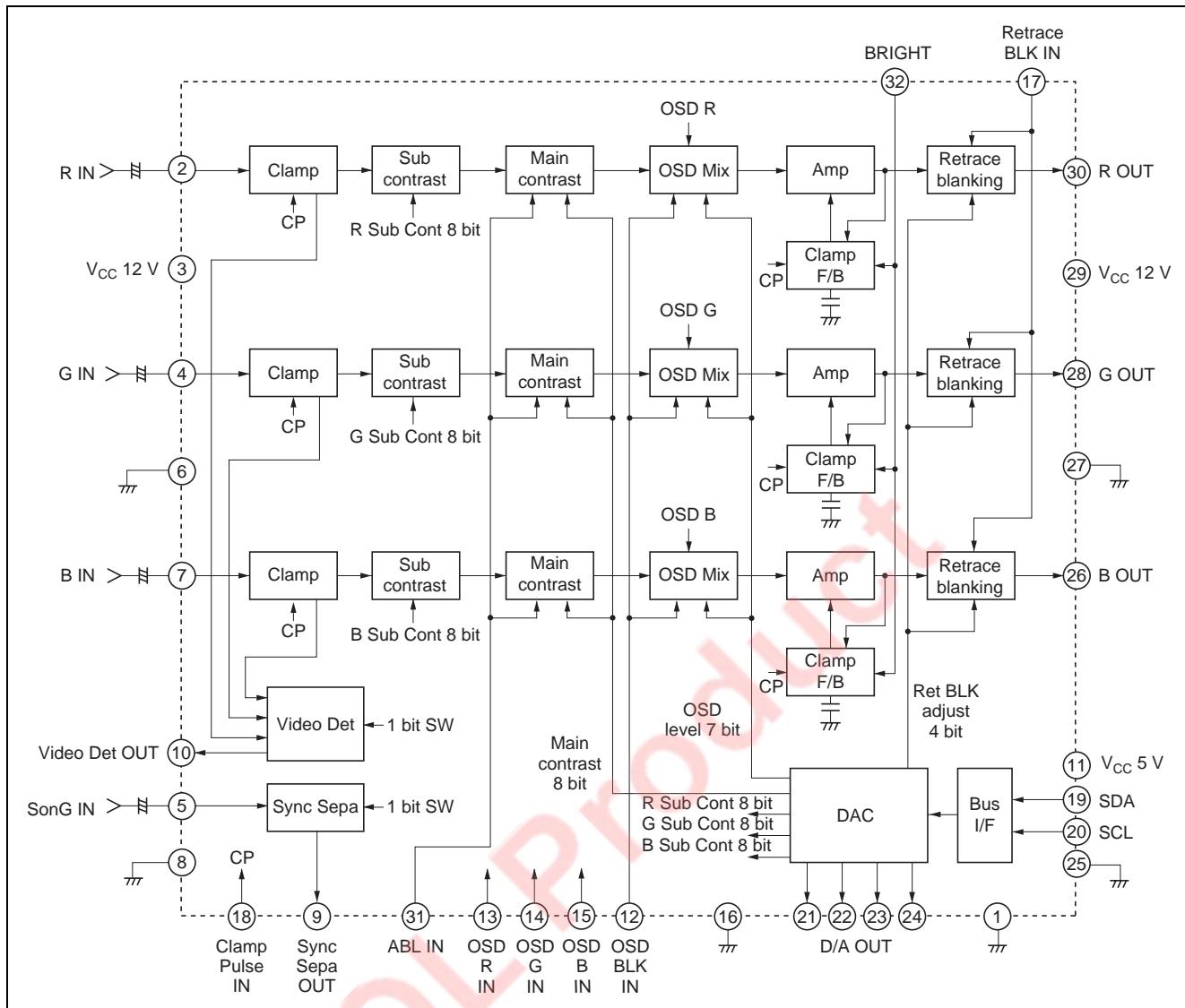
• Frequency band width: RGB	200 MHz (M61311SP) 150 MHz (M61316SP) (4 V _{P-P} at -3 dB)
OSD	80 MHz
• Input: RGB	0.7 V _{P-P} (typ.)
OSD	3.5 V to 5.0 V (positive)
OSD BLK	3.5 V to 5.0 V (positive)
Retrace BLK	2.5 V to 5.0 V (positive)
Clamp pulse	2.5 V to 5.0 V (positive)
Output: RGB	5 V _{P-P} (at Brightness less than 2 V _{DC})
OSD	4 V _{P-P} (at Brightness less than 2 V _{DC})
Sync OUT	5 V _{P-P}
Video det OUT	High = 4.2 V _{DC} , Low = 0.7 V _{DC}

Application

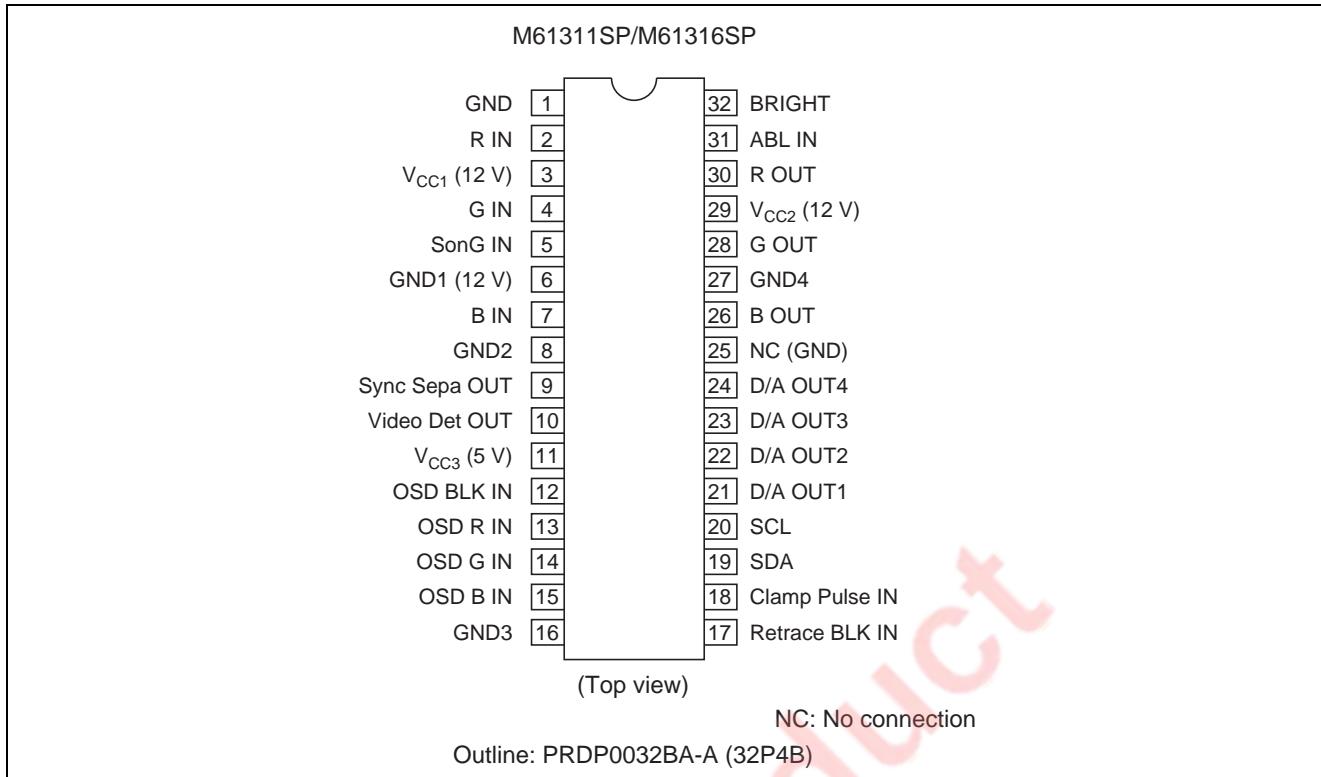
CRT display monitor

Recommended Operating Conditions

Supply voltage range:	11.50 V to 12.50 V (V3, V29) 4.75 V to 5.25 V (V11)
Rated supply voltage:	12.00 V (V3, V29) 5.00 V (V11)

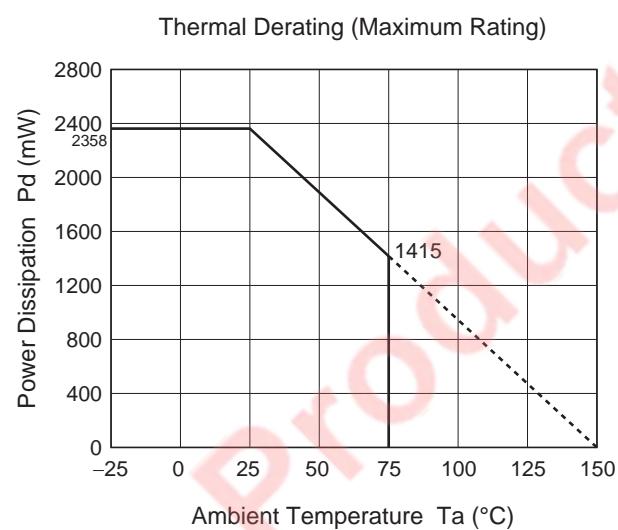

Major Specification

I²C BUS controlled 3ch video pre-amp with OSD mixing function and retrace blanking function.


