

M62363FP

8-bit 8ch D/A Converter

REJ03D0874-0301
Rev.3.01
Apr 15, 2008

Description

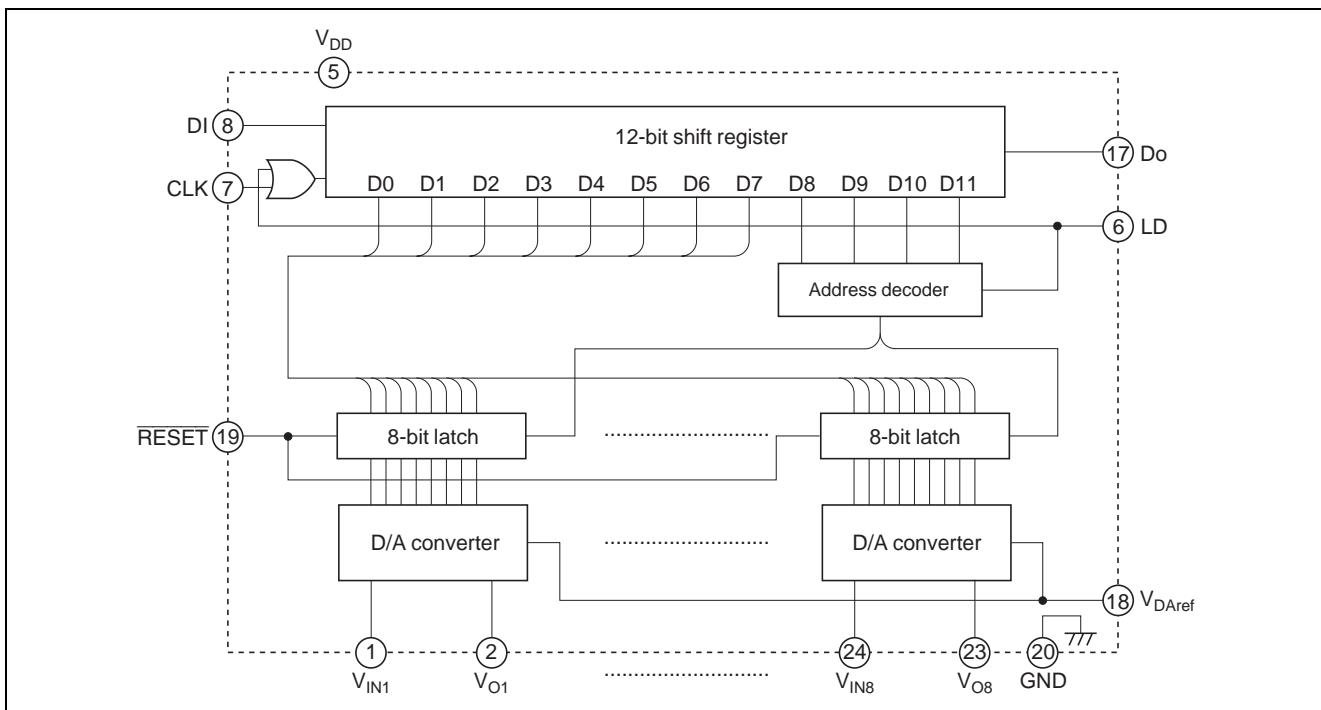
The M62363FP is an integrated circuit semiconductor of CMOS structured with 8 channels of built-in 8-bit multiplication type D/A converters.

The input data is a easy-to-use 3-wire serial method and it is able to cascading serial use with D_O terminal.

