Headphone / speaker amplifier for notebook computers BA7786FP-Y / BA7787FS

The BA7786FP-Y and BA7787FS are sound amplifiers designed for notebook computers, and contain a suspend function and input pins for the system beep and PM beep sounds used by notebook computers. In short, this single-chip IC contains all the analog audio components needed for notebook computers.

Product	H.P.amp	S.P.amp	Other functions
BA7786FP-Y	Stereo	Stereo	SYSTEM / PM BEEP input, SUSPEND, EVR, MUTE,
BA7787FS	Stereo	Monaural	BEEP level control

Applications

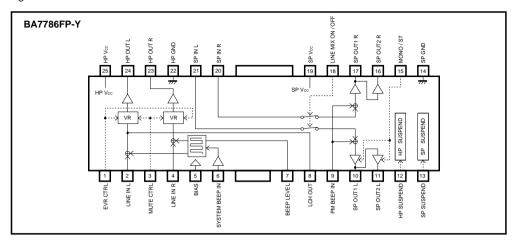
Notebook computers

Features

- Stereo headphone amplifier that supports mixing input, along with a stereo speaker amplifier (BA7786FP-Y) or BTL monaural speaker amplifier (BA7787FS).
- 2) Internal anti-pop circuit, to prevent the popping sounds that occur when the power is turned on and off.
- 3) Internal electronic volume switch and mute circuit.
- Separate suspend modes for the headphone amplifier and speaker amplifier, for low-power-consumption computers.
- Two beep input pins, a necessity for notebook computers.

•Absolute maximum ratings (Ta = 25°C)

Parameter		Symbol	Limits	Unit
Power supply v	oltage	Vcc	6	V
Power	BA7786FP-Y	D4	850*1	ma\A/
dissipation	BA7787FS	Pd	600*2	mW
Operating temperature		Topr	− 10 ~ + 70	°C
Storage temperature		Tstg	− 55 ~ + 125	°C


^{*1} Reduced by 6.8mW for each increase in Ta of 1°C over 25°C.

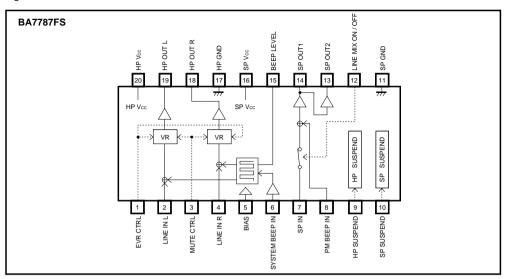
•Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	4.5	5.0	5.5	V

^{*2} Reduced by 6.0mW for each increase in Ta of 1°C over 25°C.

Block diagram

Pin descriptions


BA7786FP-Y

Pin No.	Pin name	Function	Voltage	Type
1	EVR CTRL	EVR control pin	_	B (NPN)
2	LINE IN L	Line Lch input	2.5	B (PNP)
3	MUTE CTRL	Headphone mute control pin	5.0	100kΩ PULL UP
4	LINE IN R	Line Rch input	2.5	B (PNP)
5	BIAS	Bias	2.5	23.5kΩ
6	SYSTEM BEEP IN	SYSTEM BEEP input	2.5	B (NPN)
7	BEEP LEVEL	SYSTEM BEEP IN output level setting	4.2	C (PNP) ~ 3kΩ
8	LCH OUT	LINE IN L + SYSTEM BEEP IN output	_	C (PNP)
9	PM BEEP IN	PM beep input	2.5	B (NPN)
10	SP OUT1 L	BTL speaker Lch output (forward)	2.5	EF (NPN)
11	SP OUT2 L	BTL speaker Lch output (reverse)	2.5	EF (NPN)
12	HP SUSPEND	Headphone SUSPEND control	5.0	100kΩ PULL UP
13	SP SUSPEND	Speaker SUSPEND control	5.0	100kΩ PULL UP
14	SP GND	Speaker ground	0.0	_
15	MONO / ST	Speaker amplifier Lch ON / OFF control	5.0	100kΩ PULL UP
16	SP OUT2 R	BTL speaker Rch output (reverse)	2.5	EF (NPN)
17	SP OUT1 R	BTL speaker Rch output (forward)	2.5	EF (NPN)
18	LINE MIX ON/OFF	SP IN L / R input ON / OFF control	5.0	100kΩ PULL UP
19	SP Vcc	Speaker Vcc	5.0	_
20	SP IN R	Speaker Rch input	2.5	B (NPN)
21	SP IN L	Speaker Lch input	2.5	B (NPN)
22	HP GND	Headphone ground	0.0	_
23	HP OUT R	Headphone Rch output	2.5	EF (NPN)
24	HP OUT L	Headphone Lch output	2.5	EF (NPN)
25	HP Vcc	Headphone Vcc	5.0	

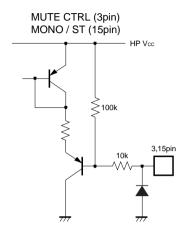
Note) The pin formats are as follows. EF: emitter follower; B: base; C: collector; ~: series connection.