The difference in the M61311SP/M61316SP is RGB video frequency band width.

M61311SP is 200 MHz, M61316SP is 150 MHz in conditions RGB output is 4 V_{P-P} at -3 dB.

Block Diagram


Pin Arrangement

Absolute Maximum Ratings

(Ta = 25°C)

Item	Symbol	Ratings	Unit
Supply voltage (pin 3, 29)	V _{cc12}	13.0	V
Supply voltage (pin 11)	V _{cc5}	6.0	V
Power dissipation	P _d	2358	mW
Ambient temperature	T _{opr}	-20 to +75	°C
Storage temperature	T _{stg}	-40 to +150	°C
Recommended supply 12	V _{opr12}	12.0	V
Recommended supply 5	V _{opr5}	5.0	V
Voltage range 12	V _{opr'12}	11.5 to 12.5	V
Voltage range 5	V _{opr'5}	4.75 to 5.25	V

BUS Control Table

(1) Slave address:

D7	D6	D5	D4	D3	D2	D1	R/W	
1	0	0	0	1	0	0	0	= 88H

(2) Slave receiver format:

Normal mode

8 bit		8 bit			8 bit				
S	Slave address	A	Sub address		A	Data byte		A	P

Auto increment mode

8 bit		8 bit			8 bit			
S	Slave address	A	Sub address (0XH) + 10H		A	Data byte (Sub address = 0XH)		A
8 bit		8 bit			8 bit			
Data (Sub address = 0 (X + 1) H)	A	Data (Sub address = 0 (X + 2) H)		A				

Note: S: Start condition, A: Acknowledge, P: Stop condition

(3) Sub address byte and data byte format:

Function	Bit	Sub Add.	Data Byte (Top: Byte Format, Under: Start Condition)							
			D7	D6	D5	D4	D3	D2	D1	D0
Main contrast	8	00H	A07	A06	A05	A04	A03	A02	A01	A00
			0	0	0	0	0	0	0	1*
Sub contrast R	8	01H	A17	A16	A15	A14	A13	A12	A11	A10
			0	0	0	0	0	0	0	1*
Sub contrast G	8	02H	A27	A26	A25	A24	A23	A22	A21	A20
			0	0	0	0	0	0	0	1*
Sub contrast B	8	03H	A37	A36	A35	A34	A33	A32	A31	A30
			0	0	0	0	0	0	0	1*
OSD level	7	04H	—	A46	A45	A44	A43	A42	A41	A40
			—	0	0	0	0	0	0	1*
RE-BLK adjust	4	05H	—	—	—	—	A53	A52	A51	A50
			—	—	—	—	0	0	0	1*
Sharpness control	4	06H	—	—	—	—	A63	A62	A61	A60
			—	—	—	—	0	0	0	1*
Sync Sepa SW	1		—	—	—	A64	—	—	—	—
			—	—	—	0	—	—	—	—*
Video Det SW	1		—	—	A65	—	—	—	—	—
			—	—	0	—	—	—	—	—*
Test mode	2		A67	A66	—	—	—	—	—	—
			0	0	—	—	—	—	—	—*
D/A OUT1	8	07H	A77	A76	A75	A74	A73	A72	A71	A70
			0	0	0	0	0	0	0	1*
D/A OUT2	8	08H	A87	A86	A85	A84	A83	A82	A81	A80
			0	0	0	0	0	0	0	1
D/A OUT3	8	09H	A97	A96	A95	A94	A93	A92	A91	A90
			0	0	0	0	0	0	0	1
D/A OUT4	8	0AH	AA7	AA6	AA5	AA4	AA3	AA2	AA1	AA0
			0	0	0	0	0	0	0	1

Note: pre-data

Sub add. 06H

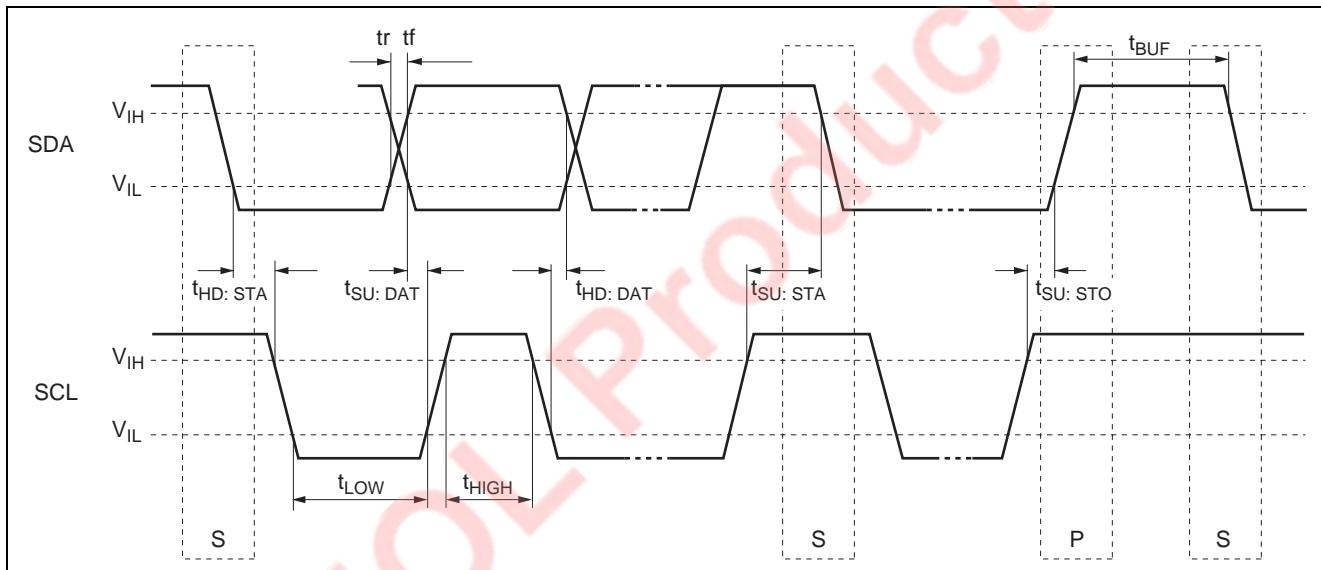
Sync Sepa SW A64

0: Sync Sepa ON

1: Sync Sepa OFF

Video Det SW A65

0: Video Det ON


1: Video Det OFF

Always set up as A66 and A67 in 0

For I²C Data, please transfer in the period of vertical.

I²C BUS Control Section SDA, SCL Characteristics

Item	Symbol	Min.	Max.	Unit
Min. input LOW voltage	V_{IL}	-0.5	1.5	V
Max. input HIGH voltage	V_{IH}	3.0	5.5	V
SCL clock frequency	f_{SCL}	0	400	kHz
Time the bus must be free before a new transmission can start	t_{BUF}	1.3	—	μs
Hold time start condition. After this period the first clock pulse is generated	$t_{HD:STA}$	0.6	—	μs
The LOW period of the clock	t_{LOW}	1.3	—	μs
The HIGH period of the clock	t_{HIGH}	0.6	—	μs
Set up time for start condition (Only relevant for a repeated start condition)	$t_{SU:STA}$	0.6	—	μs
Hold time DATA	$t_{HD:DAT}$	0	0.9	μs
Set-up time DATA	$t_{SU:DAT}$	100	—	ns
Rise time of both SDA and SCL lines	tr	$20+0.1C_b$	300	ns
Fall time of both SDA and SCL lines	tf	$20+0.1C_b$	300	ns
Set-up time for stop condition	$t_{SU:STO}$	0.6	—	μs

Timing Chart

Electrical Characteristics

(V_{CC} = 12 V, 5 V; Ta = 25°C, unless otherwise noted)