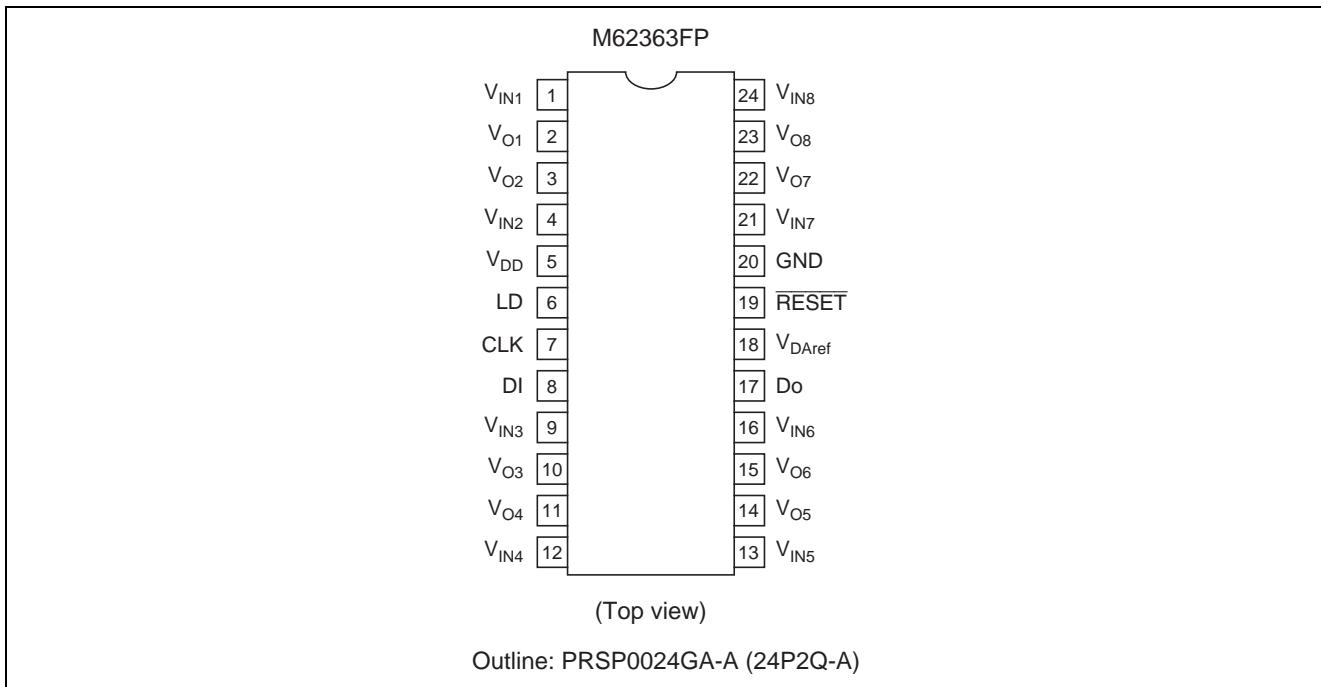
The device is suited for use in automatic adjustment combination of microcomputer.

Features

- Digital data transfer method: 3-wire serial data transfer method
- D/A converter system
Employment of the additional higher-order segment R-2R method doubled precision compared to the conventional R-2R method.
- Short setting time
- 4 quadrant multiplication


Application

Conversion from digital control data to analog control data for home-use and industrial equipment.


Automatic adjustment by combination with EEPROM and microcomputer. (Replacement of conventional half-fixed resistor.)

Signal gain control of display-monitor or CTV

Block Diagram

Pin Arrangement

Pin Description

Pin No.	Pin Name	Function
8	DI	Serial data input terminal
17	Do	Serial data output terminal
7	CLK	Serial clock input terminal
6	LD	LD terminal input high level then latch circuit data load
19	RESET	Reset terminal
2	V_O1	8-bit resolution D/A output
3	V_O2	
10	V_O3	
11	V_O4	
14	V_O5	
15	V_O6	
22	V_O7	
23	V_O8	
5	V_DD	Power supply terminal
20	GND	GND terminal
1	V_IN1	D/A converter input terminal
4	V_IN2	
9	V_IN3	
12	V_IN4	
13	V_IN5	
16	V_IN6	
21	V_IN7	
24	V_IN8	
18	V_DAref	D/A converter reference voltage input terminal $V_O = (V_{IN} - V_{DAref}) \times n / 256 + V_{DAref}$

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage	V_{DD}	−0.3 to +7.0	V
Input voltage	V_{IND}	−0.3 to +7.0	V
Input voltage	V_{IN}	−0.3 to $V_{DD} + 0.3$	V
Output voltage	V_O	−0.3 to $V_{DD} + 0.3$	V
D/A reference voltage	V_{DAref}	−0.3 to $V_{DD} + 0.3$	V
Operating temperature	T_{opr}	−20 to +75	°C
Storage temperature	T_{stg}	−40 to +125	°C

