


# High Q Multi-Layer and Broadband Blocking Capacitors





# Dielectric





Dielectric Laboratories Inc. 2777 Route 20 East Cazenovia, New York 13035-9433

phone 315.655.8710

fax 315.655.0445 sales@dilabs.com or europesales@dilabs.com or chinasales@dilabs.com

web www.dilabs.com

asiasales@dilabs.com

QUALITY SYSTEM ISO 9001:2000 CERTIFIED

ENVIRONMENTAL SYSTEM ISO 14001:2000 CERTIFIED



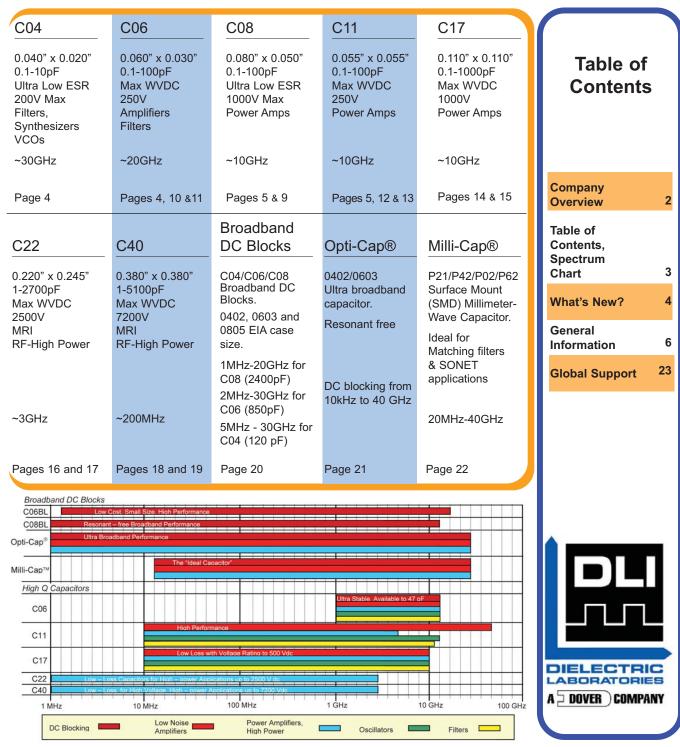
#### **Company Overview**

Dielectric Laboratories Inc. (DLI) is your global partner for application specific microwave and millimeter-wave components serving customers in fiber-optic, wireless, medical, transportation, semiconductor, avionics and military markets. With 30 years of experience, you can turn to DLI with confidence for your high frequency Single-Layer Capacitor, Multi-Layer Capacitor, Resonator, Filter and custom thin film component solutions.

Our products include a broad range of High Q Multi-Layer Capacitors and a unique range of broadband blocking capacitors. These products can be customized to meet specific design targets - please discuss your needs with our Sales and Applications Team.

We are committed to serving you and we thank you for your business!

#### **RoHS Compliance Statement**


Dielectric Laboratories, Inc. is a leading supplier to the electronic components market and is fully committed to offering products supporting Restriction of Hazardous Substances (RoHS) directive 2002/95/E. All of our dielectric formulations are RoHS compliant and we offer a broad range of capacitors with RoHS compliant terminations. DLI complies with the requirements of the individual customer and will maintain product offerings that meet the demands of our industry.

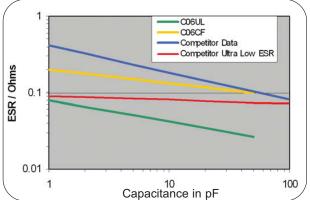
### **Quality and Environmental Policy**

DLI's reputation for quality and environmental responsibility is based on a commitment to not only meet our customer's requirements, but to exceed their expectations. The entire organization, beginning with top management, strives to achieve excellence in designing, manufacturing and delivering capacitors, build-to-print thin film products and proprietary thin film components for high frequency applications, while maintaining safe and healthy working conditions. Furthermore, DLI commits to achieve these goals in an environmentally responsible manner through our commitment to comply with environmental regulations and to implement pollution prevention initiatives. DLI strives to continually improve the effectiveness of our Quality and Environmental Management System through the establishment and monitoring of objectives and targets.

# Laboratories

# High Q Multi-Layer and Broadband Blocking Capacitors




### What's New

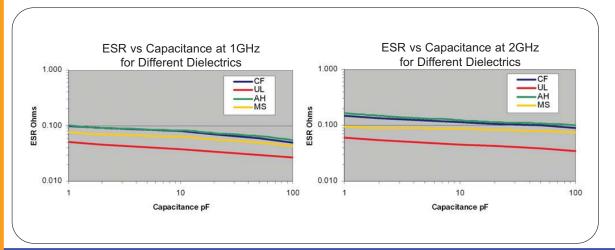
In our continuing efforts to provide our customers around the world with the products that make their products better, we have recently introduced several new material systems and case sizes to our already comprehensive product lines.

#### Ultra-Low ESR Material System - UL

A newly crafted, world standard for high Q capacitors, the UL material system is available in C04 (0402), C06 (0603), C08 (0805), C11 (0505), and C17 (1111) case sizes. As the 1GHz data in the graph below indicates, the UL system offers the design engineer options not seen before. UL not only provides ESR

advantage when compared to DLl's workhorse materials systems CF and AH, but also when compared to competitors' standard and "ultralow ESR" offerings.




#### New High Q Material System - MS

A very stable, higher Q material system that provides excellent, low loss performance in commercial systems below 3 GHz range is available in C06 (0603), C08 (0805), C11 (0505), and C17 (1111) case sizes. This material system is suitable for many applications where economical, high performance is required. See the graph below that compares

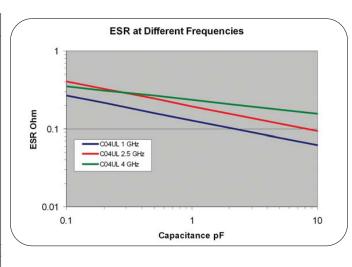
C11 ESR results for the MS material system to DLI's other material systems at 1 and 2 GHz. The MS system is available in extended capacitance value ranges (see tables on appropriate case size pages).

#### **Comparison of Material Systems**

| Material<br>System | Temperature<br>Coefficient<br>-55°C to +125°C<br>(ppm/°C Maximum) | Performance and Applications                                      |
|--------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|
| AH                 | P90 ± 20                                                          | Positive TC, traditional porcelain ceramic, high power capability |
| CF                 | 0 ± 15                                                            | Ultra-stable porcelain ceramic, high power capability             |
| UL                 | 0 ± 30                                                            | Ultra-low ESR ceramic                                             |
| MS                 | 0 ± 30                                                            | Competitive high performance ceramic                              |
| BL                 | ± 15%                                                             | Broadband Blocking                                                |



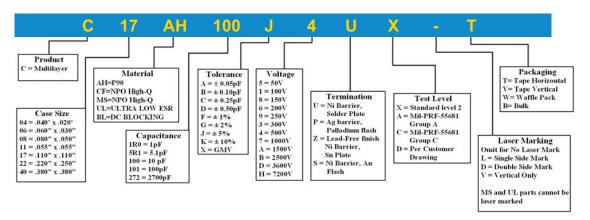



www.dilabs.com

### What's New

#### **C04 0402 Case Size**

DLI has added an 0402 case size, high Q product line available in the UL material system. C04 products are only offered in the RoHS compliant 'S' termination system (see table on page 6).


| CAP<br>CODE | CAP<br>(pF) | Cap<br>Tol. | CAP | CAP<br>(pF) | Cap<br>Tol. |   |
|-------------|-------------|-------------|-----|-------------|-------------|---|
| 0R1         | 0.1         |             | 1R9 | 1.9         |             |   |
| 0R2         | 0.2         |             | 2R0 | 2.0         |             |   |
| R25         | 0.25        | ]           | 2R1 | 2.1         | 1           |   |
| 0R3         | 0.3         |             | 2R2 | 2.2         |             |   |
| R35         | 0.35        |             | 2R4 | 2.4         |             |   |
| 0R4         | 0.4         |             | 2R7 | 2.7         |             |   |
| R45         | 0.45        |             | 3R0 | 3.0         |             |   |
| 0R5         | 0.5         |             | 3R3 | 3.3         | Α           |   |
| 0R6         | 0.6         | A           | 3R6 | 3.6         | В           |   |
| OR7         | 0.7         | В           | 3R9 | 3.9         | С           |   |
| OR8         | 0.8         | С           | С   | 4R3         | 4.3         | D |
| 0R9         | 0.9         | D           | 4R7 | 4.7         |             |   |
| 1R0         | 1.0         | 1           | 5R1 | 5.1         |             |   |
| 1R2         | 1.2         |             | 5R6 | 5.6         |             |   |
| 1R3         | 1.3         |             | 6R8 | 6.8         |             |   |
| 1R4         | 1.4         |             | 7R5 | 7.5         |             |   |
| 1R5         | 1.5         |             | 8R2 | 8.2         | 1           |   |
| 1R6         | 1.6         |             | 9R1 | 9.1         |             |   |
| 1R7         | 1.7         |             | 100 | 10          | FGJK        |   |
| 1R8         | 1.8         |             |     |             |             |   |



#### **C08 0805 Case Size**

DLI has added an 0805 case size, high Q product line to its highly successful C08 Broadband Blocking capacitors. This case size is available in UL and MS systems and their RoHS compliant termination systems. For more information about the new C08 high Q product line, see page 9.