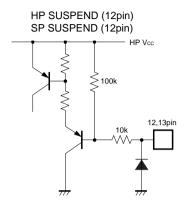
The above values are all based on the settings (HP $Vcc = SP \ Vcc = + 5.0V$) in Fig. 1, entitled "Measurement circuit diagram," and do not guarantee standards.

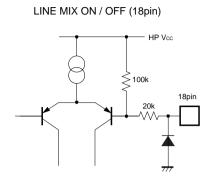
Block diagram

BA7787FS

Pin No.	Pin name	Function	Pin voltage	Pin type
1	EVR CTRL	EVR control pin	_	B (NPN)
2	LINE IN L	Line Lch input	2.5	B (PNP)
3	MUTE CTRL	Headphone mute control	5.0	100kΩ PULL UP
4	LINE IN R	Line Rch input	2.5	B (PNP)
5	BIAS	Bias	2.5	23.5kΩ
6	SYSTEM BEEP IN	SYSTEM BEEP input	2.5	B (NPN)
7	SP IN	Speaker input	2.5	B (NPN)
8	PM BEEP IN	PM BEEP input	2.5	B (NPN)
9	HP SUSPEND	Headphone SUSPEND control	_	B (PNP)
10	SP SUSPEND	Speaker SUSPEND control	_	B (PNP)
11	SP GND	Speaker ground	0.0	_
12	LINE MIX ON / OFF	SP IN input ON / OFF control	5.0	100kΩ PULL UP
13	SP OUT2	BTL speaker output (reverse)	2.5	EF (NPN)
14	SP OUT1	BTL speaker output (forward)	2.5	EF (NPN)
15	BEEP LEVEL	SYSTEM BEEP IN output level setting	4.2	C (PNP) ~ 3kΩ
16	SP Vcc	Speaker Vcc	5.0	_
17	HP GND	Headphone ground	0.0	_
18	HP OUT R	Headphone Rch output	2.5	EF (NPN)
19	HP OUT L	Headphone Lch output	2.5	EF (NPN)
20	HP Vcc	Headphone Vcc	5.0	_

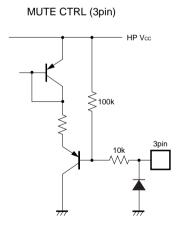

Note) The pin formats are as follows. EF: emitter follower, B: base, C: collector, ~: series connection.

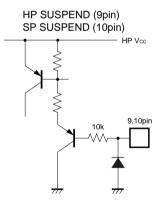

The above values are all based on the settings (HP $Vcc = SP \ Vcc = + 5.0V$) in Fig. 2, entitled "Measurement circuit diagram," and do not guarantee standards.

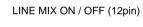


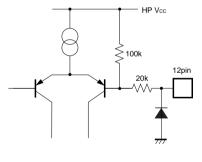
Control pin circuits

BA7786FP-Y








BA7787FS

4

Note) All figures are design values, and do not represent guaranteed performance.

ullet Electrical characteristics (unless otherwise noted, Ta = 25°C, HP Vcc = SP Vcc = 5.0V, f = 1kHz) BA7786FP-Y

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement circuit
(Supply current)	,		,,,				
Supply current	Icc	3.52	4.82	7.64	mA	No input, SP OUT = no load	Fig.1
Supply current SUSPEND	Iccs	175	240	410	μА	No input, V _H = V _S = H	Fig.1
(HP AMP 1) INPUT: LINE IN L	/ R, OUTP	UT: HP	OUT L	/ R			
Output voltage level	Vонр	- 7.4	- 4.0	- 1.5	dBV	V _{IN} = - 10.0dBV	Fig.1
Distortion	THD _{HP}	_	0.1	1.0	%	V _{IN} = - 10.0dBV*1	Fig.1
EVR variation range	Gevr	70	90	_	dB	$V_{IN} = -10.0 dBV^{*2}$ $V_E = HP \ Vcc \rightarrow VE = ground \ level \ differential$	Fig.1
Maximum output level	Vомнр	- 1.6	+ 0.6	_	dBV	THD = 1%*1	Fig.1
Output residual noise	Vonhp	_	- 80	- 73	dBV	$R_g = 1k\Omega^{*2}$	Fig.1
Interchannel crosstalk	СТнр	_	- 79	- 70	dBV	V _{IN} = -7.0dBV*2	Fig.1
Muting level	МТнр	_	- 94	- 83	dBV	Vin = - 7.0dBV*2, VM = L	Fig.1
(HP AMP 2) INPUT: SYSTEM E	BEEP IN, C	UTPUT	: HP OI	JT L/R			
Output voltage level	Vонв	0.22	0.32	0.42	V _{P-P}	VIN = 5.0VP-P	Fig.1
Input threshold level	Vнвн	4.5	_	5.0	V _{P-P}		Fig.1
(SP AMP 1) INPUT: SP IN L/F	R, OUTPUT	:SP O	UT L/F	?	•		
Output voltage level	Vosp	- 1.4	+ 2.0	+ 4.5	dBV	V _{IN} = - 10.0dBV	Fig.1
Distortion	THDsp	_	0.4	1.5	%	V _{IN} = - 10.0dBV*1	Fig.1
Maximum output level	Vomsp	+ 3.5	+ 5.7	_	dBV	THD = 1%*1	Fig.1
Output residual noise	Vonsp	_	- 90	- 80	dBV	$R_g = 1k\Omega^{*2}$	Fig.1
Interchannel crosstalk	CTsp	_	- 78	- 70	dBV	V _{IN} = - 12.0dBV*2	Fig.1
LINE MIX OFF level	Vooffsp	_	- 78	- 70	dBV	V _{IN} = - 12.0dBV*2, V _L = L	Fig.1
⟨SP AMP 2⟩ INPUT: PM BEEP	IN, OUTPL	JT: SP(OUT L/	R			
Output level	Vosa	- 7.4	- 4.0	- 1.5	dBV	V _{IN} = - 10.0dBV	Fig.1
(MUTE CTRL) (pin 13)							
HP MUTE ON holding voltage	VML	GND	_	0.4	V		Fig.1
HP MUTE OFF holding voltage	Vмн	4.3	_	Vcc	V		Fig.1
(HP SUSPEND) (pin 12)			•				
HP SUSPEND holding voltage	VHL	GND	_	0.4	V		Fig.1
HP SUSPEND holding voltage	Vнн	4.3	_	Vcc	V		Fig.1
⟨SP SUSPEND⟩ (pin 13)							
HP SUSPEND holding voltage	VsL	GND		0.4	V		Fig.1
HP SUSPEND holding voltage	Vsн	4.3	_	Vcc	V		Fig.1
(MONO / STEREO) (pin 15)							
MONAURAL holding voltage	V _{NL}	GND		0.4	V		Fig.1
STEREO holding voltage	V _{NH}	4.3		Vcc	V		Fig.1
⟨LINE MIX ON / OFF⟩ (pin 18)							
LINE MIX OFF holding voltage	VLL	GND	_	0.4	V		Fig.1