Item	Symbol	Limits			Test Point	Input												CTL Vol	BUS CTL (H)															
		Min.	Typ.	Max.		Unit	3 12 V	2 R	4 G	5 S	6 G	7 B	12 OSD	13 OSD	14 OSD	15 OSD	17 RET	18 CP	31 ABL	32 BRT	00H Main cont	01H Sub R cont	02H Sub G cont	03H Sub B cont	04H OSD Adj	05H Re-BLK Adj	06H Sharp	06H S	06H G	06H B	06H VDET	07H D/A OUT 1	08H D/A OUT 2	09H D/A OUT 3
5 V Circuit current1 power save mode	I _{CC1}	—	6	10	mA	IB	a	a	a	a	a	a	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	00 0	00 0	00 0	00 0
12 V Circuit current2 normal mode	I _{CC2}	—	105	130	mA	IA	b	a	a	a	a	a	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	00 0	00 0	00 0	00 0
5 V Circuit current3 normal mode	I _{CC3}	—	4	8	mA	IB	b	a	a	a	a	a	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	00 0	00 0	00 0	00 0
Output dynamic range	V _{max}	7.5	9	—	V _{DC}	26, 28, 30	b	b	b	a	b	a	a	a	a	a	b	5	0.5	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Maximum input	V _{max}	1.4	—	—	V _{P-P}	26, 28, 30	b	b	b	a	b	a	a	a	a	a	b	5	2	46 70	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Maximum gain	G _V	16	17.5	19	dB	26, 28, 30	b	b	b	a	b	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Relative maximum gain	ΔG _V	0.8	1.0	1.2	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Main contrast control characteristics1 (Max.)	V _{C1}	3.3	4	4.7	V _{P-P}	26, 28, 30	b	b	b	a	b	a	a	a	a	a	b	5	2	C8 200	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Main contrast control relative characteristics1	ΔV _{C1}	0.8	1.0	1.2	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	C8 200	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Main contrast control characteristics2 (Typ.)	V _{C2}	2.3	2.8	3.3	V _{P-P}	26, 28, 30	b	b	b	a	b	a	a	a	a	a	b	5	2	80 128	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Main contrast control relative characteristics2	ΔV _{C2}	0.8	1.0	1.2	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	80 128	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Main contrast control characteristics3 (Min.)	V _{C3}	0.25	0.55	0.85	V _{P-P}	26, 28, 30	b	b	b	a	b	a	a	a	a	a	b	5	2	10 16	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Main contrast control relative characteristics3	ΔV _{C3}	-0.2	0	0.2	V _{P-P}	—	—	—	—	—	—	—	—	—	—	—	—	—	—	10 16	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Sub contrast control characteristics1 (Max.)	V _{S1}	3.3	4	4.7	V _{P-P}	26, 28, 30	b	b	b	a	b	a	a	a	a	a	b	5	2	FF 255	C8 200	C8 200	C8 200	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Sub contrast control relative characteristics1	ΔV _{S1}	0.8	1.0	1.2	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	FF 255	C8 200	C8 200	C8 200	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Sub contrast control characteristics2 (Typ.)	V _{S2}	2.3	2.8	3.3	V _{P-P}	26, 28, 30	b	b	b	a	b	a	a	a	a	a	b	5	2	FF 255	80 128	80 128	80 128	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Sub contrast control relative characteristics2	ΔV _{S2}	0.8	1.0	1.2	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	FF 255	80 128	80 128	80 128	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Sub contrast control characteristics3 (Min.)	V _{S3}	0.2	0.5	0.8	V _{P-P}	26, 28, 30	b	b	b	a	b	a	a	a	a	a	b	5	2	FF 255	10 16	10 16	10 16	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Sub contrast control relative characteristics3	ΔV _{S3}	-0.2	0	0.2	V _{P-P}	—	—	—	—	—	—	—	—	—	—	—	—	—	—	FF 255	10 16	10 16	10 16	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
ABL control characteristics1	ABL1	3.4	4.2	5.0	V _{P-P}	26, 28, 30	b	b	b	a	b	a	a	a	a	a	b	4	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
ABL control relative characteristics1	ΔABL1	0.8	1.0	1.2	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
ABL control characteristics2	ABL2	1.5	2.0	2.5	V _{P-P}	26, 28, 30	b	b	b	a	b	a	a	a	a	a	b	2	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
ABL control relative characteristics2	ΔABL2	0.8	1.0	1.2	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
ABL control characteristics3	ABL3	-0.3	0	0.3	V _{P-P}	26, 28, 30	b	b	b	a	b	a	a	a	a	a	b	0	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
ABL control relative characteristics3	ΔABL3	-0.2	0	0.2	V _{P-P}	—	—	—	—	—	—	—	—	—	—	—	—	—	—	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Brightness control characteristics1	VB1	3.4	3.8	4.2	V _{DC}	26, 28, 30	b	a	a	a	a	a	a	a	a	a	b	5	4	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Brightness control relative characteristics1	ΔVB1	-0.3	0	0.3	V	—	—	—	—	—	—	—	—	—	—	—	—	—	—	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Brightness control characteristics2	VB2	1.6	1.9	2.2	V _{DC}	26, 28, 30	b	a	a	a	a	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Brightness control relative characteristics2	ΔVB2	-0.3	0	0.3	V	—	—	—	—	—	—	—	—	—	—	—	—	—	—	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Brightness control characteristics3	VB3	0.3	0.5	0.7	V _{DC}	26, 28, 30	b	a	a	a	a	a	a	a	a	a	b	5	0.5	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Brightness control relative characteristics3	ΔVB3	-0.3	0	0.3	V	—	—	—	—	—	—	—	—	—	—	—	—	—	—	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Pulse characteristics1 (4 V _{P-P})	Tr	—	2.2	3.0	ns*	26, 28, 30	b	b	b	a	b	a	a	a	a	a	b	5	2	FF 200	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Relative pulse characteristics1 (4 V _{P-P})	ΔTr	-0.8	0	0.8	ns	—	—	—	—	—	—	—	—	—	—	—	—	—	—	FF 200	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Pulse characteristics2 (4 V _{P-P})	Tf	—	2.2	3.0	ns*	26, 28, 30	b	b	b	a	b	a	a	a	a	a	b	5	2	FF 200	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Relative pulse characteristics2 (4 V _{P-P})	ΔTf	-0.8	0	0.8	ns	—	—	—	—	—	—	—	—	—	—	—	—	—	—	FF 200	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Clamp pulse threshold voltage	V _{thCP}	0.7	1.5	2.3	V _{DC}	26, 28, 30	b	a	a	a	a	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 0	0 0	0 0	0 0	FF 255	FF 255	FF 255	FF 255	
Clamp pulse minimum width	W _{CP}	0.2	—	—	μs	26, 28, 30	b	a	a	a	a</td																							

Electrical Characteristics (cont.)

Item	Symbol	Limits			Test Point	Input												CTL Vol	BUS CTL (H)												
		Min.	Typ.	Max.		3 V _{Vcc}	2 R IN	4 G IN	5 SonG IN	7 B IN	12 OSD _{BLK} IN	13 OSD _{BLK} IN	14 OSD _{BLK} IN	15 OSD _{BLK} IN	17 RET _{BLK} IN	18 CP IN	31 ABL (V)	32 BRT (V)	00H Main cont	01H Sub R cont	02H Sub G cont	03H Sub B cont	04H OSD Adj	05H Re-BLK Adj	06H Sharpness	07H SonG SW	08H VDET SW	07H D/A OUT 1	08H D/A OUT 2	09H D/A OUT 3	0AH D/A OUT 4
OSD pulse characteristics1	OTr	—	2	5	ns	26, 28, 30	b	a	a	a	a	b	b	b	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 111	FF 127	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255	
OSD pulse characteristics2	OTf	—	4	7	ns	26, 28, 30	b	a	a	a	a	b	b	b	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 111	FF 127	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255	
OSD adjust control characteristics1 (Max.)	Oadj1	3.3	4.0	4.9	V _{P-P}	26, 28, 30	b	a	a	a	a	b	b	b	b	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 127	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255	
OSD adjust control relative characteristics1	ΔOadj1	0.8	1.0	1.2	—	—	—	—	—	—	—	—	—	—	—	—	—	—	2	FF 255	FF 255	FF 255	FF 255	FF 127	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255	
OSD adjust control characteristics2 (Typ.)	Oadj2	1.2	1.8	2.4	V _{P-P}	26, 28, 30	b	a	a	a	a	b	b	b	b	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 64	FF 64	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
OSD adjust control relative characteristics2	ΔOadj2	0.8	1.0	1.2	—	—	—	—	—	—	—	—	—	—	—	—	—	—	2	FF 255	FF 255	FF 255	FF 255	FF 64	FF 64	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
OSD adjust control characteristics3 (Min.)	Oadj3	-0.5	-0.1	0.3	V _{P-P}	26, 28, 30	b	a	a	a	a	b	b	b	b	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
OSD adjust control relative characteristics3	ΔOadj3	-0.2	0	0.2	—	—	—	—	—	—	—	—	—	—	—	—	—	—	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
OSD input threshold voltage	VthOSD	1.7	2.5	3.3	V _{DC}	26, 28, 30	b	a	a	a	a	b	b	b	b	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
Black level difference in OSD BLK on/off	OBLK	-0.5	-1.0	0.3	V _{DC}	26, 28, 30	b	a	a	a	a	b	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
Relative OBLK	ΔOBLK	-0.2	0	0.2	—	26, 28, 30	b	a	a	a	a	b	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
OSD BLK input threshold voltage	VthBLK	1.7	2.5	3.3	V _{DC}	26, 28, 30	b	b	b	a	b	b	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
Retrace BLK characteristics1	HBLK1	1.6	1.9	2.2	V _{DC}	26, 28, 30	b	a	a	a	a	a	a	a	a	b	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 0F	0F 0 0	FF 255	FF 255	FF 255	FF 255
Retrace BLK characteristics2	HBLK2	1.0	1.3	1.6	V _{DC}	26, 28, 30	b	a	a	a	a	a	a	a	a	b	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
Retrace BLK characteristics3	HBLK3	0.3	0.6	0.9	V _{DC}	26, 28, 30	b	a	a	a	a	a	a	a	a	b	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
Retrace BLK input threshold voltage	Vth-HBLK	0.7	1.5	2.3	V _{DC}	26, 28, 30	b	a	a	a	a	a	a	a	a	b	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
SOG input maximum noise voltage	SS-NV	—	—	0.02	V _{P-P}	9	b	a	a	b	a	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
SOG minimum input voltage	SS-SV	0.2	—	—	V _{P-P}	9	b	a	a	b	a	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
Sync output high level	VSH	4.5	4.9	5.0	V _{DC}	9	b	a	a	b	a	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
Sync output low level	VSL	0	0.4	0.7	V _{DC}	9	b	a	a	b	a	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
Sync output delay time1	TDS-F	10	30	65	ns	9	b	a	a	b	a	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
Sync output delay time2	TDS-R	10	30	65	ns	9	b	a	a	b	a	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
V-DET input maximum noise voltage	VD-NV	—	—	0.05	V _{P-P}	10	b	b	b	a	b	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
V-DET minimum input voltage	VD-SV	0.2	—	—	V _{P-P}	10	b	b	b	a	b	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
V-DET output high level	VVDH	3.8	4.2	5.0	V _{DC}	10	b	b	b	a	b	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
V-DET output low level	VVDL	0	0.7	1.1	V _{DC}	10	b	b	b	a	b	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
V-DET output delay time1	TDV-F	10	23	50	ns	10	b	b	b	a	b	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
V-DET output delay time2	TDV-R	1	13	40	ns	10	b	b	b	a	b	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255
D/A output maximum voltage	VDH	4.7	5.2	5.7	V _{DC}	21, 22, 23, 24	b	a	a	a	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255	
D/A output minimum voltage	VDL	0	0	0.5	V _{DC}	21, 22, 23, 24	b	a	a	a	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255	
D/A OUT input current1	IA+1	0.18	—	—	mA	21, 22, 23, 24	b	a	a	a	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255	
D/A OUT input current2	IA+2	0.18	—	—	mA	21, 22, 23, 24	b	a	a	a	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255	
D/A OUT output current	IA-	—	—	0.4	mA	21, 22, 23, 24	b	a	a	a	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255	
D/A nonlinearity	DNL	-1.0	—	1.0	LSB	21, 22, 23, 24	b	a	a	a	a	a	a	a	a	b	5	2	FF 255	FF 255	FF 255	FF 255	FF 0	FF 0	00 08	08 0 0	FF 255	FF 255	FF 255	FF 255	