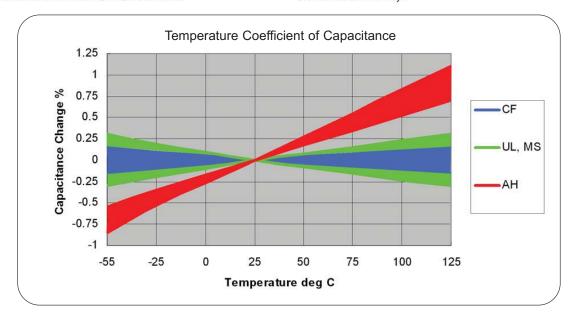
#### **Multilayer Capacitor Part Number Identification**



#### **Capacitor Case Size Code**

| Case Size<br>Code | Foot Print (I x w)              | Guide                                |
|-------------------|---------------------------------|--------------------------------------|
| 04                | 0402 EIA Case Size              | High Q Capacitor                     |
| 06                | 0603 EIA Case Size              | High Q Capacitor, Broadband DC Block |
| 08                | 0805 EIA Case Size              | High Q Capacitor, Broadband DC Block |
| 11                | .055" x .055" (1.39mm x 1.39mm) | High Q Capacitor                     |
| 17                | .110" x .110" (2.79mm x 2.79mm) | High Q and Power RF & Microwave      |
| 22                | .220" x .245" (5.59mm x 6.22mm) | High Voltage, High Power Capacitor   |
| 40                | .380" x .380" (9.65mm x 9.65mm) | High Voltage, High Power Capacitor   |




# **General Information**

#### **DLI Multi-Layer Dielectric Materials**

| Dielectric<br>Code | Relative <b>£</b> r<br>@ 1 MHz | Temperature<br>Coefficient          | Dissipation<br>Factor @ | Insulation Resistance (M $\Omega$ ) |                  |  |
|--------------------|--------------------------------|-------------------------------------|-------------------------|-------------------------------------|------------------|--|
|                    | @ 1 m12                        | -55°C to +125°C<br>(ppm/°C Maximum) | 1 MHz<br>(% Maximum)    | @ +25°C                             | @ +125°C         |  |
| AH                 | 20                             | P90 ± 20                            | 0.05                    | >10 <sup>6</sup>                    | >10 <sup>5</sup> |  |
| CF                 | 24                             | 0 ± 15                              | 0.05                    | >10 <sup>6</sup>                    | >10 <sup>5</sup> |  |
| UL                 | 14                             | 0 ± 30                              | 0.05                    | >10 <sup>5</sup>                    | >104             |  |
| MS                 | 22                             | 0 ± 30                              | 0.05                    | >10 <sup>5</sup>                    | >10 <sup>4</sup> |  |
| * BL               | 2050                           | ± 15%                               | 2.50                    | >10 <sup>4</sup>                    | >10 <sup>3</sup> |  |

All test conditions are per MIL-PRF-55681 revision A. UL material is new Ultra Low ESR Material.

Dissipation Factor applies to values of 4.7pF or greater. \*Broadband Blocks only.



#### **Termination Systems**

| Configuration        | Part<br>Number<br>Code | Typical<br>Metallization                                                                                    | Application                                                                                  | Plated Layer                                                                              |
|----------------------|------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                      | U                      | Ag Termination     Ni Barrier Layer     Sn-Pb Plated     Solder                                             | <ul><li>High Volume</li><li>Solder Assembly</li><li>SMD-SMT</li><li>Hand Soldering</li></ul> | Ni – 100-250 μ"<br>Sn-Pb – 100-150 μ"<br>Sn / Pb, 90 / 10<br>(solder melting temp. 213°C) |
| High Purity Ceramics | Z<br>RoHS<br>Compliant | <ul><li>Ag Termination</li><li>Ni Barrier Layer</li><li>Sn Plated Solder</li><li>Lead Free Finish</li></ul> | <ul><li>High Volume</li><li>Solder Assembly</li><li>SMD-SMT</li><li>Hand Soldering</li></ul> | Ni – 200-250 μ"<br>Sn – 200 μ"<br>(solder melting temp. 232°C)                            |
| Electrode            | S<br>RoHS<br>Compliant | Ag Termination     Ni Barrier Layer     Gold Flash                                                          | Epoxy Mounting     Standard for 0402     Specialty Solder     Applications                   | Ni – 100-250 μ"<br>Au – 5 μ"                                                              |
|                      | P<br>RoHS<br>Compliant | AgPd Termination                                                                                            | All non-Magnetic     Applications                                                            | Not Plated                                                                                |



## **General Information**

#### **Lead Termination Codes**

| Axial Ribbon | Radial Ribbon | Center Lead | <b>Axial Wire Lead</b> | Radial Wire Lead |
|--------------|---------------|-------------|------------------------|------------------|
| Code A       | Code B        | Code C      | Code E                 | Code F           |
|              |               |             |                        |                  |

#### **Test Level Codes**

| Test<br>code | Inspection Description (see individual part pages for additional detail) |
|--------------|--------------------------------------------------------------------------|
| X            | 100% IR, 100 % AQL visual, 100% Electrical (DWV, Cap, DF)                |
| Α            | Group A testing per MIL – PRF – 55681                                    |
| С            | Group C testing per MIL – PRF – 55681                                    |
| D            | Customer Defined                                                         |

**Packaging Configurations** 

| Case<br>Style | Size            | 7"Reel, 8m                 | ım Tape                 | 7"Reel,<br>16mm Tape      | 13"Reel, 1                | 2"x 2"<br>Waffle        |      |
|---------------|-----------------|----------------------------|-------------------------|---------------------------|---------------------------|-------------------------|------|
|               | L×W             | Horizontal<br>Orientation* | Vertical<br>Orientation | Horizontal<br>Orientation | Horizontal<br>Orientation | Vertical<br>Orientation | Pack |
| C04           | 0.040" x 0.020" | 5000                       |                         |                           |                           |                         | 108  |
| C06           | 0.060" x 0.030" | 4000                       |                         |                           |                           |                         | 108  |
| C08           | 0.080" x 0.050" | 4000 (3000)                | 3100                    |                           |                           |                         | 108  |
| C11           | 0.055" x 0.055" | 3500 (3000)                | 3100                    |                           |                           |                         | 108  |
| C17           | 0.110" x 0.110" | 2350                       | 750                     |                           |                           |                         | 49   |
| C22           | 0.220" x 0.250" | 500                        |                         |                           |                           |                         |      |
| C40           | 0.380" x 0.380" |                            |                         | 250                       | 1300                      |                         |      |

<sup>\*</sup> Data shown is for all UL, CF, AH, and BL horizontal mounted capacitors. Quantities shown in parentheses () are reel amounts for horizontal mounted MS capacitors A minimum 500 piece order is typically required for tape and reel packaging. Standard Packaging is bulk in plastic bags.

Consult factory for custom packaging solutions.