Electrical Characteristics

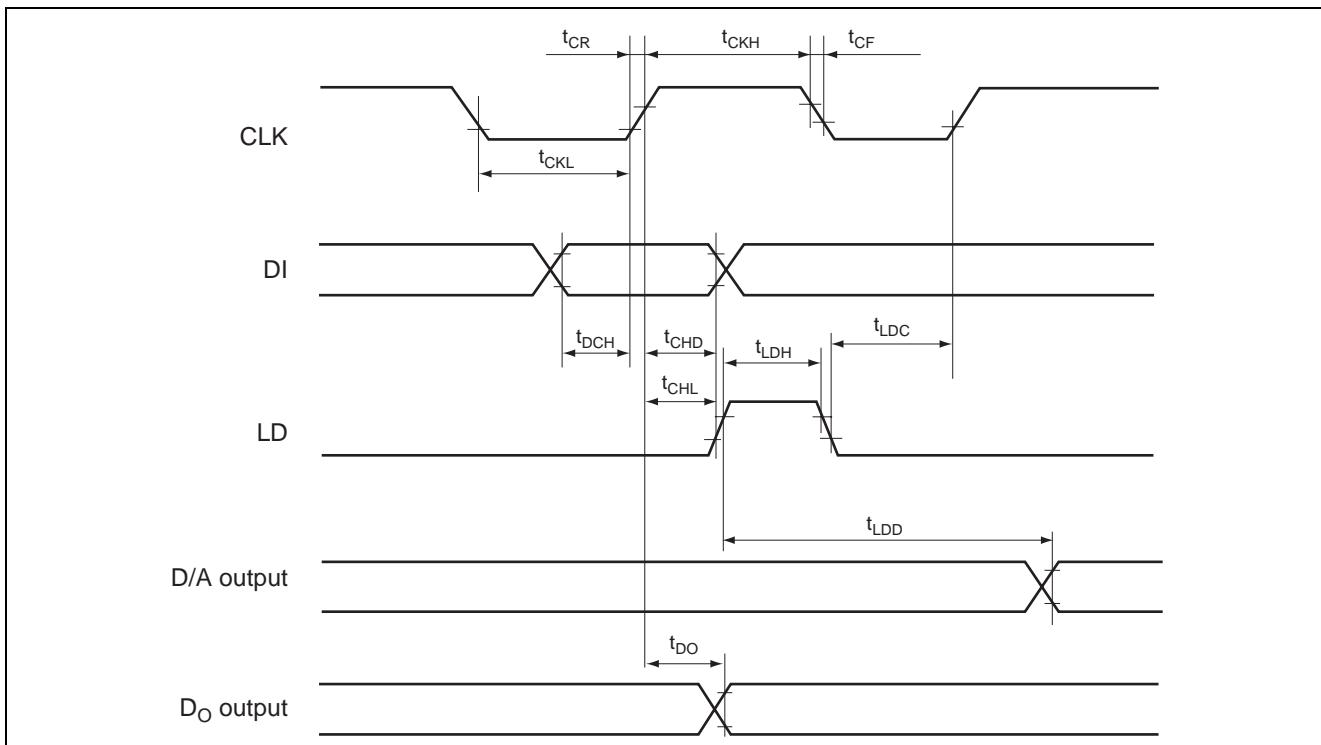
<Digital Part>

(V_{DD} , $V_{IN} = +5 \text{ V} \pm 10\%$, $V_{DD} \geq V_{IN}$, GND = $V_{DAref} = 0 \text{ V}$, $T_a = -20$ to $+75^\circ\text{C}$, unless otherwise noted.)