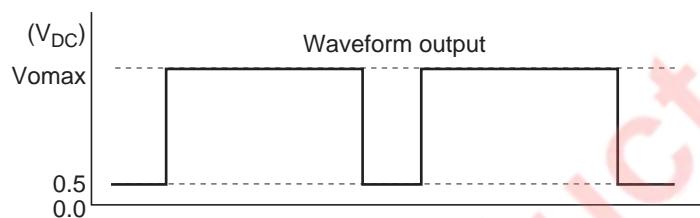
Electrical Characteristics Test Method

I_{CC1} 5 V Circuit Current1 Power Save Mode

Measuring conditions are as listed in supplementary Table. Measured with a current meter at test point IB.

I_{CC2} 12 V Circuit Current2 Normal Mode

Measuring conditions are as listed in supplementary Table. Measured with a current meter at test point IA.


I_{CC3} 5 V Circuit Current3 Normal Mode

Measuring conditions are as listed in supplementary Table. Measured with a current meter at test point IB.

V_{OMAX} Output Dynamic Range

It makes the amplitude of SG1 1.4 _{P-P}. Measure the DC voltage of the white level of the waveform output.

The measured value is called V_{OMAX}.

V_{IMAX} Maximum Input

Increase the input signal (SG1) amplitude gradually, starting from 0.7 V_{P-P}. Measure the amplitude of the input signal when the output signal starts becoming distorted.

GV Maximum Gain

Input SG1, and measure the amplitude output at OUT (26, 28, 30). The amplitude is called V_{OUT} (26, 28, 30).

Maximum gain GV is calculated by the equation below:

$$GV = 20 \log (V_{OUT} / 0.7) \text{ (dB)}$$

ΔGV Relative Maximum Gain

Relative maximum gain ΔGV is calculated by the equation below:

$$\Delta GV = V_{OUT} (26) / V_{OUT} (28),$$

$$V_{OUT} (28) / V_{OUT} (30),$$

$$V_{OUT} (30) / V_{OUT} (26)$$

VC1 Main Contrast Control Characteristics1 (Max.)

Input SG1, and measure the amplitude output at OUT (26, 28, 30). The amplitude is called V_{OUT} (26, 28, 30).

The measured value is called VC1.

ΔVC1 Main Contrast Control Relative Characteristics1

Relative characteristics ΔVC1 is calculated by the equation below:

$$\Delta VC1 = V_{OUT} (26) / V_{OUT} (28),$$

$$V_{OUT} (28) / V_{OUT} (30),$$

$$V_{OUT} (30) / V_{OUT} (26)$$

VC2 Main Contrast Control Characteristics2 (Typ.)

Measuring condition and procedure are the same as described in VC1.

ΔVC2 Main Contrast Control Relative Characteristics2

Measuring condition and procedure are the same as described in ΔVC1.

VC3 Main Contrast Control Characteristics3 (Min.)

Measuring condition and procedure are the same as described in VC1.

ΔVC3 Main Contrast Control Relative Characteristics3

Relative characteristics ΔVC3 is calculated by the equation below:

$$\Delta VC3 = VOUT(26) - VOUT(28),$$

$$VOUT(28) - VOUT(30),$$

$$VOUT(30) - VOUT(26)$$

VSC1 Sub Contrast Control Characteristics1 (Max.)

Input SG1, and measure the amplitude output at OUT (26, 28, 30). The amplitude is called VOUT (26, 28, 30).

The measured value is called VSC1.

ΔVSC1 Sub Contrast Control Relative Characteristics1

Relative characteristics ΔVSC1 is calculated by the equation below:

$$\Delta VSC1 = VOUT(26) / VOUT(28),$$

$$VOUT(28) / VOUT(30),$$

$$VOUT(30) / VOUT(26)$$

VSC2 Sub Contrast Control Characteristics2 (Typ.)

Measuring condition and procedure are the same as described in VSC1.

ΔVSC2 Sub Contrast Control Relative Characteristics2

Measuring condition and procedure are the same as described in ΔVSC1.

VSC3 Sub Contrast Control Characteristics3 (Min.)

Measuring condition and procedure are the same as described in VSC1.

ΔVSC3 Sub Contrast Control Relative Characteristics3

Relative characteristics ΔVSC3 is calculated by the equation below:

$$\Delta VSC3 = VOUT(26) - VOUT(28),$$

$$VOUT(28) - VOUT(30),$$

$$VOUT(30) - VOUT(26)$$

ABL1 ABL Control Characteristics1

Measure the amplitude output at OUT (26, 28, 30). The amplitude is called VOUT (26, 28, 30).

The measured value is ABL1.

ΔABL1 ABL Control Relative Characteristics1

Relative characteristics Δ ABL1 is calculated by the equation below:

$$\Delta\text{ABL1} = \text{VOUT (26)} / \text{VOUT (28)},$$

$$\text{VOUT (28)} / \text{VOUT (30)},$$

$$\text{VOUT (30)} / \text{VOUT (26)}$$

ABL2 ABL Control Characteristics2

Measuring condition and procedure are the same as described in ABL1.

ΔABL2 ABL Control Relative Characteristics2

Measuring condition and procedure are the same as described in Δ ABL1.

ABL3 ABL Control Characteristics3

Measuring condition and procedure are the same as described in ABL1.

ΔABL3 ABL Control Relative Characteristics3

Relative characteristics Δ ABL3 is calculated by the equation below:

$$\Delta\text{ABL3} = \text{VOUT (26)} - \text{VOUT (28)},$$

$$\text{VOUT (28)} - \text{VOUT (30)},$$

$$\text{VOUT (30)} - \text{VOUT (26)}$$

VB1 Brightness Control Characteristics1

Measure the DC voltage at OUT (26, 28, 30). The amplitude is called VOUT (26, 28, 30).

The measured value is called VB1.

ΔVB1 Brightness Control Relative Characteristics1

Relative characteristics Δ VB1 is calculated by the equation below:

$$\Delta\text{VB1} = \text{VOUT (26)} - \text{VOUT (28)},$$

$$\text{VOUT (28)} - \text{VOUT (30)},$$

$$\text{VOUT (30)} - \text{VOUT (26)}$$

VB2 Brightness Control Characteristics2

Measuring condition and procedure are the same as described in VB1.

ΔVB2 Brightness Control Relative Characteristics2

Measuring condition and procedure are the same as described in Δ VB1.

VB3 Brightness Control Characteristics3

Measuring condition and procedure are the same as described in VB1.

ΔVB3 Brightness Control Relative Characteristics3

Measuring condition and procedure are the same as described in Δ VB1.

Tr Pulse Characteristics1 (4 V_{P-P})

Measure the time needed for the input pulse to rise from 10% to 90% (Tr1) and for the output pulse to rise from 10% to 90% (Tr2) with an active probe.

Pulse characteristics Tr is calculated by the equations below:

$$Tr = \sqrt{(Tr2)^2 - (Tr1)^2} \quad (\text{ns})$$

ΔTr Relative Pulse Characteristics1 (4 V_{P-P})

Relative characteristics ΔTr is calculated by the equation below:

$$\Delta Tr = Tr (26) - Tr (28),$$

$$Tr (28) - Tr (30),$$

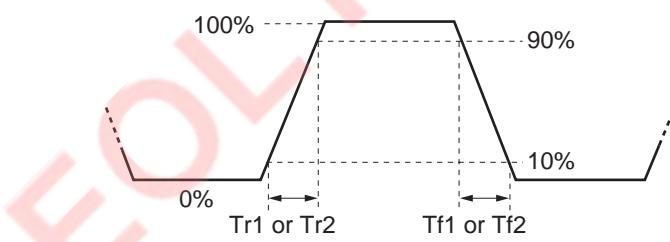
$$Tr (30) - Tr (26)$$

Tf Pulse Characteristics2 (4 V_{P-P})

Measure the time needed for the input pulse to fall from 90% to 10% (Tf1) and for the output pulse to fall from 90% to 10% (Tf2) with an active probe.