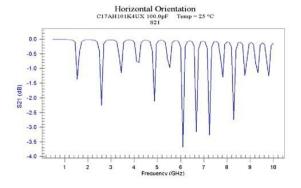
#### Attachment Methods

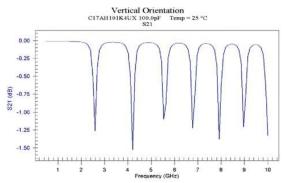
All parts are compatible with industry standard soldering methods such as IR reflow, vapor phase reflow, convection, and wave soldering. Please see DLI application note "Recommended Solder Attachment Techniques for Multilayer Chip and Pre Tinned Capacitors" located on our Web site www.dilabs.com.

#### Cleaning

Chip capacitors withstand commonly used cleaning agents, such as water, alcohol, and degreaser solvents. After soldering, it is important that no flux is trapped under the chip - flux residue degrades Q, insulation resistance and reliability.

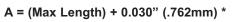
#### Shelf Life


Capacitors are solderable for a minimum of one year from the date of shipment if properly stored in the original packaging. Dry nitrogen storage is preferable for longer periods.




### **General Information**

#### **MLC Orientation**

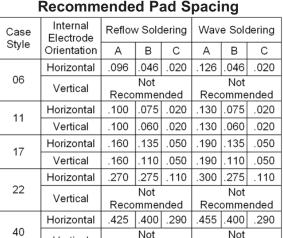

The orientation of the MLC relative to the ground plane affects the devices' impedance. When the internal electrodes are parallel to the ground plane (Horizontal mounting) the impedance of the MLC resembles a folded transmission line driven from one end. The left graph below shows the modeled insertion loss and measured parallel resonances of C17AH101K4UX with horizontal mounting. When the internal electrodes are perpendicular to the ground plane (vertical mounting) the MLC impedance resembles a folded transmission line driven from the center reducing resonance effects. C11 and C17 are available with vertical or horizontal orientation in tape and reel packaging. Modeling can be done in CapCad®. DLI capacitor models can be found in many industry standard software packages.





#### Recommended PWB Land Patterns

Printed Wire Board land pattern design for chip components is critical to ensure a reliable solder fillet, and to reduce nuisance type manufacturing problems such as component swimming and tombstoning. The land pattern suggested can be used for reflow and wave solder operations as noted. Land patterns constructed with these dimensions will yield optimized solder fillet formation and thus reduce the possibility of early failure.1




B = (Max Width) + 0.010" (.254mm)C = (Min Length) - 2 (Solder Band)\*\*

\*\* "C" to be no less than 0.020", change "A" to (Max Length) + 0.020".

### **Temperature Precautions**

The rate of heating and cooling must be controlled to preclude thermal cracking of ceramic capacitors. DLI recommends three methods of reflow solder attachment:



| Style | Orientation                | Α                  | В                 | С                                          | Α                               | В                                      | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|-------|----------------------------|--------------------|-------------------|--------------------------------------------|---------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       | Horizontal                 | .096               | .046              | .020                                       | .126                            | .046                                   | .020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 06    | Vertical                   | Reco               | Not<br>mmer       | nded                                       | Rec                             | Not<br>omme                            | ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 11    | Horizontal                 | .100               | .075              | .020                                       | .130                            | .075                                   | .020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 11    | Vertical                   | .100               | .060              | .020                                       | .130                            | .060                                   | .020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 17    | Horizontal                 | .160               | .135              | .050                                       | .190                            | .135                                   | .050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 17    | Vertical                   | .160               | .110              | .050                                       | .190                            | .110                                   | .050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|       | Horizontal                 | .270               | .275              | .110                                       | .300                            | .275                                   | .110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 22    | Vertical                   | Not<br>Recommended |                   |                                            | Rec                             | Not<br>omme                            | ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|       | Horizontal                 | .425               | .400              | .290                                       | .455                            | .400                                   | .290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 40    | Vertical                   | Not<br>Recommended |                   |                                            | Rec                             | Not<br>omme                            | ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|       | 06<br>11<br>17<br>22<br>40 | Horizontal         | Horizontal   .096 | Horizontal   .096   .046     Not Recomment | Horizontal   .096   .046   .020 | Horizontal   .096   .046   .020   .126 | Horizontal   .096   .046   .020   .126   .046     Not   Recommended   Recommended |  |



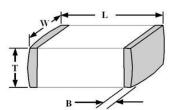
IR Reflow, Vapor Phase Reflow, and Hot Air Convection Reflow. Ideal Profiles for any of the methods should not exceed a ramp up of approximately 200°C/minute. In all applications, DLI recommends that the chip user employ a pre-heat temperature to within 100°C of the working temperature of the user's machine. Avoid forced cooling or contact with heat sinks, such as conveyor belts, metal tables or cleaning solutions, before the chips reach ambient temperatures.

<sup>\*</sup> Add 0.030" for Wave Solder operations.

<sup>&</sup>lt;sup>1</sup> Frances Classon, James Root, Martin Marietta Orlando Aerospace, "Electronics Packaging and Interconnection Handbook";



### **C08**




#### **FUNCTIONAL APPLICATIONS**

DC Blocking **Amplifier Matching Networks** VCO Frequency Stabilization Filtering, Diplexers, Antenna Matching High RF Power Circuits

#### **BENEFITS**

High Q Stable TC EIA 0805 Case Size **SMD** Compatibility -55 to +125 °C Operating Range



#### **Mechanical Specifications**

| Product | Е                           | ody Dimensi                  | Termination Code,<br>Band Dimension and Material |      |                               |                          |  |
|---------|-----------------------------|------------------------------|--------------------------------------------------|------|-------------------------------|--------------------------|--|
| Code    | Length (L)                  | Width (W)                    | Thickness (T)                                    | Code | Band (B)                      | Material                 |  |
|         |                             | SI 70, 96 - 0                | 50 Oct 12                                        | z    |                               | Ni Barrier,<br>Tin Plate |  |
| C08     | .080" ± .012"<br>(2.0± 0.3) | .050" ± .008"<br>(1.27± 0.2) | max .051"<br>(max 1.3)                           | s    | .0.005-0.03"<br>(0.13 - 0.75) | Ni Barrier,<br>Au Flash  |  |
|         |                             |                              |                                                  | Р    |                               | AgPd<br>Termination      |  |

Laser Markings available in Horizontal orientation only, Code L. The MS material system is available in Z termination only.

| Capacitance | Ta | b | le |
|-------------|----|---|----|
|-------------|----|---|----|

|             |             |             |                                         |             | С           | 08 High     | ı Q Cap       | acitanc     | e Valu      | es          |               |             |             |             |               |
|-------------|-------------|-------------|-----------------------------------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|---------------|
| CAP<br>CODE | CAP<br>(pF) | Cap<br>Tol. | Rated<br>WVDC                           | CAP<br>CODE | CAP<br>(pF) | Cap<br>Tol. | Rated<br>WVDC | CAP<br>CODE | CAP<br>(pF) | Cap<br>Tol. | Rated<br>WVDC | CAP<br>CODE | CAP<br>(pF) | Cap<br>Tol. | Rated<br>WVDC |
| 0R1         | 0.1         |             |                                         | 1R7         | 1.7         | 6           |               | 8R2         | 8.2         | ABCD        |               | 470         | 47          |             |               |
| 0R2         | 0.2         |             |                                         | 1R8         | 1.8         |             |               | 9R1         | 9.1         | ABCD        |               | 510         | 51          |             |               |
| R25         | 0.25        |             |                                         | 1R9         | 1.9         |             |               | 100         | 10          |             |               | 560         | 56          |             |               |
| 0R3         | 0.3         |             |                                         | 2R0         | 2.0         |             |               | 110         | 11          |             |               | 620         | 62          |             |               |
| R35         | 0.35        |             |                                         | 2R1         | 2.1         |             |               | 120         | 12          |             |               | 680         | 68          |             | 250V          |
| 0R4         | 0.4         |             |                                         | 2R2         | 2.2         |             |               | 130         | 13          |             |               | 750         | 75          |             | Code 9        |
| R45         | 0.45        |             |                                         | 2R4         | 2.4         | 1           |               | 150         | 15          | Ī           |               | 820         | 82          | F           | Code 9        |
| 0R5         | 0.5         | Α           | 100000000000000000000000000000000000000 | 2R7         | 2.7         | Α           |               | 160         | 16          | ] _         | SISSERVEN     | 910         | 91          | G           |               |
| OR6         | 0.6         | В           | 250V                                    | 3R0         | 3,0         | В           | 250V          | 180         | 18          | F           | 250V          | 101         | 100         | J           |               |
| 0R7         | 0.7         | C           | Code 9                                  | 3R3         | 3.3         | С           | Code 9        | 200         | 20          | G           | Code 9        | 121         | 120         | 1           |               |
| 0R8         | 0.8         | D           |                                         | 3R6         | 3.6         | D           |               | 220         | 22          | K           |               | 151         | 150         |             |               |
| 0R9         | 0.9         |             |                                         | 3R9         | 3.9         |             |               | 240         | 24          | M           |               | 181         | 180         |             | 150V          |
| 1R0         | 1.0         |             |                                         | 4R3         | 4.3         |             |               | 270         | 27          | IVI         |               | 221         | 220         |             | Code 8        |
| 1R2         | 1.2         |             |                                         | 4R7         | 4.7         |             |               | 300         | 30          | 1           |               | 271         | 270         |             | 100V          |
| 1R3         | 1.3         |             |                                         | 5R1         | 5.1         |             |               | 330         | 33          | 1           |               | 331         | 330         |             | Code 1        |
| 1R4         | 1.4         |             | 5R6 5.6 360 36                          |             | 391         | 390         |               | 50V         |             |             |               |             |             |             |               |
| 1R5         | 1.5         |             |                                         | 6R8         | 6R8 6.8     |             |               | 390         | 39          |             |               | 471         | 470         |             | Code 5        |
| 1R6         | 1.6         |             |                                         | 7R5         | 7.5         |             |               | 430         | 43          | 1           |               | $\sim$      | > <         |             | $\sim$        |