Item	Symbol	Limits			Unit	Conditions
		Min	Typ	Max		
Supply voltage	V_{DD}	4.5	5.0	5.5	V	
Input leak current	I_{ILK}	−10	—	10	μA	$V_{IN} = 0$ to V_{DD}
Input low voltage	V_{IL}	—	—	0.2 V_{DD}	V	
Input high voltage	V_{IH}	0.8 V_{DD}	—	—	V	
Output low voltage	V_{OL}	—	—	0.4	V	$I_{OL} = 2.5 \text{ mA}$
Output high voltage	V_{OH}	$V_{DD} - 0.4$	—	—	V	$I_{OH} = -400 \mu\text{A}$

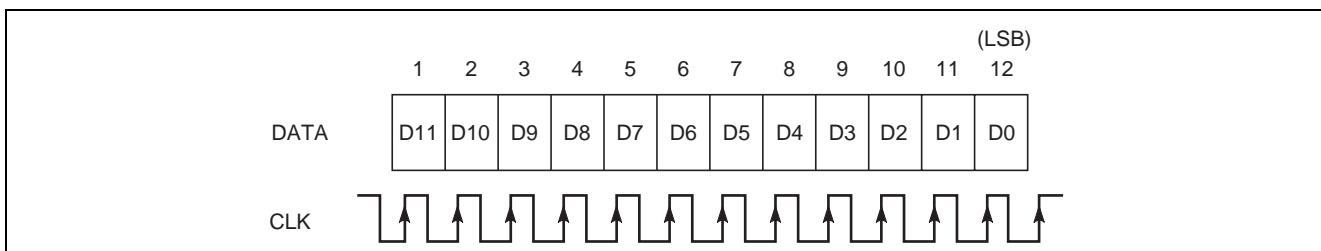
<Analog Part>

(V_{DD} , $V_{IN} = +5 \text{ V} \pm 10\%$, $V_{DD} \geq V_{IN}$, GND = $V_{DAref} = 0 \text{ V}$, $T_a = -20$ to $+75^\circ\text{C}$, unless otherwise noted.)


Item	Symbol	Limits			Unit	Conditions
		Min	Typ	Max		
Input current	I_{IN}	—	—	0.30	mA	$V_{IN} = 5 \text{ V}$, $V_{DAref} = 0 \text{ V}$ Proportional to Max. input current condition ($V_{IN} - V_{DAref}$) and digital data of each channels
D/A reference input current	I_{DAref}	−2.40	—	—	mA	V_{IN1} to $V_{IN8} = 5 \text{ V}$, $V_{DAref} = 0 \text{ V}$ Proportional to Max. input current condition ($V_{IN} - V_{DAref}$) and digital data of each channels
Output impedance	R_O	—	—	50	$\text{k}\Omega$	Constant for all D/A output mode
Resolution	RES	—	8	—	bit	
Differential nonlinearity	DNL	−1	—	1	LSB	
Nonlinearity	NL	−1	—	1	LSB	

AC Characteristics

(V_{DD}, V_{IN} = +5 V ± 10%, V_{DD} ≥ V_{IN}, GND = V_{DAref} = 0 V, Ta = -20 to +75°C, unless otherwise noted.)


Item	Symbol	Limits			Unit	Conditions
		Min	Typ	Max		
Clock "L" pulse width	t _{CKL}	200	—	—	ns	
Clock "H" pulse width	t _{CKH}	200	—	—	ns	
Clock rise time	t _{CR}	—	—	200	ns	
Clock fall time	t _{CF}	—	—	200	ns	
Data setup time	t _{DCH}	60	—	—	ns	
Data hold time	t _{CHD}	100	—	—	ns	
LD setup time	t _{CHL}	200	—	—	ns	
LD hold time	t _{LDC}	100	—	—	ns	
LD "H" pulse width	t _{LDH}	100	—	—	ns	
Data output delay time	t _{DO}	70	—	350	ns	Less than C _L = 100 pF
D/A output setting time	t _{LDD}	—	—	5	μs	Without load
Input/output replay time	—	—	—	5	μs	f = 10 kHz