^{*1:} B.W. = 0.4 ~ 30kHz

 $V_E = HP \ V_{CC} \ (EVR = Max.), \ V_M = H \ (HP \ MUTE \ OFF), \ V_H = L \ (HP \ SUSPEND), \ V_S = L \ (SP \ SUSPEND), \ V_L = H \ (LINE \ MIX \ ON), \ V_N = H \ (STEREO)$

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement circuit
⟨Supply current⟩							
Supply current	Icc	3.10	4.25	6.74	mA	No input, SP OUT = no load	Fig.2
Supply current SUSPEND	Iccs	175	240	410	μА	No input, V _H = V _S = H	Fig.2
$\langle \text{HP AMP 1} \rangle$ input: Line in L	/ R, OUTP	UT: HP	OUT L	/ R			
Output voltage level	Vohp	- 7.4	- 4.0	- 1.5	dBV	$V_{IN} = -10.0 dBV$	Fig.2
Distortion	THDHP	_	0.1	1.0	%	$V_{IN} = -10.0 dBV^{*1}$	Fig.2
EVR variation range	Gevr	70	90	_	dB	$V_{IN} = -10.0 dBV^{*2}$ $V_E = HP \ V_{CC} \rightarrow V_E = ground \ level \ differential$	Fig.2
Maximum output level	Vомнр	- 1.6	+ 0.6	_	dBV	THD = 1%*1	Fig.2
Output residual noise	VONHP	_	- 80	- 73	dBV	$R_g = 1k\Omega^{*2}$	Fig.2
Interchannel crosstalk	СТнр	_	- 79	- 70	dBV	$V_{IN} = -7.0 dBV^{*2}$	Fig.2
Muting level	МТнр	_	- 94	- 83	dBV	$V_{IN} = -7.0 dBV^{*2}, V_{M} = L$	Fig.2
⟨HP AMP 2⟩ INPUT: SYSTEM E	BEEP IN, C	OUTPUT	: HP Ol	JT L/R			
Output voltage level	Vонв	0.22	0.32	0.42	V _{P-P}	VIN = 5.0VP-P	Fig.2
Input threshold level	Vнвн	4.5	_	5.0	V _{P-P}		Fig.2
(SP AMP 1) INPUT: SP IN L/I	R, OUTPUT	T: SP O	UT L/F	?			
Output voltage level	Vosp	- 1.4	+ 2.0	+ 4.5	dBV	Vin = - 10.0dBV	Fig.2
Distortion	THDsp	_	0.4	1.5	%	Vin = - 10.0dBV*1	Fig.2
Maximum output level	Vomsp	+ 3.5	+ 5.7	_	dBV	THD = 1%*1	Fig.2
Output residual noise	Vonsp	_	- 90	- 80	dBV	$R_g = 1k\Omega^{*2}$	Fig.2
Interchannel crosstalk	CTsp	_	- 78	- 70	dBV	Vin = - 12.0dBV*2	Fig.2
LINE MIX OFF level	Vooffsp	_	- 78	- 70	dBV	Vin = - 12.0dBV*2, VL = L	Fig.2
⟨SP AMP 2⟩ INPUT: PM BEEP	IN, OUTPL	JT: SP(OUT L/	R			
Output level	Vosa	- 7.4	- 4.0	- 1.5	dBV	Vin = - 10.0dBV	Fig.2
(Control threshold voltage)							1
⟨MUTE CTRL⟩ (pin 3)							
HP MUTE ON holding voltage	VML	GND	_	0.4	V	_	Fig.2
HP MUTE OFF holding voltage	Vмн	4.3	_	Vcc	V	_	Fig.2
⟨HP SUSPEND⟩ (pin 9)							
HP SUSPEND holding voltage	VHL	GND	_	0.4	V	_	Fig.2
HP SUSPEND holding voltage	Vнн	4.3	_	Vcc	V	_	Fig.2
⟨SP SUSPEND⟩ (pin 10)							
SP SUSPEND holding voltage	VsL	GND	_	0.4	V	_	Fig.2
SP SUSPEND holding voltage	VsH	4.3	_	Vcc	V	_	Fig.2
〈LINE MIX ON / OFF〉 (pin 12)		1	1	1			
LINE MIX OFF holding voltage	VLL	GND	_	0.4	V	_	Fig.2
LINE MIX ON holding voltage	V _L H	4.3	_	Vcc	V	_	Fig.2