Pulse characteristics Tf is calculated by the equations below:

$$Tf = \sqrt{(Tf2)^2 - (Tf1)^2} \quad (\text{ns})$$


ΔTf Relative Pulse Characteristics2 (4 V_{P-P})

Relative characteristics ΔTf is calculated by the equation below:

$$\Delta Tf = Tf (26) - Tf (28),$$

$$Tf (28) - Tf (30),$$

$$Tf (30) - Tf (26)$$

VthCP Clamp Pulse Threshold Voltage

Decrease the SG5 input level gradually from 5.0 V_{P-P} monitoring the waveform output. Measure the top level of input pulse when the output pedestal voltage turn decrease with unstable. And increase the SG5 input level gradually from 0 V_{P-P}. Measure the top level of input pulse when the output pedestal voltage turn increase with stable (a point of 2.0 V). The measured value is called VthCP.

WCP Clamp Pulse Minimum Width

Decrease the SG5 pulse width gradually from 0.5 μs, monitoring the output. Measure the SG5 pulse width when the output pedestal voltage turn decrease with unstable. And increase the SG5 pulse width gradual from 0 μs. Measure the SG5 pulse width when the output pedestal voltage turn increase with stable (a point of 2.0 V). The measured value is called WCP.

OTr OSD Pulse Characteristics1

Measure the time needed for the output pulse to rise from 10% to 90% (OTr) with an active probe.

OTf OSD Pulse Characteristics2

Measure the time needed for the output pulse to fall from 90% to 10% (OTf) with an active probe.

Oadj1 OSD Adjust Control Characteristics1 (Max.)

Measure the amplitude output at OUT (26, 28, 30). The amplitude is called VOUT (26, 28, 30). The measured value is called Oadj1.

ΔOadj1 OSD Adjust Control Relative Characteristics1

Relative characteristics ΔOadj1 is calculated by the equation below:

$$\Delta Oadj1 = VOUT(26) / VOUT(28),$$
$$VOUT(28) / VOUT(30),$$
$$VOUT(30) / VOUT(26)$$

Oadj2 OSD Adjust Control Characteristics2 (Typ.)

Measuring condition and procedure are the same as described in Oadj1.

ΔOadj2 OSD Adjust Control Relative Characteristics2

Measuring condition and procedure are the same as described in ΔOadj1.

Oadj3 OSD Adjust Control Characteristics3 (Min.)

Measuring condition and procedure are the same as described in Oadj1.

ΔOadj3 OSD Adjust Control Relative Characteristics3

Relative characteristics ΔOadj3 is calculated by the equation below:

$$\Delta Oadj3 = VOUT(26) - VOUT(28),$$
$$VOUT(28) - VOUT(30),$$
$$VOUT(30) - VOUT(26)$$

VthOSD OSD Input Threshold Voltage

Decrease the SG6 input level gradually from 5.0 V_{P.P.}, monitoring the output. Measure the top level of SG6 when the output is disappeared. And increase the SG6 input level gradually from 0 V_{P.P.}. Measure the top level of SG6 when the output is appeared. The measured value is called VthOSD.

OBLK Black Level Difference in OSD BLK on/off

Calculating the black level voltage minus the output voltage of high section of SG6 it makes VOUT (26, 28, 30). The calculated value is called OBLK.

ΔOBLK Relative OBLK

Relative characteristics ΔOBLK is calculated by the equation below:

$$\Delta OBLK = VOUT(26) - VOUT(28),$$
$$VOUT(28) - VOUT(30),$$
$$VOUT(30) - VOUT(26)$$

VthBLK OSD BLK Input Threshold Voltage

Confirm that output signal is being blanked by the SG6 at the time.

Decrease the SG6 input level gradually from 5.0 V_{P-P}, monitoring the output. Measure the top level of SG6 when the blanking period is disappeared. And increase the SG6 input level gradually from 0 V_{P-P}. Measure the top level of SG6 when the blanking period is appeared. The measured value is called VthBLK.

HBLK1 Retrace BLK Characteristics1

Measure the bottom voltage at amplitude of OUT (26, 28, 30). The measured value is called HBLK1.

HBLK2 Retrace BLK Characteristics2

Measuring condition and procedure are the same as described in HBLK1.

HBLK3 Retrace BLK Characteristics3

Measuring condition and procedure are the same as described in HBLK1.

VthHBLK Retrace BLK Input Threshold Voltage

Decrease the SG7 input level gradually from 5.0 V_{P-P}, monitoring the output. Measure the top level of SG7 when the output is disappeared. And increase the SG7 input level gradually from 0 V_{P-P}. Measure the top level of SG7 when the output is appeared. The measured value is called VthHBLK.

SS-NV SOG Input Maximum Noise Voltage

When SG4 is all black (no video), the sync's amplitude of SG4 gradually from 0 V_{P-P} to 0.02 V_{P-P}. No pulse output permitted.

SS-SV SOG Minimum Input Voltage

When SG4 is all white or all black, the sync's amplitude of SG4 gradually from 0.2 V_{P-P} to 0.3 V_{P-P}. Positive pulse has occurred to Sync Sepa OUT.

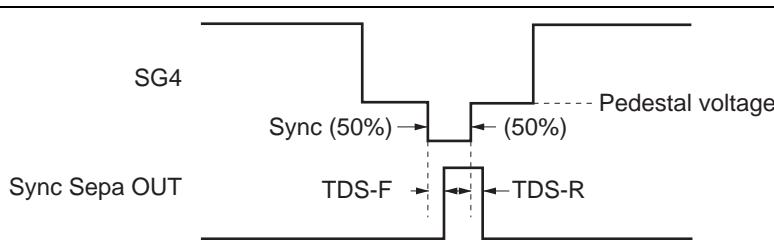
VSH Sync Output High level

Measure the high voltage at Sync Sepa OUT. The measured value is treated as VSH.

VSL Sync Output Low Level

Measure the low voltage at Sync Sepa OUT. The measured value is treated as VSL.

TDS-F Sync Output Delay Time1


Sync Sepa OUT becomes high with sink part of SG4.

Measure the time needed for the front edge of SG4 Sync to fall from 50% and for SyncOUT to rise from 50% with an active probe. The measured value is called TDS-F.

TDS-R Sync Output Delay Time2

Sync Sepa OUT becomes high with sink part of SG4.

Measure the time needed for the rear edge of SG4 Sync to rise from 50% and for SyncOUT to fall from 50% with an active probe. The measured value is called TDS-R.

VD-NV V-DET Input Maximum Noise Voltage

Increase the SG1 input level gradually from 0 V_{P-P} to 0.05 V_{P-P}. No pulse Video Det OUT permitted.

VD-SV V-DET Minimum Input Voltage

Decrease the SG1 input level gradually from 0.2 V_{P-P} to 0.3 V_{P-P}. Positive pulse has occurred to Video Det OUT.

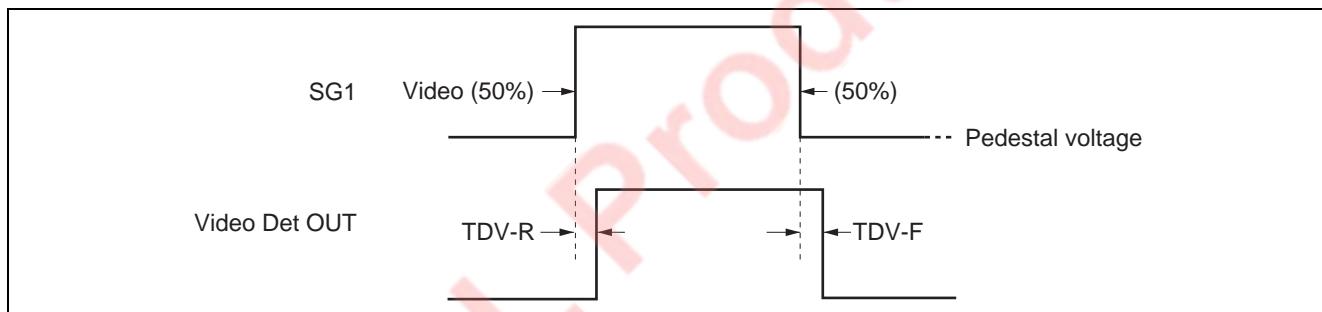
VVDH V-DET Output High Level

Measure the high voltage at Video Det OUT. The measured value is treated as VVDH.

VVDL V-DET Output Low Level

Measure the low voltage at Video Det OUT. The measured value is treated as VVDL.

TDV-F V-DET Output Delay Time1


Video Det OUT becomes high with signal part of SG1.

Measure the time needed for the SG1 to fall from 50% and for Video Det OUT to fall from 50% with an active probe. The measured value is called TDV-F.