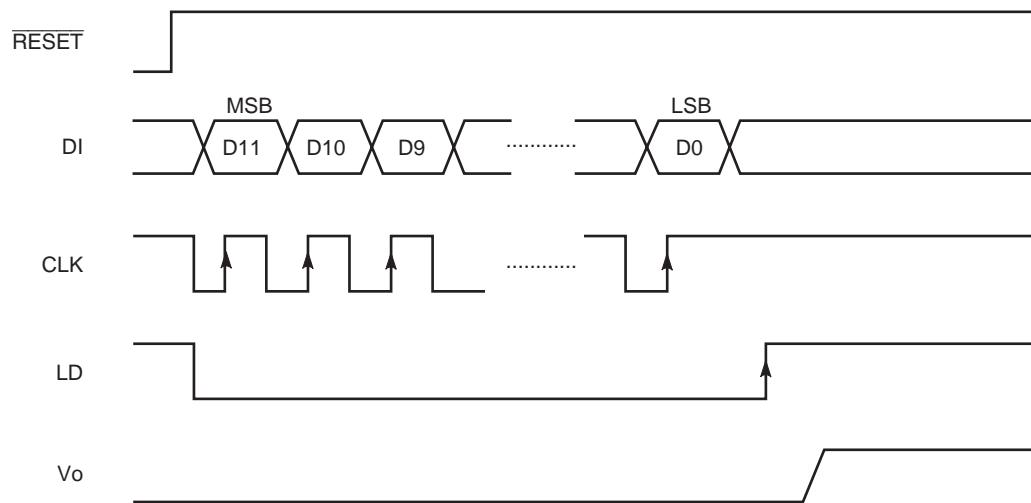
Timing Chart

Digital Data Format

12-bit serial data

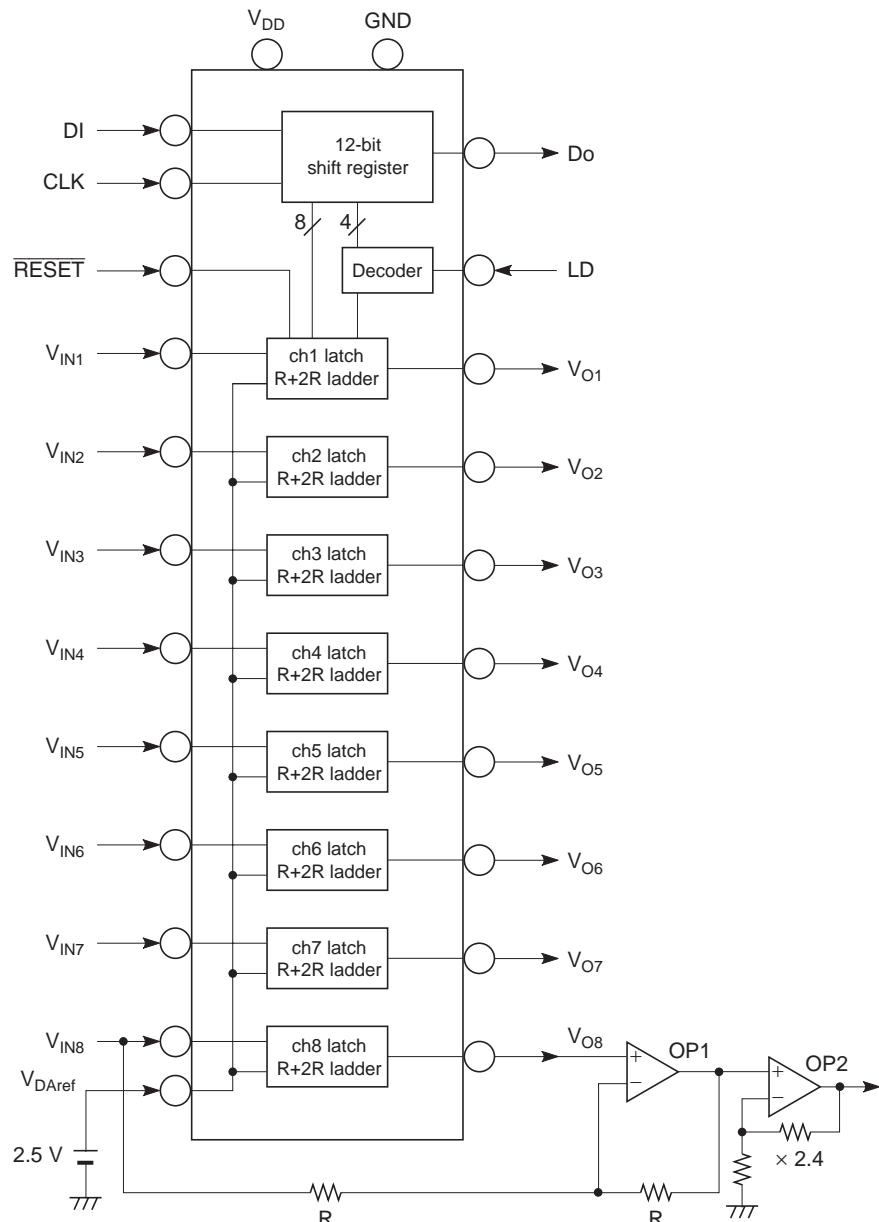
Data assignment

D0	D1	D2	D3	D4	D5	D6	D7	: DAC data				
(LSB)								(MSB)				
	D8	D9	D10	D11	: DAC select data							


DAC Data

(LSB)								(MSB)				
D0	D1	D2	D3	D4	D5	D6	D7	D/A Output				
0	0	0	0	0	0	0	0					$V_{D\text{Aref}}$
1	0	0	0	0	0	0	0					$(V_{IN} - V_{D\text{Aref}}) / 256 \times 1 + V_{D\text{Aref}}$
0	1	0	0	0	0	0	0					$(V_{IN} - V_{D\text{Aref}}) / 256 \times 2 + V_{D\text{Aref}}$
1	1	0	0	0	0	0	0					$(V_{IN} - V_{D\text{Aref}}) / 256 \times 3 + V_{D\text{Aref}}$
:	:	:	:	:	:	:	:					:
1	1	1	1	1	1	1	1					$(V_{IN} - V_{D\text{Aref}}) / 256 \times 255 + V_{D\text{Aref}}$

DAC Select Data


D8	D9	D10	D11	DAC Selection
0	0	0	0	Don't care
0	0	0	1	V_{O1} selection
0	0	1	0	V_{O2} selection
0	0	1	1	V_{O3} selection
0	1	0	0	V_{O4} selection
0	1	0	1	V_{O5} selection
0	1	1	0	V_{O6} selection
0	1	1	1	V_{O7} selection
1	0	0	0	V_{O8} selection
1	0	0	1	Don't care
1	0	1	0	Don't care
1	0	1	1	Don't care
1	1	0	0	Don't care
1	1	0	1	Don't care
1	1	1	0	Don't care
1	1	1	1	Don't care

Timing Chart (Model)

Note: Input data is carried out LD signal low besides CLK signal positive edge. CLK, LD, is keep generally high level.

Operating Description

Note: ch1 to ch7 becomes multiplication type D/A converter action of 0 to 5 V range by each output adds OP1.

ch8 become 4 quadrant multiplication of 0 to 12 V range at 6 V center by add OP1 and OP2 to this channel.