Cap values in blue are available in UL only, in red available in MS only.

#### **C08 Designer and Engineering Kits**

Values for the C08 Designer Kits and the C08 Engineering Kit are the same as the C06 Designer Kits and the C06 Engineering Kit. Refer to tables on page 11.

### **Electrical Specifications**

| Dielectric<br>Material | Temperature<br>Coefficient | Dissipation<br>Factor |                         | ectric<br>ng Voltage     | Resis           | lation<br>stance<br>inimum) | Aging   | Piezoelctric | Dielectric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|----------------------------|-----------------------|-------------------------|--------------------------|-----------------|-----------------------------|---------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Code                   | (ppm/°C<br>Maximum)        |                       | DWV<br>(Volts)          | @ +25°C                  |                 | Piezoelectric               | Effects | Absorption   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| UL                     | 0 ± 30                     | 0.05                  | 250                     | 625                      | 10 <sup>5</sup> | 10 <sup>4</sup>             | None    | None         | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MS                     | 0 ± 30                     | 0.05                  | 250<br>150<br>100<br>50 | 625<br>375<br>250<br>125 | 10 <sup>5</sup> | 10 <sup>4</sup>             |         |              | Targette and Targe |

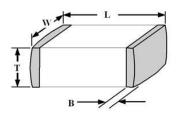
| Toleran | Tolerance Codes |  |  |  |  |  |  |  |  |
|---------|-----------------|--|--|--|--|--|--|--|--|
| Code    | Tolerance       |  |  |  |  |  |  |  |  |
| Α       | ± 0.05pF        |  |  |  |  |  |  |  |  |
| В       | ± 0.10pF        |  |  |  |  |  |  |  |  |
| С       | ± 0.25pF        |  |  |  |  |  |  |  |  |
| F       | ± 1%            |  |  |  |  |  |  |  |  |
| G       | ± 2%            |  |  |  |  |  |  |  |  |
| J       | ± 5%            |  |  |  |  |  |  |  |  |
| K       | ± 10%           |  |  |  |  |  |  |  |  |





## C06 0603




#### **FUNCTIONAL APPLICATIONS**

DC Blocking Amplifier Matching Networks VCO Frequency Stabilization Filtering and Diplexers Antenna Matching

#### **BENEFITS**

Stable TC EIA 0603 Case Size SMD Compatibility -55 to +125 °C Operating Range

#### **Mechanical Specifications**



| Product<br>Code | E                             | Body Dimensi                   | ons           | Termination Code,<br>Band Dimension and Material |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |  |  |
|-----------------|-------------------------------|--------------------------------|---------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|
|                 | Length (L)                    | Width (W)                      | Thickness (T) | Code                                             | Band (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Material                    |  |  |
| 63530           |                               | .031" ± .008"<br>(0.80 ± 0.20) |               | Z                                                | .010" + .010"<br>005"<br>(.254 + .254<br>127)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ni Barrier,<br>Tin Plate    |  |  |
|                 | .063" ± .009"<br>(1.6 ± 0.23) |                                | .031"Max      | S                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ni Barrier,<br>Au Flash     |  |  |
| C06             |                               |                                | (0.80) Max.   | Р                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AgPd<br>Termination         |  |  |
|                 |                               |                                |               | U                                                | - Participation of the second | Ni Barrier,<br>Solder Plate |  |  |

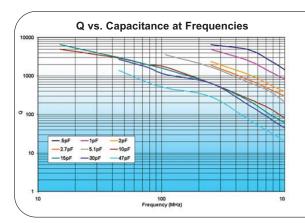
Laser Markings available in Horizontal orientation only, Code L. The MS material system is available in Z termination only. U termination is not available in the UL material system.

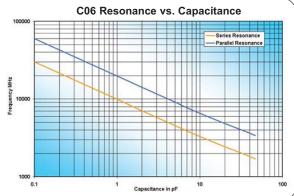
#### **Capacitance Table**

|             |             |             |               |             |             | C0          | 6 Capac       | citance     | Values      |             |               |             |             |             |               |
|-------------|-------------|-------------|---------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|---------------|
| CAP<br>CODE | CAP<br>(pF) | Cap<br>Tol. | Rated<br>WVDC |
| 0R1         | 0.1         |             |               | 0R9         | 0.9         |             |               | 3R9         | 3.9         |             |               | 240         | 24          |             |               |
| R15         | 0.15        |             |               | R95         | 0.95        | 15          |               | 4R3         | 4.3         |             |               | 270         | 27          |             |               |
| 0R2         | 0.2         |             |               | 1R0         | 1.0         |             |               | 4R7         | 4.7         | _           |               | 300         | 30          |             |               |
| R25         | 0.25        |             |               | 1R1         | 1.1         | e e         |               | 5R1         | 5.1         | A<br>B      |               | 330         | 33          |             | 250V*         |
| 0R3         | 0.3         |             |               | 1R2         | 1.2         |             |               | 5R6         | 5.6         | Č           |               | 360         | 36          |             | Code 9        |
| R35         | 0.35        |             |               | 1R3         | 1.3         |             |               | 6R2         | 6.2         | Ď           |               | 390         | 39          |             |               |
| 0R4         | 0.4         | Α           |               | 1R5         | 1.5         | Α           |               | 6R8         | 6.8         |             |               | 430         | 43          | F           |               |
| R45         | 0.45        | В           | 250V          | 1R6         | 1.6         | В           | 250V          | 7R5         | 7.5         |             | 250V          | 470         | 47          | G           |               |
| 0R5         | 0.5         | С           | Code 9        | 1R8         | 1.8         | С           | Code 9        | 8R2         | 8.2         |             | Code 9        | 510         | 51          | J           | 94100000000   |
| R55         | 0.55        | D           |               | 2R0         | 2.0         | D           |               | 9R1         | 9.1         |             |               | 560         | 56          | K           | 100V          |
| 0R6         | 0.6         |             |               | 2R2         | 2.2         |             |               | 100         | 10          |             |               | 620         | 62          |             | Code 1        |
| R65         | 0.65        |             |               | 2R4         | 2.4         |             |               | 120         | 12          | F           |               | 680         | 68          |             |               |
| 0R7         | 0.7         |             |               | 2R7         | 2.7         |             |               | 150         | 15          | G           |               | 750         | 75          |             | 50V           |
| R75         | 0.75        |             |               | 3R0         | 3.0         |             |               | 180         | 18          | J           |               | 820         | 82          |             | Code 5        |
| 0R8         | 0.8         |             |               | 3R3         | 3.3         |             |               | 200         | 20          | K           |               | 101         | 100         |             | Code 5        |
| R85         | 0.85        |             |               | 3R6         | 3.6         | P.          |               | 220         | 22          |             |               | ><          | ><          |             | ><            |

\*MS capacitors in the cap range 36pF to 47pF are 150V rated, Code 8. Cap values in **red** are available in MS only, in **blue** available in UL, CF, and AH only.