^{*1:} B.W. = 0.4 ~ 30kHz

^{*2:} DIN audio mode settings are as follows, unless otherwise noted:

VE = HP Vcc (EVR = Max.), VM = H (HP MUTE OFF), VH = L (HP SUSPEND), VS = L (SP SUSPEND), VL = H (LINE MIX ON),

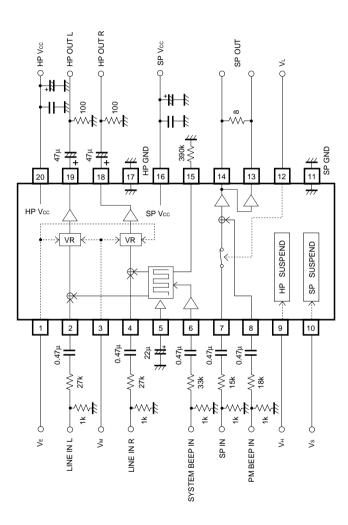
V_N = H (STEREO)

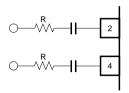
Measurement circuit

BA7786FP-Y



Fig.1




Fig.2

Circuit operation

(1) Gain between LINE IN L / LINE IN R and HP OUT L / HP OUT R

G_{HP}, the gain when EVR is at its maximum ($V_E = HP V_{CC}$), is calculated as follows:

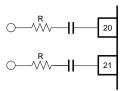
$$G_{HP} = 20*LOG~\frac{60k}{1k+R}~(dB)$$

Set so that $12k \le R \le 56k$. This gain attenuates according to the pin 1 DC voltage (VE) (see Fig. 8). Mixing input can be accommodated by attaching multiple resistors.

(2) Output level between SYSTEM BEEP IN and HP OUT L / HP OUT R

Inputting a pulse wave to SYSTEM BEEP IN causes HP OUT L and HP OUT R to output a pulse wave. The output level of this pulse wave depends on the resistance between pin 7 and GND. The level when EVR is at its maximum ($V_E = HP \ Vcc$) is calculated as follows.

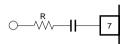
$$V_{HB} = 0.5 * \frac{V_{CC} - 0.7}{13k + R} * 60k (V_{P-P})$$


(BA7786FP-Y only, BA7787FS: pin 15)

Set so that R \geq 100k (V_{HB} \leq 1.1V). As with the path between LINE IN L / LINE IN R and HP OUT L / HP OUT R, this level attenuates according to the pin 1 DC voltage.

(3) Gain between SP IN L / SP IN R and SP OUT L / SP OUT R (BA7786FP-Y)

This is calculated as follows.


$$G_{SP} = 20 * LOG \frac{32k}{1k + R} (dB)$$

Gain between SP IN and SP OUT 1 / SP OUT 2 (BA7787FS)

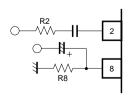
This is calculated as follows.

$$G_{SP} = 20 * LOG \frac{32k}{1k + R}$$
 (dB)

(4) Gain between PM BEEP IN and SP OUT 1 / SP OUT 2 This is calculated as follows.

$$G_{SB} = 20 * LOG \frac{20k}{1k + R}$$
 (dB)

(BA7786FP-Y only, BA7787FS: pin 8)

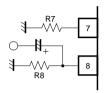

This path is output regardless of whether LIN MIX ON / OFF is at the high or low level.

(5) Gain between LINE IN L and LCH OUT

(BA7786FP-Y)

This gain (GHL) is calculated as follows.

$$G_{HL} = 20 * LOG \frac{R8}{2 * R2} (dB)$$



This path is not controlled by EVR or the mute function.

(6) Output level between SYSTEM BEEP IN and LCH OUT (BA7786FP-Y)

Inputting a pulse wave to SYSTEM BEEP IN causes LCH OUT to output a pulse wave. The output level of this pulse wave depends on the resistance between pin 7 and GND and between pin 8 and GND, and is calculated as follows.

$$V_{HS} = 0.25 * \frac{V_{CC} - 0.7}{13k + R7} * R8 \text{ (Vp.p)}$$

This path is not controlled by EVR or the mute function.