TDV-R V-DET Output Delay Time2

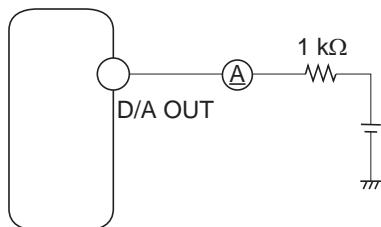
Video Det OUT becomes high with signal part of SG1.

Measure the time needed for the SG1 to rise from 50% and for Video Det OUT to rise from 50% with an active probe. The measured value is called TDV-R.

VDL D/A Output Minimum Voltage

Measure the DC voltage at D/A OUT. The measured value is called VDL.

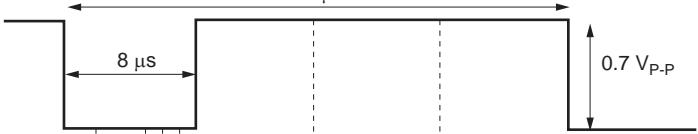
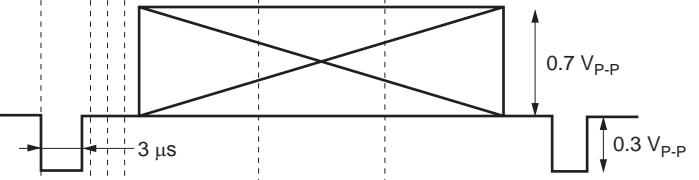
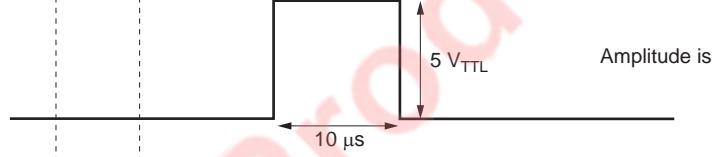
IA+1 D/A OUT Input Current1

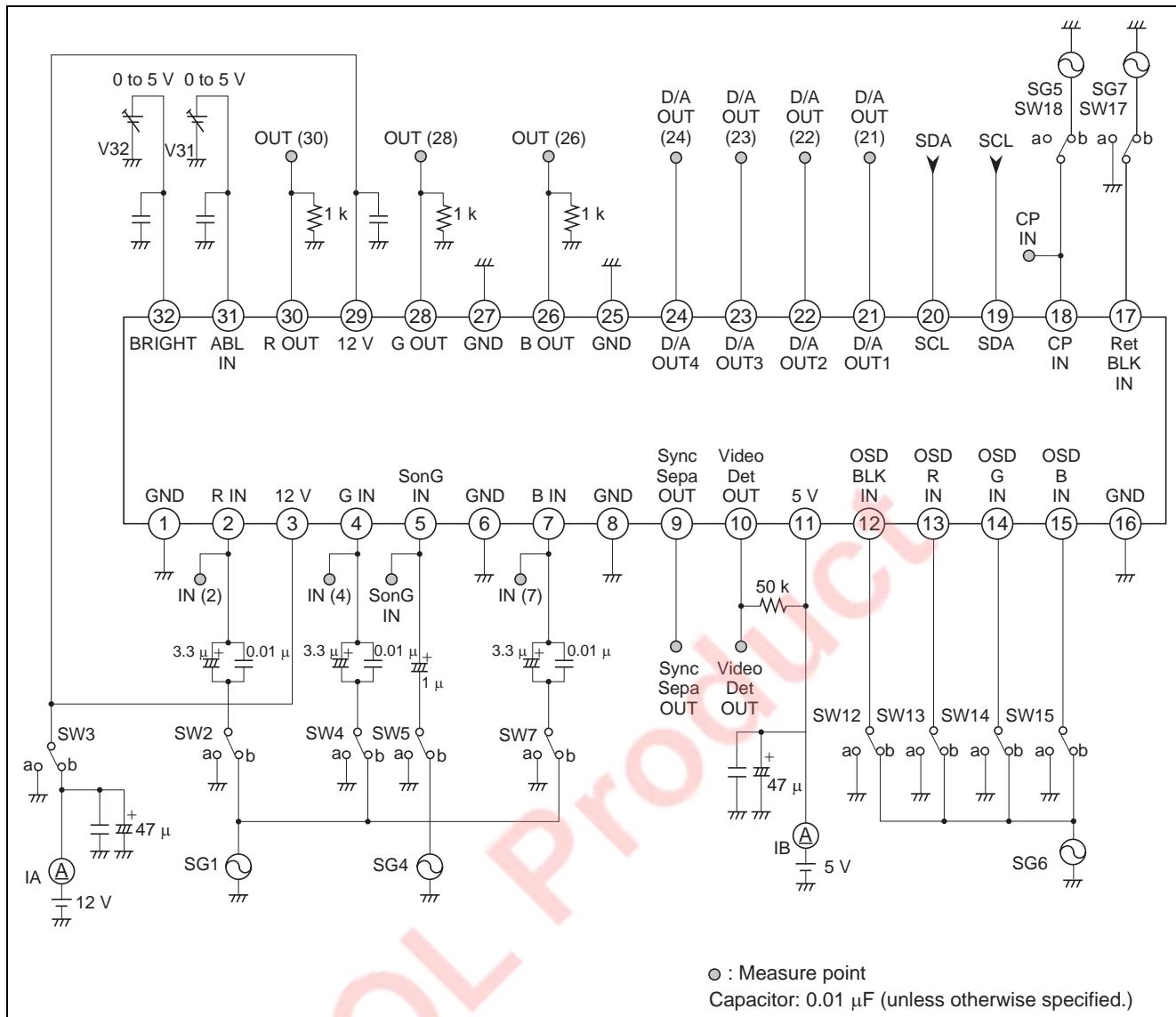

Measure the input current that flows into D/A OUT through 1 kΩ by 2 V_{DC}.

IA+2 D/A OUT Input Current2

Measure the input current that flows into D/A OUT through 1 kΩ by 0.5 V_{DC}.

IA- D/A OUT Output Current




Measure the output current that flows out of D/A OUT through 1 kΩ by 4.2 V_{DC}.

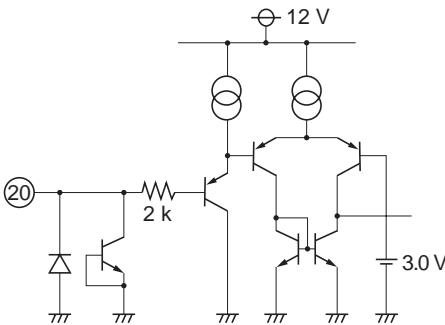
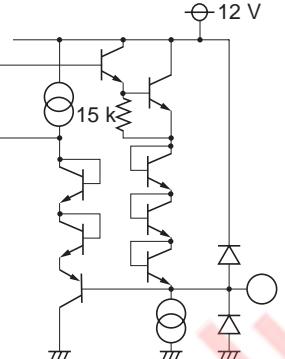
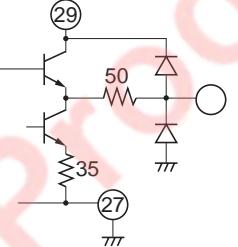
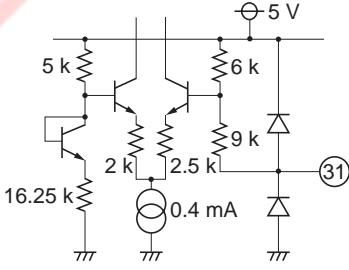
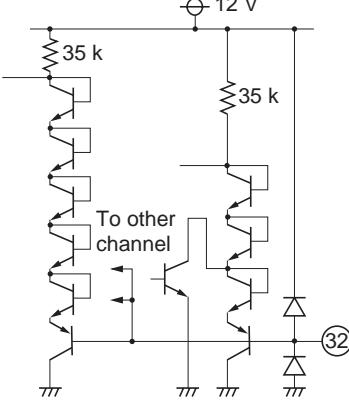

DNL D/A Nonlinearity

The difference of differential non-linearity of D/A OUT must be less than ± 1.0 LSB.

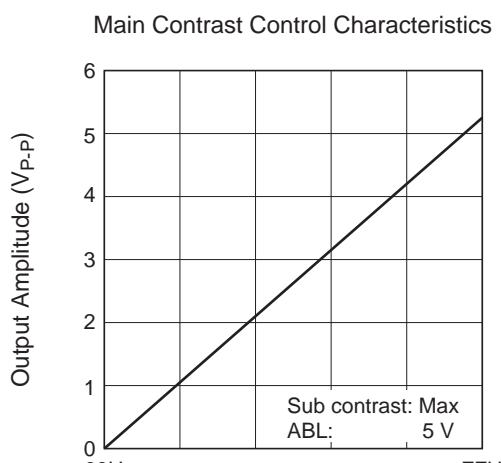
Input Signal

SG No.	Signals
SG1 Video signal (all white)	Pulse with amplitude of $0.7 \text{ V}_{\text{P-P}}$ ($f = 30 \text{ kHz}$). Video width of $25 \mu\text{s}$. (75%) (Amplitude is variable.)
SG4 Video signal (all white, all black)	Video width of $25 \mu\text{s}$. (75%)
SG5 Clamp pulse	Pulse width and amplitude are variable.
SG6 OSD pulse	
SG7 BLK pulse	