#### **Electrical Specifications**


| Dielectric<br>Material | Temperature<br>Coefficient | Factor                |                              | Dielectric<br>ithstanding Voltage |                  | ation<br>tance<br>nimum) | Aging | Piezoelectric | Dielectric |  |
|------------------------|----------------------------|-----------------------|------------------------------|-----------------------------------|------------------|--------------------------|-------|---------------|------------|--|
| Code                   | (ppm/°C<br>Maximum)        | (% @ 1MHz<br>Maximum) | Voltage<br>Rating<br>(Volts) | DWV<br>(Volts)                    | @ +25°C @ +125°C |                          |       | Effects       | Absorption |  |
| CF                     | 0 ± 15                     | 0.05                  | 250                          | 625                               | 10 <sup>6</sup>  | 10 <sup>5</sup>          |       |               |            |  |
| UL                     | 0 ± 30                     | 0.05                  | 250                          | 625                               | 10 <sup>5</sup>  | 10 <sup>4</sup>          | None  | None          | None       |  |
| MS                     | 0 ± 30                     | 0.05                  | 250<br>100<br>50             | 625<br>250<br>125                 | 10 <sup>5</sup>  | 10⁴                      |       |               |            |  |


| Tolerance Codes |  |  |  |  |  |  |  |  |
|-----------------|--|--|--|--|--|--|--|--|
| Tolerance       |  |  |  |  |  |  |  |  |
| ± 0.05pF        |  |  |  |  |  |  |  |  |
| ± 0.10pF        |  |  |  |  |  |  |  |  |
| ± 0.25pF        |  |  |  |  |  |  |  |  |
| ± 1%            |  |  |  |  |  |  |  |  |
| ± 2%            |  |  |  |  |  |  |  |  |
| ± 5%            |  |  |  |  |  |  |  |  |
| ± 10%           |  |  |  |  |  |  |  |  |
|                 |  |  |  |  |  |  |  |  |



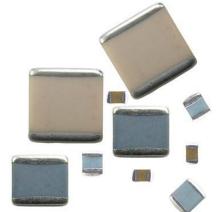
www.dilabs.com







#### C06 **ENGINEERING KIT**


20 Pieces Each of 23 Values

| 20 Pieces Each | of 23 values |
|----------------|--------------|
| CODE           | CAP          |
| 0R3            | 0.3pF        |
| 0R5            | 0.5pF        |
| 1R0            | 1.0pF        |
| 1R2            | 1.2pF        |
| 1R5            | 1.5pF        |
| 1R8            | 1.8pF        |
| 2R0            | 2.0pF        |
| 2R2            | 2.2pF        |
| 2R7            | 2.7pF        |
| 3R3            | 3.3pF        |
| 3R9            | 3.9pF        |
| 4R7            | 4.7pF        |
| 5R6            | 5.6pF        |
| 6R8            | 6.8pF        |
| 100            | 10pF         |
| 120            | 12pF         |
| 150            | 15pF         |
| 180            | 18pF         |
| 220            | 22pF         |
| 270            | 27pF         |
| 330            | 33pF         |
| 470            | 47pF         |
| 560            | 56pF         |
| 680            | 68pF         |
| 820            | 82pF         |
| 101            | 100pF        |
| C08BLBB1X5UX   | 2400pF Block |

DLI reserves the right to substitute values as required. Customer may request particular cap value and material for sample kit to prove designs.

#### C06 DESIGNER KIT

| KIT | KIT | KIT |
|-----|-----|-----|
| С   | D   | Е   |
| 0R1 | 1R2 | 6R8 |
| 0R2 | 1R5 | 8R2 |
| 0R3 | 1R8 | 9R1 |
| 0R4 | 2R2 | 100 |
| 0R5 | 2R7 | 120 |
| 0R6 | 3R3 | 150 |
| 0R7 | 3R9 | 220 |
| 0R8 | 4R7 | 270 |
| 0R9 | 5R1 | 360 |
| 1R0 | 5R6 | 470 |
|     |     |     |



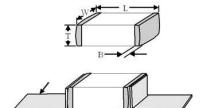


Need capacitor performance profile??? Download your free Capcad™ modeling Software off DLI web homepage. www.dilabs.com

Capcad™
Capacitor Modeling Software








#### **FUNCTIONAL APPLICATIONS**

Impedance Matching D.C. Blocking Bypass Coupling Tuning and Feedback

#### **BENEFITS**

Oscillators
Timing Circuits
Filters
RF Power Amplifiers and Delay Lines
Stable TC, -55 to +125 °C Operating Range



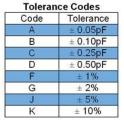
 Mechanical Specification

| Product<br>Code | E                     | Body Dimensi                   | ons                      | Termination Code,<br>Band Dimension and Material |            |                             |  |  |
|-----------------|-----------------------|--------------------------------|--------------------------|--------------------------------------------------|------------|-----------------------------|--|--|
|                 | Length (L)            | Width (W)                      | Thickness (T)            | Code                                             | Band (B)   | Material                    |  |  |
| C11             |                       | .055" ± .015"<br>(1.40 ± .381) |                          | Z                                                |            | Ni Barrier, Tin<br>Plate    |  |  |
|                 | .055" + .015"<br>010" |                                | .050" Max<br>(1.27) Max. | s                                                | .005"020"  | Ni Barrier, Au<br>Flash     |  |  |
|                 | (1.40 + .381<br>254)  |                                |                          | Р                                                | (0.130050) | AgPd<br>Termination         |  |  |
|                 | 2000/20086            |                                |                          | U                                                |            | Ni Barrier,<br>Solder Plate |  |  |

Laser marking available in Horizontal and Vertical orientation. Codes L, V, D. The MS material system is available in Z termination only. U termination is not available in the UL material system.

#### **Capacitance Table**

|             | C11 High Q Capacitance Values |             |               |             |             |                  |               |             |             |             |               |             |             |             |               |
|-------------|-------------------------------|-------------|---------------|-------------|-------------|------------------|---------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|---------------|
| CAP<br>CODE | CAP<br>(pF)                   | Cap<br>Tol. | Rated<br>WVDC | CAP<br>CODE | CAP<br>(pF) | Cap<br>Tol.      | Rated<br>WVDC | CAP<br>CODE | CAP<br>(pF) | Cap<br>Tol. | Rated<br>WVDC | CAP<br>CODE | CAP<br>(pF) | Cap<br>Tol. | Rated<br>WVDC |
| 0R1         | 0.1                           |             |               | 1R5         | 1.5         |                  |               | 5R6         | 5.6         |             |               | 300         | 30          |             |               |
| 0R2         | 0.2                           |             |               | 1R6         | 1.6         |                  |               | 6R2         | 6.2         | Α           |               | 330         | 33          |             |               |
| R25         | 0.25                          |             |               | 1R7         | 1.7         |                  |               | 6R8         | 6.8         | В           |               | 360         | 36          |             |               |
| 0R3         | 0.3                           |             |               | 1R8         | 1.8         |                  |               | 7R5         | 7.5         | С           |               | 390         | 39          |             | 250V*         |
| R35         | 0.35                          |             |               | 1R9         | 1.9         |                  |               | 8R2         | 8.2         | D           |               | 430         | 43          |             | Code 9        |
| 0R4         | 0.4                           |             |               | 2R0         | 2.0         |                  |               | 9R1         | 9.1         |             |               | 470         | 47          |             |               |
| R45         | 0.45                          |             |               | 2R1         | 2.1         |                  |               | 100         | 10          |             |               | 510         | 51          | F           |               |
| 0R5         | 0.5                           | Α           |               | 2R2         | 2.2         | Α                |               | 110         | 11          |             |               | 560         | 56          | G           |               |
| OR6         | 0.6                           | В           | 250V          | 2R4         | 2.4         | A<br>B<br>C<br>D | 250V          | 120         | 12          |             | 250V          | 620         | 62          | 1           |               |
| 0R7         | 0.7                           | С           | Code 9        | 2R7         | 2.7         | С                | Code 9        | 130         | 13          | F           | Code 9        | 680         | 68          | K           | 1000100000    |
| 0R8         | 0.8                           | D           |               | 3R0         | 3.0         | D                |               | 150         | 15          | G           |               | 750         | 75          | M           | 200V**        |
| 0R9         | 0.9                           |             |               | 3R3         | 3.3         |                  |               | 160         | 16          | 9           |               | 820         | 82          | 200         | Code 6        |
| 1R0         | 1.0                           |             |               | 3R6         | 3.6         |                  |               | 180         | 18          | K           |               | 910         | 91          |             |               |
| 1R1         | 1.1                           |             |               | 3R9         | 3.9         |                  |               | 200         | 20          | M           |               | 101         | 100         |             | 0             |
| 1R2         | 1.2                           |             |               | 4R3         | 4.3         |                  |               | 220         | 22          |             |               | 121         | 120         |             | 100V          |
| 1R3         | 1.3                           |             |               | 4R7         | 4.7         |                  |               | 240         | 24          |             |               | 151         | 150         |             | Code 1        |
| 1R4         | 1.4                           |             |               | 5R1         | 5.1         |                  |               | 270         | 27          |             |               | 181         | 180         |             | 50V           |
| ><          | ><                            |             |               | $\times$    | ><          |                  |               | $\times$    | ><          |             |               | 221         | 220         |             | Code 5        |