(7) EVR control characteristics

The headphone amplifier is controlled by changing the resistive potential division ratio.

Control pins

(1) MUTE CTRL

• Turns the headphone mute function on and off.

	Control signal: V _M	Note
HP MUTE ON	L	Turns off HP AMP output
HP MUTE OFF	H (OPEN)	_

(2) HP SUSPEND

• Turns the headphone suspend function on and off.

	Control signal: V _H	Note
HP SUSPEND	L	The headphone amplifier operates
HP SUSPEND	Н	The headphone amplifier turns off

• Because the BA7786FP-Y has a pull-up resistor, this is possible even when open (if at the high level).

(3) SP SUSPEND

• Turns the speaker suspend function on and off.

	Control signal: Vs	Note
SP SUSPEND	L	The speaker amplifier operates
SP SUSPEND	Н	The speaker amplifier turns off

• Because the BA7786FP-Y has a pull-up resistor, this is possible even when open (if at the high level).

(4) LINE MIX ON / OFF

• Turns the SP IN input on and off according to SP OUT.

	Control signal: VL	Note
LINE MIX OFF	L	Stops the output of SP IN input to SP OUT
LINE MIX ON	H (OPEN)	_

(5) MONO / STEREO (BA7786FP-Y)

• Turns SP AMP LCH on and off.

	Control signal: V _N	Note
SP AMP LCH OFF	L	SP AMP LCH turns off
SP AMP LCH ON	H (OPEN)	SP AMP LCH operates

Application example

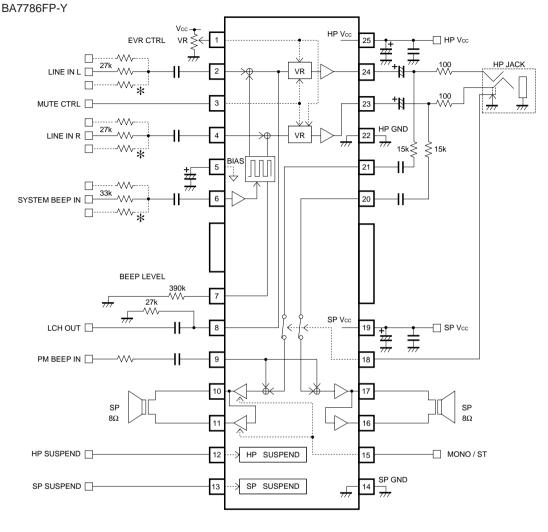
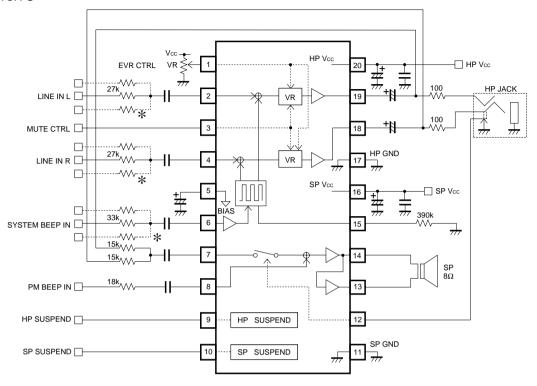
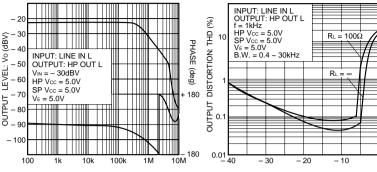
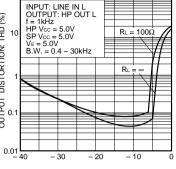


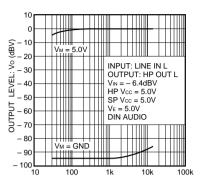
Fig.3

Pin No.	TERMINAL NAME	FUNCTION		TERMINAL
		L	Н	FORM
3	MUTE CTRL	HP MUTE ON	HP MUTE OFF	100k PULL UP
12	HP SUSPEND	HP OPERATED	HP SUSPENDED	100k PULL UP
13	SP SUSPEND	SP OPERATED	SP SUSPENDED	100k PULL UP
15	MONO / ST	LCH SP OFF	LCH SP ON	100k PULL UP
18	LINE MIX ON / OFF	LINE MIX OFF	LINE MIX ON	100k PULL UP


Fig.4

Pin No.	TERMINAL NAME	FUNCTION		TERMINAL
		L	Н	FORM
3	MUTE CTRL	HP MUTE ON	HP MUTE OFF	100k PULL UP
9	HP SUSPEND	HP OPERATED	HP SUSPENDED	PNP BASE
10	SP SUSPEND	SP OPERATED	SP SUSPENDED	PNP BASE
12	LINE MIX ON / OFF	LINE MIX OFF	LINE MIX ON	100k PULL UP


Electrical characteristic curves

FREQUENCY: f (Hz) Fig. 5 HP AMP frequency characteristics

INPUT LEVEL: Vin (dBV) Fig. 6 HP AMP input level vs. output distortion

FREQUENCY: f (Hz) Fig. 7 HP AMP MUTE characteirstics

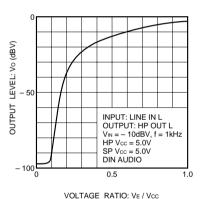
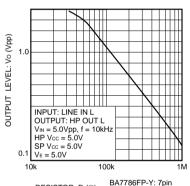



Fig. 8 HP AMP EVR characteristics

RESISTOR: R (Ω) BA7787FS: 15pin Fig. 9 SYSTEM BEEP output level vs. external resistor.