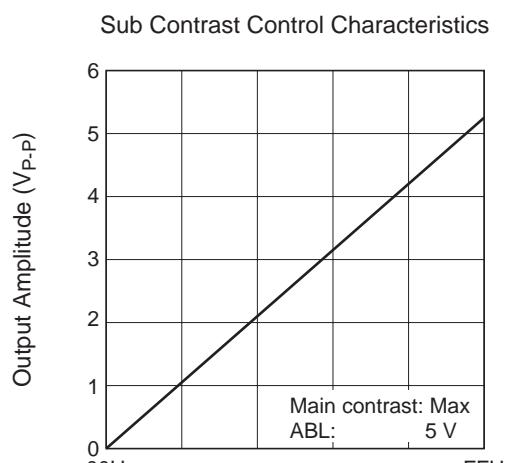
Test Circuit






Pin Description

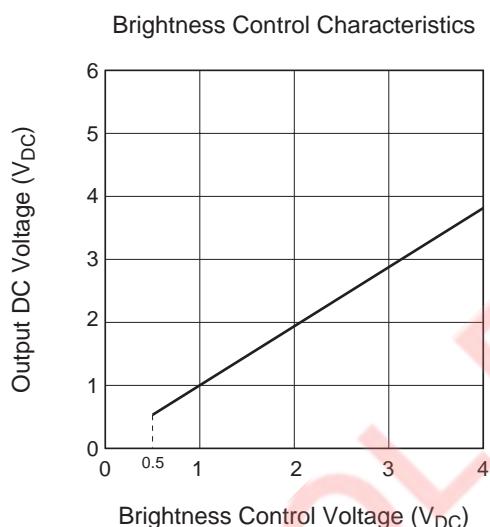
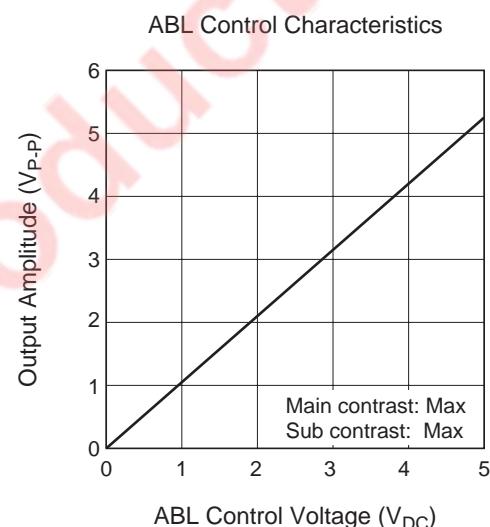
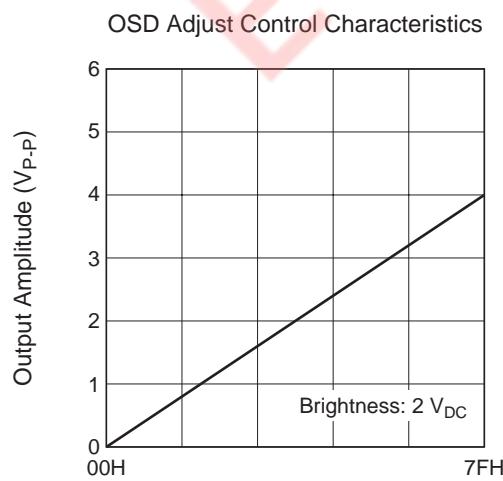
Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
2	R IN	3.5		Clamp to about 3.5 V due to clamp pulse from pin 18. Input at low impedance.
4	G IN		—	
7	B IN		—	
3	V _{CC1} (12 V)	12	—	Connect to the power supply that stabilized.
5	SonG IN	When open 2.3		SYNC ON VIDEO input pin. Sync is negative. Input signal at pin 5, compare with the reference voltage of internal circuit in order to separate Sync signal from Sync on Green signal. Input at low impedance. Do not input the signal without the Sync. When it does not use this function, connect to capacitor between GND, turn on Sync Sepa SW by I ² C BUS.
1	GND	GND	—	Connect to GND.
6	GND 1		—	
8	GND 2		—	
16	GND 3		—	
27	GND 4		—	
9	Sync Sepa OUT	—		Sync Sepa output pin. When the rise time of the signal is sped up, connect about 2.3 kΩ between 5 V power supply. When it does not use, do openly. So as not to flow into pin 9 8 mA over, resistance value does not make to 2.3 kΩ or under. Output is a positive.
10	Video Det OUT	—		pin 10 needs to connect the 50 kΩ between 5 V power supply. When it does not use this function, turn off Video Det SW by I ² C BUS.
11	V _{CC} (5 V)	5	—	Connect to the power supply that stabilized.

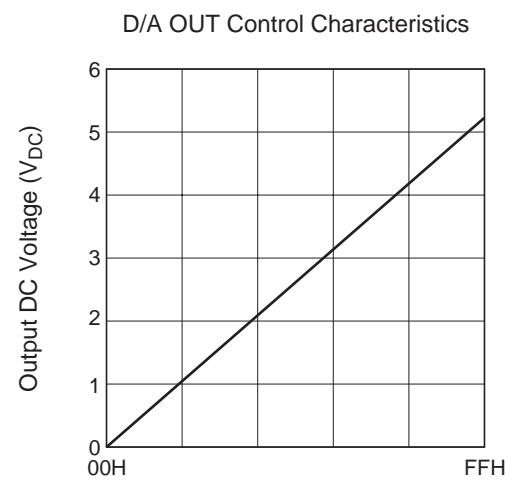

Pin Description (cont.)

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
12	OSD BLK IN	—		Input the positive pulse 3.5 to 5 V 1.5 V to GND
13	OSD R IN	—		When it does not use this function, connect to GND.
14	OSD G IN	—		When input OSD RGB pulse, input OSD BLK pulse without fail.
15	OSD B IN	—		
17	Retrace BLK IN	—		Input the positive pulse 2.5 to 5 V 0.5 V to GND
18	Clamp Pulse IN	—		Input the positive pulse which width 200 ns over. Input at low impedance.
19	SDA	—		SDA of I²C BUS (Serial data line) Tth = 2.3 V


Pin Description (cont.)

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
20	SCL	—		SCL of I ² C BUS (Serial clock line) $T_{th} = 2.3 \text{ V}$
21	D/A OUT 1	—		D/A output pin. Output voltage range is 0 V to 5 V. Input current is below 0.18 mA. Output current is below 0.4 mA.
22	D/A OUT 2	—		
23	D/A OUT 3	—		
24	D/A OUT 4	—		
26	B OUT	Variable		This terminal needs to connect the 1 to 3 kΩ resistor between GND. This resistance value may be changed, to improve the video output characteristics.
28	G OUT	—		Connect to GND
30	R OUT	—		It is the power supply of emitter follower of RGB output exclusive use.
27	GND 4	—		
29	V _{CC2} (12 V)	12		
31	ABL IN	When open 2.5 V		ABL (Automatic beam limiter) input pin. Input voltage in the ranges of 0 V to 5 V. Output amplitude Max with 5 V. Output amplitude Min with 0 V. When it does not use this function, connect to 5 V.
32	BRIGHT	—		It is recommended that the IC is used between pedestal voltage 2 V to 3 V.
25	NC	—	—	Connect to GND.




Typical Characteristics (Reference data)


Main Contrast Control Data

Sub Contrast Control Data

Brightness Control Voltage (V_{dc})ABL Control Voltage (V_{dc})

OSD Adjust Control Data

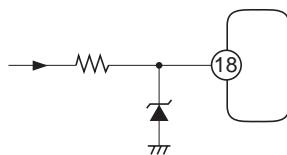
D/A OUT Control Data

Application Method for M61311SP/M61316SP

About Clamp Pulse Input

Clamp pulse needs to be always inputted.

Clamp pulse width is recommended:


15 kHz at 1.0 μ s over

30 kHz at 0.5 μ s over

64 kHz at 0.3 μ s over

The clamp pulse circuit in ordinary set is a long round about way, and beside high voltage, sometimes connected to external terminal, it is very easy affected by large surge.

Therefore, the figure shown below is recommended.

Notice of Application

Make the nearest distance between output and pull down resistor.

Recommend this resistor is 1 to 3 k Ω .

Power dissipation in 3 k Ω is smaller than 1 k Ω .