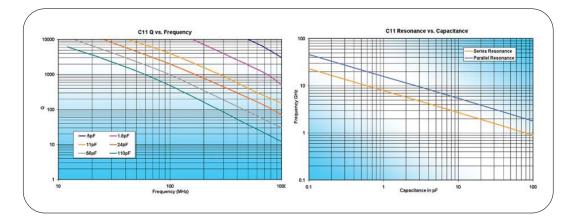

\*AH, CF, and UL capacitors in the cap range from 33pF to 56pF are 200V rated, Code 6.

Cap values shown in **red** are available in MS only, in **blue** are available in AH, CF, and UL only. \*\*MS capacitors in the range from 62pF to 100pF are 150V rated, Code 8.

#### **Electrical Specifications**

| Dielectric<br>Material | Temperature<br>Coefficient | Dissipation<br>Factor | Dielectric<br>Withstanding Voltage |                         | Resis           | lation<br>stance<br>inimum)    | Aging | Piezoelectric | Dielectric<br>Absorption |
|------------------------|----------------------------|-----------------------|------------------------------------|-------------------------|-----------------|--------------------------------|-------|---------------|--------------------------|
| Code                   | (ppm/°C<br>Maximum)        |                       |                                    | DWV<br>(Volts)          | @ +25°C         | @ +125°C                       |       | Effects       |                          |
| АН                     | P90 ± 20                   | 0.05                  | 200                                | 500                     | 10 <sup>6</sup> | 0 <sup>6</sup> 10 <sup>5</sup> |       |               |                          |
| АП                     | P90 ± 20                   | 0.05                  | 250                                | 625                     | 1 10            | 10                             | None  |               | None                     |
| CF                     | 0 : 45                     | AD000000              | 200                                | 500                     | 10 <sup>6</sup> | 10 <sup>5</sup>                |       |               |                          |
| CF                     | 0 ± 15                     | 0.05                  | 250                                | 625                     | 1 10            | 10                             |       |               |                          |
| 3300                   | 0 + 20                     | 585,0357611           | 200                                | 500                     | 10 <sup>5</sup> | 10 <sup>4</sup>                |       | None          |                          |
| UL                     | 0 ± 30                     | 0.05                  | 250                                | 625                     | 10. 10.         |                                |       |               |                          |
| MS                     | 0 ± 30                     | 0.05                  | 250, 200,<br>100, 50               | 625,<br>500,250,<br>125 | 10 <sup>5</sup> | 104                            |       |               |                          |

Note: Dissipation Factor applies to values of 4.7pF or greater.








# C11 0505

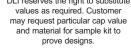


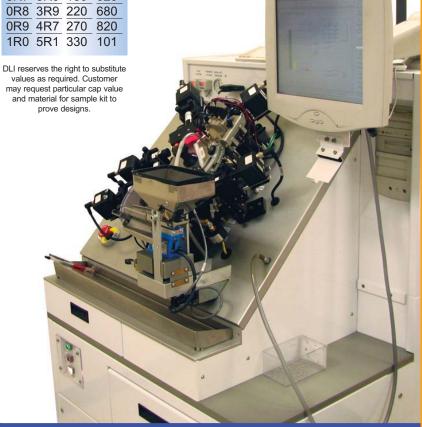


#### C11 **ENGINEERING KIT**

20 Pieces Each of 30 Values

| 20 Pieces Each | of 30 Values |
|----------------|--------------|
| CODE           | CAP          |
| 0R3            | 0.3pF        |
| 0R5            | 0.5pF        |
| 1R0            | 1.0pF        |
| 1R2            | 1.2pF        |
| 1R5            | 1.5pF        |
| 1R8            | 1.8pF        |
| 2R0            | 2.0pF        |
| 2R2            | 2.2pF        |
| 2R7            | 2.7pF        |
| 3R3            | 3.3pF        |
| 3R9            | 3.9pF        |
| 4R7            | 4.7pF        |
| 5R6            | 5.6pF        |
| 6R8            | 6.8pF        |
| 8R2            | 8.2pF        |
| 100            | 10pF         |
| 120            | 12pF         |
| 150            | 15pF         |
| 180            | 18pF         |
| 220            | 22pF         |
| 270            | 27pF         |
| 330            | 33pF         |
| 390            | 39pF         |
| 470            | 47pF         |
| 560            | 56pF         |
| 680            | 68pF         |
| 820            | 82pF         |
|                |              |


100pF


C08BLBB1X5UX 2400pF Block

101

#### C11 DESIGNER KIT

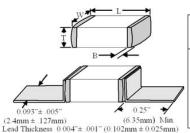
| KIT | KIT | KIT | KIT |
|-----|-----|-----|-----|
| С   | D   | E   | F   |
| 0R1 | 1R0 | 5R6 | 270 |
| 0R2 | 1R2 | 6R8 | 330 |
| 0R3 | 1R5 | 8R2 | 390 |
| 0R4 | 1R8 | 100 | 470 |
| 0R5 | 2R2 | 120 | 510 |
| 0R6 | 2R7 | 150 | 560 |
| 0R7 | 3R3 | 180 | 620 |
| 0R8 | 3R9 | 220 | 680 |
| 0R9 | 4R7 | 270 | 820 |
| 1R0 | 5R1 | 330 | 101 |
|     |     |     |     |










#### **FUNCTIONAL APPLICATIONS**

DC Blocking
Amplifier Matching Networks
VCO Frequency Stabilization
Filtering, Diplexers, and Antenna Matching
High RF Power Circuits

#### **BENEFITS**

Resonant Free Performance High Q SMD Compatibility -55 to +125 °C Operating Range

#### **Mechanical Specification**



| Product<br>Code | E                                                | Body Dimensi                   | ons           | Termination Code,<br>Band Dimension and Material |                                      |                             |  |  |
|-----------------|--------------------------------------------------|--------------------------------|---------------|--------------------------------------------------|--------------------------------------|-----------------------------|--|--|
| Code            | Length (L)                                       | Width (W)                      | Thickness (T) | Code                                             | Band (B)                             | Material                    |  |  |
|                 |                                                  |                                |               | z                                                |                                      | Ni Barrier, Tin<br>Plate    |  |  |
| C17             | .110" + .020"<br>010"<br>(2.79 + 0.51<br>- 0.25) | .110" ± .015"<br>(2.79 ± .381) | .100"         | s                                                | .015" ±<br>.010"<br>(.381 ±<br>.254) | Ni Barrier, Au<br>Flash     |  |  |
| CII             |                                                  |                                | (2.54) Max.   | Р                                                |                                      | AgPd<br>Termination         |  |  |
|                 | W117-047-047001                                  |                                |               | U                                                |                                      | Ni Barrier,<br>Solder Plate |  |  |

Laser markings available in Horizontal and Vertical orientation. Codes L, V, D. The MS material system is available in Z termination only. U termination is not available in the UL material system.