1. The value of V_o depend on output direct buffer.

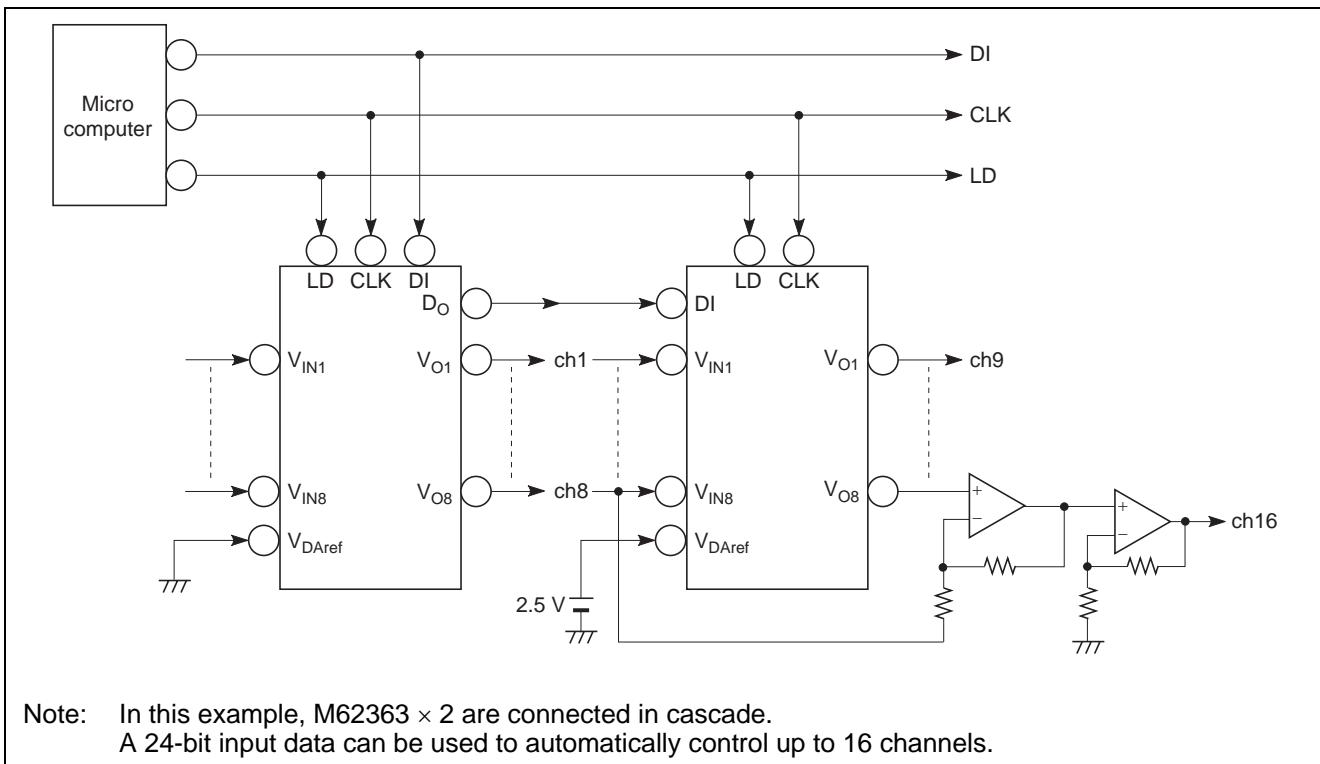
$$V_O = (V_{IN} - V_{DAref}) \cdot \frac{n}{256} + V_{DAref} \dots (n = 0 \text{ to } 255) \dots (1)$$

$<V_{IN} = 5 V>$	
n	V_O
0	0
128	3.75
255	4.99

$<V_{IN} = 0 V>$	
n	V_O
0	2.5
128	1.25
255	0.01

2. The value of V_o depend on application of ch8.

$$V_{OP1} = (V_{IN} - V_{DAref}) \bullet \left(\frac{n}{128} - 1 \right) + V_{DAref} \dots (n = 0 \text{ to } 255) \dots (2)$$


$<V_{IN} = 5 V>$	
n	V_{OP1}
0	0
128	2.50
255	4.98

$\langle V_{IN} = 0 \rangle V$	
n	V_{OP1}
0	5.00
128	2.50
255	0.02

n	V_{OP1}
0	0
128	6.00
255	11.95

n	V_{OP1}
0	12.00
128	6.00
255	0.05

Application Example of Cascade Connection

Package Dimensions

JEITA Package Code	RENESAS Code	Previous Code	MASS[Typ.]
P-SSOP24-5.3x10.1-0.80	PRSP0024GA-A	24P2Q-A	0.2g

NOTE)

1. DIMENSIONS **1** AND **2** DO NOT INCLUDE MOLD FLASH.
2. DIMENSION **3** DOES NOT INCLUDE TRIM OFFSET.

Reference Symbol	Dimension in Millimeters		
	Min	Nom	Max
D	10.0	10.1	10.2
E	5.2	5.3	5.4
A ₂	—	1.8	—
A	—	—	2.1
A ₁	0	0.1	0.2
b _p	0.3	0.35	0.45
c	0.18	0.2	0.25
θ	0°	—	8°
H _E	7.5	7.8	8.1
e	0.65	0.8	0.95
y	—	—	0.10
L	0.4	0.6	0.8

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Notes:

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website (<http://www.renesas.com>)
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guarantees regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 - (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human lifeRenesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

RENESAS SALES OFFICES

<http://www.renesas.com>

Refer to "<http://www.renesas.com/en/network>" for the latest and detailed information.

Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl, 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: <603> 7955-9390, Fax: <603> 7955-9510