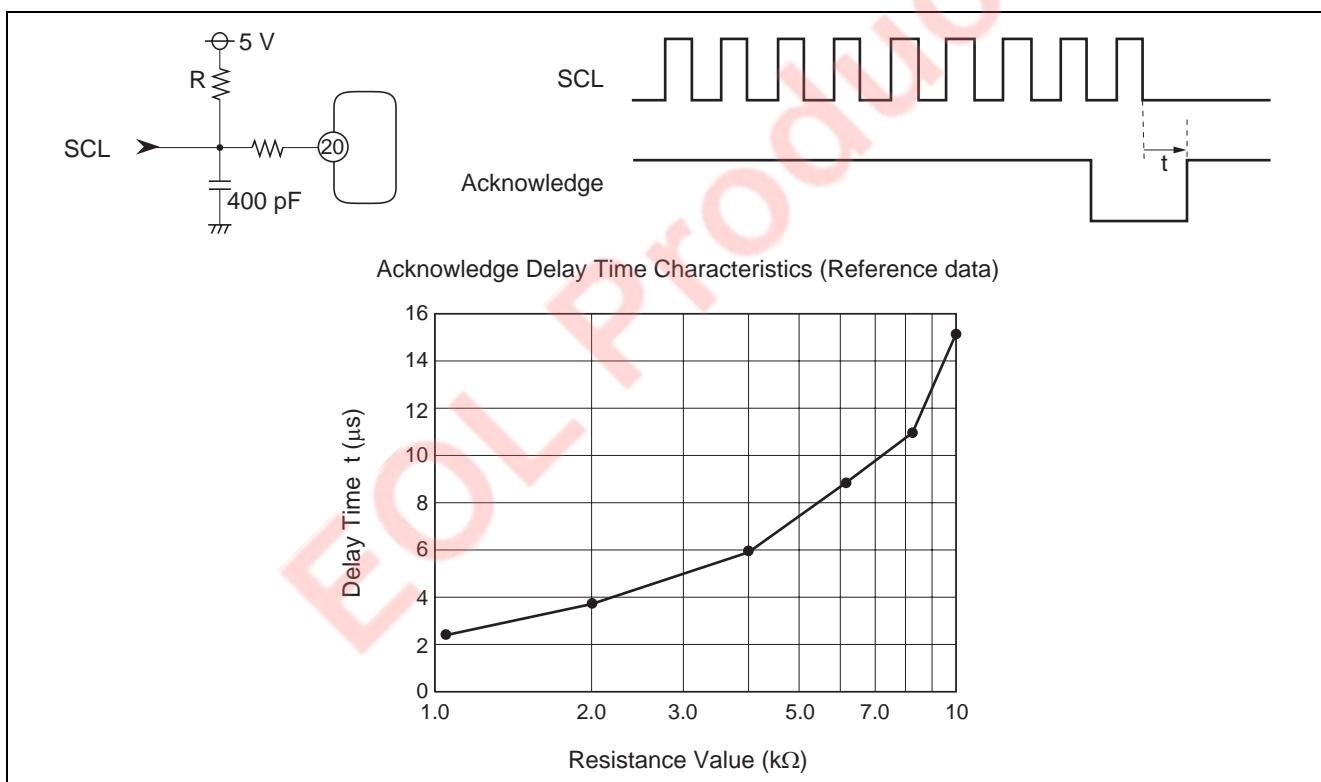
Recommend pedestal voltage of IC output signal is 2 V.

As for the low level of the pulse input of OSD BLK, OSD, Clamp Pulse, Retrace BLK etc., avoid cross the GND level or under.

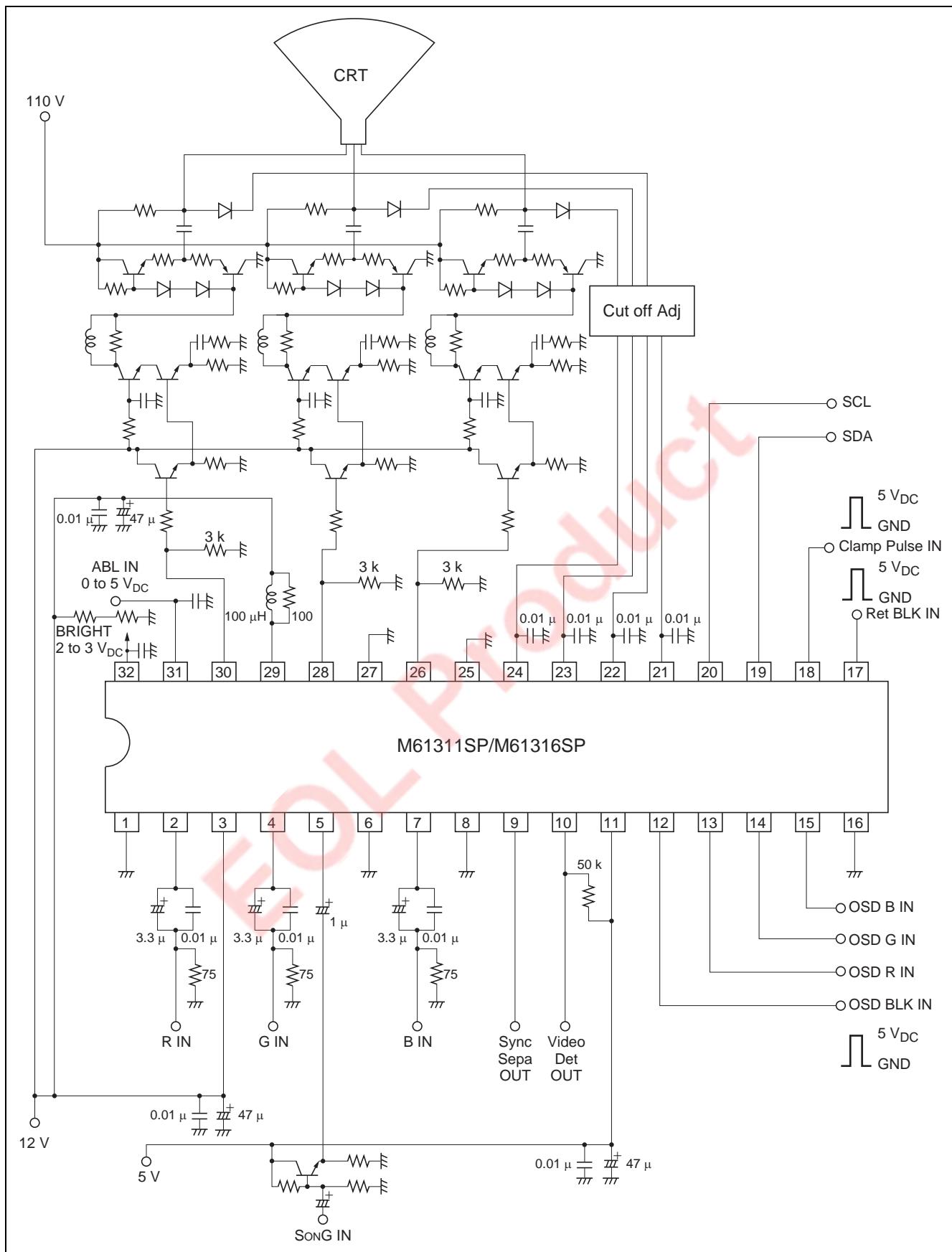
Pin 31 connect to the voltage that stabilized, and pay attention as surge etc. does not flow into.

V_{CC} (12 V, 5 V) connects to the power supply that stabilized, and bypass-capacitor connects near the term.

When capacitor is connected to pin 29, it sometimes oscillates. Do not connect capacitor to pin 29.

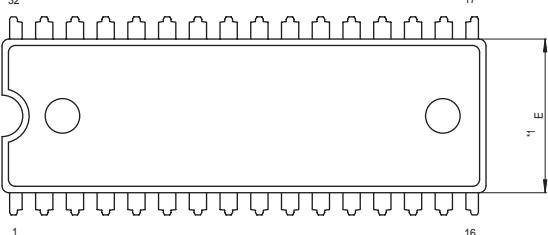

Connect to bypass-capacitance of the DC line near the terminal.

Connect to the NC pin to GND.

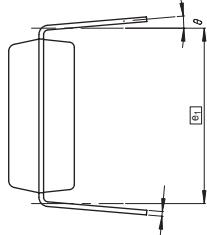

The time (t) is from fall of 9 bit of SCL to rise of acknowledge.

About the forwarding of I²C BUS, the time (t) changes with the resistance that connected outside.

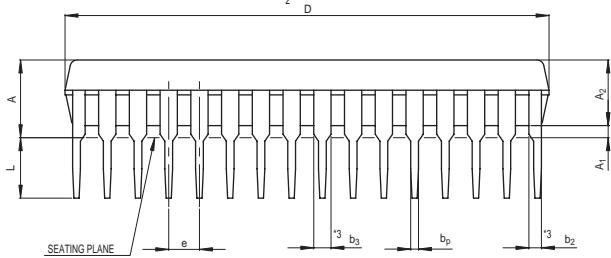
The next SCL does not overlap into this time (t).



Application Example



Package Dimensions


JEITA Package Code	RENESAS Code	Previous Code	MASS[Typ.]
P-SDIP32-8.9x28-1.78	PRDP0032BA-A	32P4B	2.2g

32
1 16 17
E

θ
e
c

2 D
A L A1 A2
b3 b1 b2
bP
SEATING PLANE
e

3
3
3

NOTE)

1. DIMENSIONS **1** AND **2**
DO NOT INCLUDE MOLD FLASH.
2. DIMENSION **3** DOES NOT
INCLUDE TRIM OFFSET.

Reference Symbol	Dimension in Millimeters		
	Min	Nom	Max
①	9.86	10.16	10.46
D	27.8	28.0	28.2
E	8.75	8.9	9.05
A	—	—	5.08
A ₁	0.51	—	—
A ₂	—	3.8	—
b _P	0.35	0.45	0.55
b ₂	0.63	0.73	1.03
b ₃	0.9	1.0	1.3
c	0.22	0.27	0.34
θ	0°	—	15°
e	1.528	1.778	2.028
L	3.0	—	—

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Notes:

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (<http://www.renesas.com>)
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guarantees regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 - (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human lifeRenesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

RENESAS SALES OFFICES

<http://www.renesas.com>

Refer to "<http://www.renesas.com/en/network>" for the latest and detailed information.

Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl, 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: <603> 7955-9390, Fax: <603> 7955-9510