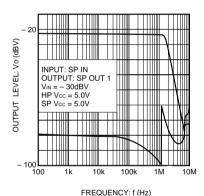


Fig.10 SP AMP frequency characteristics

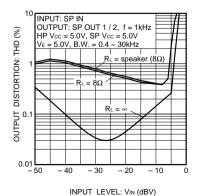


Fig. 11 SP AMP input level vs. output distortion

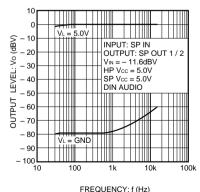


Fig. 12 SP AMP MUTE characteristics

●Board circuit BA7786FP-Y

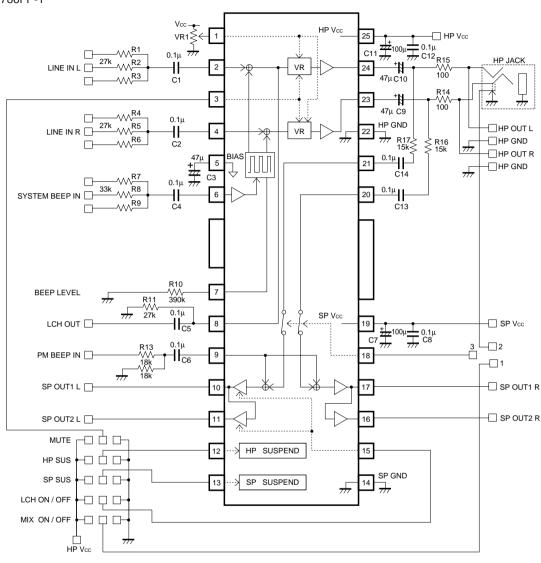


Fig. 13

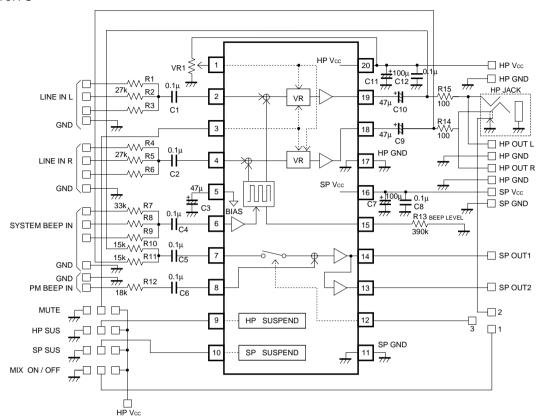


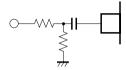
Fig. 14

●Part table

BA7786FP-Y

No.	Use	Standard value
R1	Used to set the gain from LINE IN L / LINE IN R (pins 2 and 4) to HP OUT	$27k\Omega$
R2	L / HP OUT R (pins 24 and 23)	27kΩ
R3	(See section 1, on circuit operation for the formula.)	27kΩ
R4	A wide range of mixing ratios can be set by changing the values of	27kΩ
R5 R6	R1, R2 and R3 (or R4, R5 and R6).	27kΩ 27kΩ
R7 R8	Resistors for mixing SYSTEM BEEP IN (pin 6). Because the threshold voltage	33kΩ 33kΩ
R9	between the high and low levels is fixed inside the IC, these resistors should be set to $33k\Omega$	33kΩ
R10	Used to set the output level from SYSTEM BEEP IN (pin 6) to HP OUT L / HP OUT R (pins 24 and 23). (See section 2, on circuit operation for the formula.)	390kΩ
R11	No need to attach. Connect pin 8 to a ground.	_
R13	Used to set the gain from PM BEEN IN (pin 9) to SP OUT L / SP OUT R (pins 10, 11, 16 and 17). (See section 4, on circuit operation for the formula.)	18kΩ
R14	• The load resistor for HP OUT R.	100Ω
R15	The load resistor for HP OUT L.	100Ω
R16	Used to set the gain from SP IN L / R (pins 21 and 20) to SP OUT L / R (pins 10, 11,	15kΩ
R17	16 and 17). (See section 3, on circuit operation for the formula.)	15kΩ
C1	The coupling capacitor for LINE IN L	0.1μF
C2	The coupling capacitor for LINE IN R	0.1μF
C3	The ripple rejection capacitor for the bias pin	47μF
C4	The coupling capacitor for SYSTEM BEEP IN	0.1μF
C5	No need to attach	_
C6	The coupling capacitor for PM BEEP IN	0.1μF
C7	• The bypass capacitor for SP Vcc (used for low-frequency ripple rejection)	100μF
C8	• The bypass capacitor for SP Vcc (used for high-frequency ripple rejection)	0.1μF
C9	The coupling capacitor for HP OUT R	47μF
C10	The coupling capacitor for HP OUT L	47μF
C11	• The bypass capacitor for HP Vcc (used for low-frequency ripple rejection)	100μF
C12	• The bypass capacitor for HP Vcc (used for high-frequency ripple rejection)	0.1μF
C13	The coupling capacitor for SP IN R	0.1μF
C14	The coupling capacitor for SP IN L	0.1μF
VR1	Used to change the pin 1 DC voltage	20kΩ