#### **Capacitance Table**

|             |             |        | 793           |             | С           | 17 High | Q Cap         | acitano     | e Value     | es     | 17.=          |             |             |        |               |
|-------------|-------------|--------|---------------|-------------|-------------|---------|---------------|-------------|-------------|--------|---------------|-------------|-------------|--------|---------------|
| CAP<br>CODE | CAP<br>(pF) | Tol.   | Rated<br>WVDC | CAP<br>CODE | CAP<br>(pF) | Tol.    | Rated<br>WVDC | CAP<br>CODE | CAP<br>(pF) | Tol.   | Rated<br>WVDC | CAP<br>CODE | CAP<br>(pF) | Tol.   | Rated<br>WVDC |
| 0R1         | 0.1         |        |               | 2R0         | 2.0         |         |               | 130         | 13          |        |               | 101         | 100         |        |               |
| 0R2         | 0.2         |        |               | 2R1         | 2.1         |         |               | 150         | 15          |        |               | 111         | 110         |        | 1500000000000 |
| R25         | 0.25        |        |               | 2R2         | 2.2         |         |               | 160         | 16          |        |               | 121         | 120         |        | 1000V*        |
| 0R3         | 0.3         |        |               | 2R4         | 2.4         |         | 180           | 18          |             |        | 151           | 150         |             | Code 7 |               |
| R35         | 0.35        |        |               | 2R7         | 2.7         |         |               | 200         | 20          |        |               | 181         | 180         |        |               |
| 0R4         | 0.4         |        |               | 3R0         | 3.0         |         |               | 220         | 22          |        |               | 221         | 220         |        |               |
| R45         | 0.45        |        |               | 3R3         | 3,3         |         |               | 240         | 24          |        |               | 271         | 270         |        |               |
| 0R5         | 0.5         |        |               | 3R6         | 3.6         | Α       |               | 270         | 27          | -      |               | 331         | 330         | -      |               |
| 0R6         | 0.6         | _      |               | 3R9         | 3.9         | В       |               | 300         | 30          | F<br>G |               | 391         | 390         | F<br>G |               |
| 0R7         | 0.7         | A<br>B | 1000V         | 4R3         | 4.3         | C 1000V | 330           | 33          | J           | 1000V  | 471           | 470         | J           | 500V** |               |
| 0R8         | 0.8         | Č      | Code 7        | 4R7         | 4.7         | D       | Code 7        | 360         | 36          | K      | Code 7        | 511         | 510         | K      | Code 4        |
| 0R9         | 0.9         | D      | Code /        | 5R1         | 5.1         |         | Code /        | 390         | 39          | M      |               | 561         | 560         | M      | 0.000,000,000 |
| 1R0         | 1.0         |        |               | 5R6         | 5.6         |         |               | 430         | 43          | 141    |               | 621         | 620         |        |               |
| 1R2         | 1.2         |        |               | 6R2         | 6.2         | ]       |               | 470         | 47          | i i    |               | 681         | 680         |        |               |
| 1R3         | 1.3         |        |               | 6R8         | 6.8         |         |               | 510         | 51          | i i    |               | 821         | 820         |        | 250V***       |
| 1R4         | 1.4         |        |               | 7R5         | 7.5         |         |               | 560         | 56          |        |               | 911         | 910         |        | Code 9        |
| 1R5         | 1.5         |        |               | 8R2         | 8.2         |         |               | 620         | 62          |        |               | 102         | 1000        |        | Code 3        |
| 1R6         | 1.6         |        |               | 9R1         | 9.1         |         |               | 680         | 68          |        |               | 122         | 1200        |        |               |
| 1R7         | 1.7         |        |               | 100         | 10          |         |               | 750         | 75          |        |               | 152         | 1500        |        | 100V          |
| 1R8         | 1.8         |        |               | 110         | 11          | FGJKM   |               | 820         | 82          |        |               | 182         | 1800        | 1      | Code 1        |
| 1R9         | 1.9         |        |               | 120         | 12          |         |               | 910         | 91          | :      |               | 222         | 2200        |        |               |

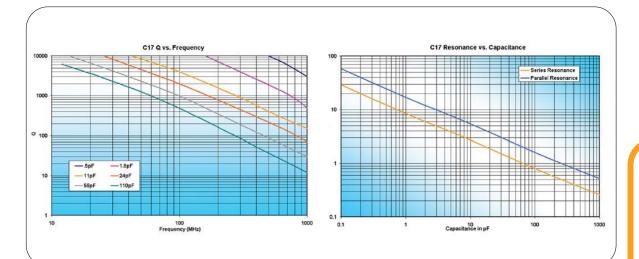
All cap values shown in **red** are available in MS only, in **blue** are available in CF, AH, and UL only.

\* All CF, AH, and UL capacitors in the cap range from 110pF to 220pF are 500V rated, Code 4.

\*\* All CF, AH, and UL capacitors in the cap range from 270pF to 680pF are 200V rated, Code 6.

\*\*\* All CF, AH, and UL capacitors in the cap range from 820pF to 1000pF are 50V rated, Code 6.

#### **Electrical Specifications**


| Dielectric<br>Material | Temperature<br>Coefficient | Dissipation<br>Factor | Dielec<br>Withstandir  |                                           | Resis           | lation<br>stance<br>nimum) | Aging | Piezoelectric<br>Effects | Dielectric<br>Absorption |      |           |
|------------------------|----------------------------|-----------------------|------------------------|-------------------------------------------|-----------------|----------------------------|-------|--------------------------|--------------------------|------|-----------|
| Code                   | (ppm/°C<br>Maximum)        | (% @ 1MHz<br>Maximum) | Voltage<br>Rating      | DWV                                       | @ +25°C         | @ +125°C                   |       | 7                        |                          |      | ce Codes  |
|                        |                            | 35                    | (Volts)                | (Volts)                                   | •               | •                          |       |                          |                          | Code | Tolerance |
| 1/3/8/204              |                            |                       |                        | 1000 2500 10 <sup>6</sup> 10 <sup>5</sup> |                 |                            |       | Α                        | ± 0.05pF                 |      |           |
| AH                     | P90 ± 20                   | 0.05                  |                        |                                           | 1.753.985       | 110000                     |       | None                     |                          | В    | ± 0.10pF  |
|                        |                            |                       | 1-1-1-1                |                                           | 10 <sup>6</sup> | 10 <sup>5</sup>            |       |                          |                          | С    | ± 0.25pF  |
| CF                     | 0 ± 15                     | 0.05                  | 250                    | 625                                       |                 |                            | None  |                          | None                     | F    | ± 1%      |
|                        |                            |                       |                        |                                           |                 |                            | ,     |                          |                          | G    | ± 2%      |
| UL                     | 0 ± 30                     | 0.05                  |                        |                                           | 10 <sup>5</sup> | 10 <sup>4</sup>            |       |                          |                          | J    | ± 5%      |
|                        |                            |                       | 250                    | 0500                                      |                 |                            | 8     |                          |                          | K    | ± 10%     |
| MS                     | 0 ± 30                     | 0.05                  | 1000, 500,<br>250 ,100 | 2500,<br>1250<br>625,250                  | 10 <sup>5</sup> | 10 <sup>4</sup>            |       |                          |                          |      |           |





# C17 1111





#### C17 **ENGINEERING KIT**

| ENGINE | KING KII       |
|--------|----------------|
| CODE   | CAP            |
| 0R3    | 0.3pF          |
| 0R5    | 0.5pF          |
| 0R7    | 0.7pF          |
| 1R0    | 1.0pF          |
| 1R2    | 1.2pF          |
| 1R5    | 1.5pF          |
| 1R8    | 1.8pF          |
| 2R0    | 2.0pF          |
| 2R2    | 2.2pF          |
| 2R7    | 2.7pF          |
| 3R3    | 2.7pF<br>3.3pF |
| 3R9    | 3.9pF          |
| 4R7    | 4.7pF          |
| 5R6    | 5.6pF          |
| 6R8    | 6.8pF          |
| 8R2    | 8.2pF          |
| 100    | 10pF           |
| 120    | 12pF           |
| 150    | 15pF           |
| 180    | 18pF           |
| 220    | 22pF           |
| 270    | 27pF           |
| 330    | 33pF           |
| 390    | 39pF           |
| 470    | 47pF           |
| 560    | 56pF           |
| 680    | 68pF           |
| 820    | 82pF           |
| 101    | 100pF          |
| 151    | 150pF          |
| 221    | 220pF          |
| 331    | 330pF          |
| 471    | 470pF          |
| 681    | 680pF          |