No.	Use	Standard value
R1	Used to set the gain from LINE IN L / LINE IN R (pins 2 and 4) to HP OUT	$27k\Omega$
R2	L / HP OUT R (pins 19 and 18) (See section 1, on circuit operation for the formula.)	$27k\Omega$
R3	A wide range of mixing ratios can be set by changing the values of R1, R2 and	27kΩ
R4	R3 (or R4, R5 and R6).	27kΩ
R5 R6		27kΩ
		27kΩ
R7	Resistors for mixing SYSTEM BEEP IN (pin 6). Because the threshold voltage	33kΩ
R8 R9	between the high and low levels is fixed inside the IC, these resistors should be set to 33kΩ.	33kΩ
-	11.11	33kΩ
R10 R11	Used to set the gain from SP IN (pin 7) to SP OUT 1 / SP OUT 2 (pins 14 and 13). (See section 3, on circuit operation for the formula.)	15kΩ 15kΩ
R12	Used to set the gain from PM BEEP IN (pin 8) to SP OUT 1 / SP OUT 2 (pins 14 and 13). (See section 4, on circuit operation for the formula.)	18kΩ
R13	Used to set the output level from SYSTEM BEEP IN (pin 6) to HP OUT L / HP OUT R (pins 19 and 18). (See section 2, on circuit operation for the formula.)	390kΩ
R14	The load resistor for HP OUT R.	100Ω
R15	The load resistor for HP OUT L.	100Ω
C1	The coupling capacitor for LINE IN L	0.1μF
C2	The coupling capacitor for LINE IN R	0.1μF
C3	The ripple rejection capacitor for the bias pin	47μF
C4	The coupling capacitor for SYSTEM BEEP IN	0.1μF
C5	The coupling capacitor for SP IN	0.1μF
C6	The coupling capacitor for PM BEEP IN	0.1μF
C7	The bypass capacitor for SP Vcc (used for low-frequency ripple rejection)	100μF
C8	The bypass capacitor for SP Vcc (used for high-frequency ripple rejection)	0.1μF
C9	The coupling capacitor for HP OUT R	47μF
C10	The coupling capacitor for HP OUT L	47μF
C11	The bypass capacitor for HP Vcc (used for low-frequency ripple rejection)	100μF
C12	• The bypass capacitor for HP Vcc (used for high-frequency ripple rejection)	0.1μF
VR1	Used to change the pin 1 DC voltage	20kΩ



- Operation notes
- (1) Popping noises occurring when the power is turned on
- When the power is turned on, the headphone mute function should be on and the suspend function off in order to prevent popping noises from occurring when Vcc turns on.
- (2) The supply voltages for HP Vcc and SP Vcc should come from the same power supply. Using separate power supplies can lead to output voltage drops and malfunctioning.
- (3) The common impedance of the two power supply lines (HP Vcc and SP Vcc) should be kept as low as possible.

(4) Make sure the input resistance for the SYSTEM BEEP IN pin is $33k\Omega$.

(5) Configure the PM BEEP IN pin of BA7786FP-Y as shown below in order to prevent oscillation in the IC.

- (6) The LCH OUT pin (pin 8) of BA7786FP-Y should be grounded when not used.
- (7) When switching the suspend function popping noises may occur. If this bothers, take measures for eliminating it by attachig external componets.

●Board labelling diagram BA7786FP-Y

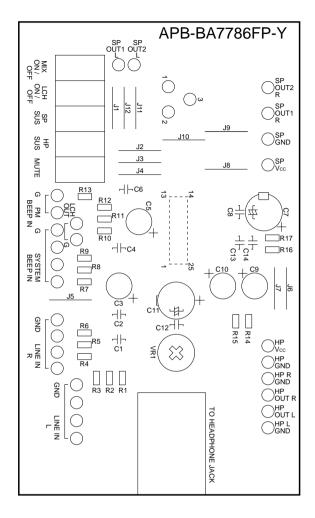


Fig. 15

LINE IN L: Line input Lch LINE IN R: Line input Rch

SYSTEM BEEP IN: System beep sound input

PM BEEP IN: PM beep sound input

HP OUT L: Headphone output Lch monitor HP OUT R: Headphone output Rch monitor SP OUT L 1 / 2: Speaker connection pin (BTL) SP OUT R 1 / 2: Speaker connection pin (BTL)

SP Vcc: Supply voltage input + 5.0V HP Vcc: Supply voltage input + 5.0V VR1: Electric volume adjuster va

(On this board, G_{HP} is set to its maximum by turning the volume adjuster clockwise as far as it will go.)

MUTE: MUTE control switch

HP SUS: HP suspend control switch
SP SUS: SP suspend control switch
MIX ON / OFF: LINE MIX ON / OFF switch

(On this board, pin 12 automatically drops to the ground level when a headphone is plugged into the jack.)

LCH ON / OFF: SP AMP LCH ON / OFF switch

●Board pattern diagram

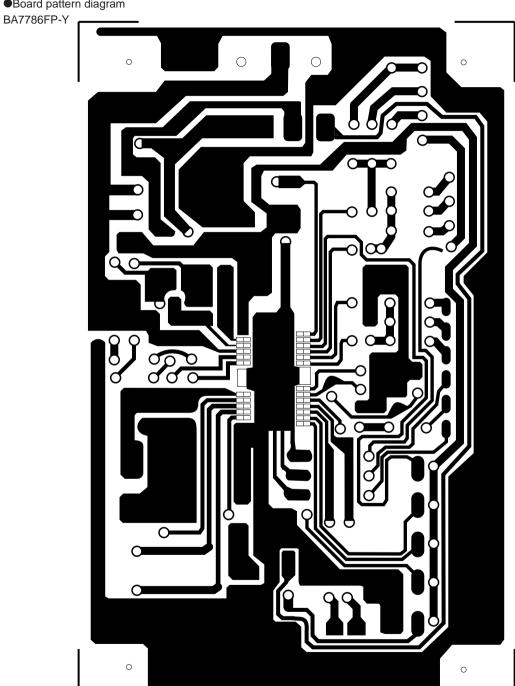


Fig. 16

●Board labelling diagram BA7787FS

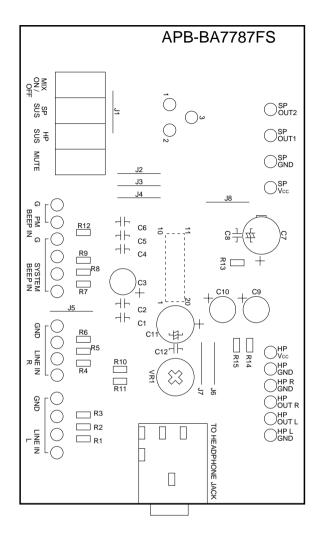


Fig. 17

LINE IN L: Line input Lch LINE IN R: Line input Rch

SYSTEM BEEP IN: System beep sound input

PM BEEP IN: PM beep sound input

HP OUT L: Headphone output Lch monitor
HP OUT R: Headphone output Rch monitor
SP OUT 1: Speaker connection pin (BTL)
SP OUT 2: Speaker connection pin (BTL)
SP Vcc: Supply voltage input + 5.0V
HP Vcc: Supply voltage input + 5.0V

VR1: Electric volume adjuster va

(On this board, G_{HP} is set to its maximum by turning the volume adjuster clockwise as far as it will go.)

MUTE: MUTE control switch

HP SUS: HP suspend control switch SP SUS: SP suspend control switch MIX ON / OFF: LINE MIX ON / OFF switch

(On this board, pin 12 automatically drops to the ground level when a headphone is plugged into the jack.)

●Board pattern diagram BA7787FS

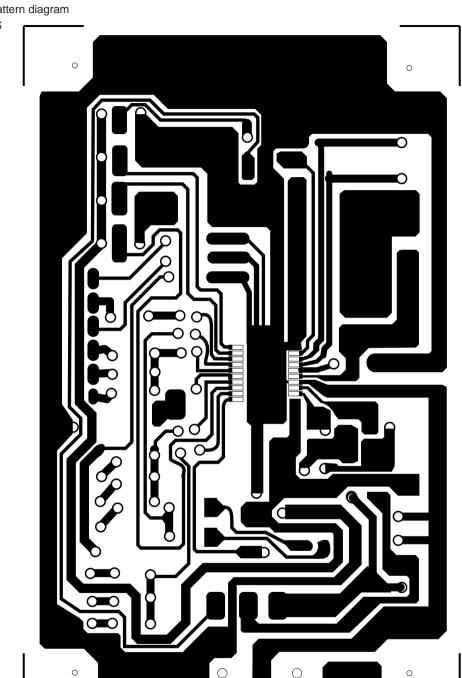
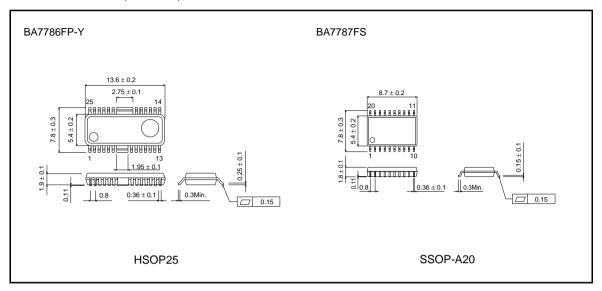



Fig. 18

External dimensions (Units: mm)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