1000pF

C08BLBB1X5UX 2400pF Block

102

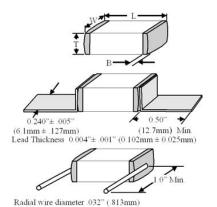
#### C17 DESIGNER KIT

|   | KIT | KIT | KIT | KIT |
|---|-----|-----|-----|-----|
|   | С   | D   | Ε   | F   |
|   | 0R1 | 1R0 | 5R6 | 390 |
|   | 0R2 | 1R2 | 6R8 | 470 |
|   | 0R3 | 1R5 | 8R2 | 560 |
|   | 0R4 | 1R8 | 100 | 620 |
|   | 0R5 | 2R2 | 120 | 820 |
|   | 0R6 | 2R7 | 150 | 101 |
|   | 0R7 | 3R3 | 180 | 221 |
|   | 0R8 | 3R9 | 220 | 471 |
| ĺ | 0R9 | 4R7 | 270 | 681 |
|   |     |     |     |     |

DLI reserves the right to substitute values as required. Customer may request particular cap value and material for sample kit to prove designs.








#### **FUNCTIONAL APPLICATIONS**

Impedance Matching D.C. Blocking Bypass, Coupling Tuning and Feedback

#### **BENEFITS**

Power handling, High voltage High Q Low ESR -55 to +125 °C Operating Range



#### **Mechanical Specification**

| Product<br>Code | Е                                     | ody Dimensi                           | ons           | Termination Code,<br>Band Dimension and Material |               |                             |  |  |
|-----------------|---------------------------------------|---------------------------------------|---------------|--------------------------------------------------|---------------|-----------------------------|--|--|
| Code            | Length (L)                            | Width (W)                             | Thickness (T) | Code                                             | Band (B)      | Material                    |  |  |
|                 |                                       |                                       | 1 10          | Z                                                |               | Ni Barrier,<br>Tin Plate    |  |  |
| C22CF           | .220" + .020"<br>010"<br>(5.59 + .508 | .245" + .020"<br>010"<br>(6.22 + .508 | .130"         | s                                                | .030" ± .010" | Ni Barrier,<br>Au Flash     |  |  |
| CZZCF           |                                       |                                       | (3.30) Max.   | Р                                                | (.762 ± .254) | AgPd<br>Termination         |  |  |
|                 | 254)                                  | 254)                                  |               | U                                                |               | Ni Barrier,<br>Solder Plate |  |  |

Laser markings available in Horizontal orientation only, Code L

#### **Capacitance Table**

|             |             |            |               | С           |             | h <b>Q, Hig</b><br>Available |               |             |             |            | es            |             |             |            |                                         |
|-------------|-------------|------------|---------------|-------------|-------------|------------------------------|---------------|-------------|-------------|------------|---------------|-------------|-------------|------------|-----------------------------------------|
| CAP<br>CODE | CAP<br>(pF) | Cap<br>Tol | Rated<br>WVDC | CAP<br>CODE | CAP<br>(pF) | Cap<br>Tol                   | Rated<br>WVDC | CAP<br>CODE | CAP<br>(pF) | Cap<br>Tol | Rated<br>WVDC | CAP<br>CODE | CAP<br>(pF) | Cap<br>Tol | Rated<br>WVDC                           |
| 1R0         | 1.0         |            |               | 8R2         | 8.2         | B, C, D                      |               | 680         | 68          |            |               | 561         | 560         |            |                                         |
| 1R2         | 1.2         |            |               | 100         | 10          |                              |               | 820         | 82          |            |               | 681         | 680         |            | 1000V                                   |
| 1R5         | 1.5         |            |               | 120         | 12          |                              |               | 101         | 100         |            |               | 821         | 820         |            | Code 7                                  |
| 1R8         | 1.8         | В          |               | 150         | 15          | _                            |               | 121         | 120         | F          | 2500V         | 102         | 1000        | F          | Code /                                  |
| 2R2         | 2.2         | C          | 2500V         | 180         | 18          | F<br>G                       | 2500V         | 151         | 150         | G          | Code B        | 122         | 1200        | G          |                                         |
| 2R7         | 2.7         | D          | Code B        | 220         | 22          | i i                          | Code B        | 181         | 180         | J          |               | 152         | 1500        | J          | 500 V                                   |
| 3R3         | 3.3         | D          | Code B        | 270         | 27          | K                            |               | 221         | 220         | K          |               | 182         | 1800        | K          | Code 4                                  |
| 3R9         | 3.9         |            |               | 330         | 33          | M                            |               | 271         | 270         | M          |               | 222         | 2200        | M          | 200000000000000000000000000000000000000 |
| 4R7         | 4.7         |            |               | 390         | 39          | .,,,                         |               | 331         | 330         |            | 1500V         | 272         | 2700        |            | 300V                                    |
| 5R6         | 5.6         |            |               | 470         | 47          |                              |               | 391         | 390         |            | Code A        |             |             |            | Code 3                                  |
| 6R8         | 6.8         |            |               | 560         | 56          |                              |               | 471         | 470         |            | Code A        |             |             |            |                                         |

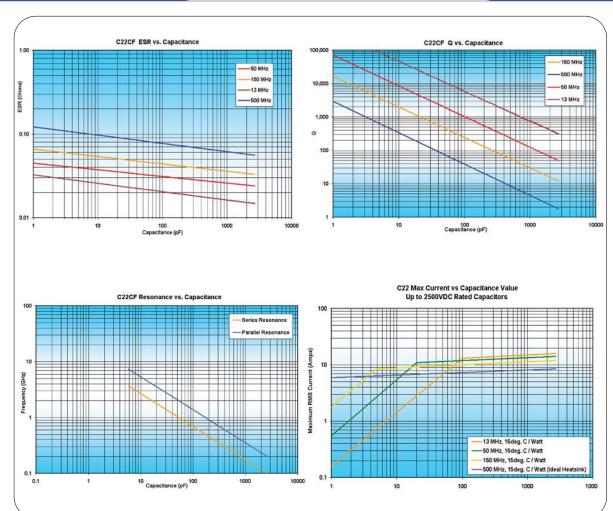
#### **Electrical Specification**

| Dielectric<br>Material<br>Code | Temperature<br>Coefficient | Factor                | TO COST OF STREET, STR | ectric<br>ng Voltage | Resis           | ation<br>tance<br>nimum) | Aging | Piezoelectric<br>Effects | Dielectric<br>Absorption |
|--------------------------------|----------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|--------------------------|-------|--------------------------|--------------------------|
|                                | (ppm/°C<br>Maximum)        | (% @ 1MHz<br>Maximum) | Voltage<br>Rating<br>(Volts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DWV<br>(Volts)       | @ +25°C         | @ +125°C                 |       |                          |                          |
|                                |                            |                       | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3000                 |                 | 10 <sup>5</sup>          | None  | None                     | None                     |
|                                |                            |                       | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1800                 |                 |                          |       |                          |                          |
| CF                             | 0 ± 15                     | 0.05                  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1500                 | 10 <sup>6</sup> |                          |       |                          |                          |
|                                |                            |                       | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1250                 | 1               |                          |       |                          |                          |
|                                |                            |                       | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 750                  |                 |                          |       |                          |                          |

Code Tolerance

B ± 0.10pF
C ± 0.25pF
D ± 0.50pF
F ± 1%
G ± 2%
J ± 5%
K ± 10%

 $\pm 20\%$ 


**Tolerance Codes** 

Dissipation Factor applies to values of 4.7pF or greater. Parts rated >1000V are 100% IR tested @1000V



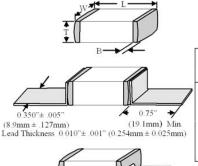
www.dilabs.com












#### **FUNCTIONAL APPLICATIONS**

Impedance Matching D.C. Blocking Bypass, Coupling Tuning and Feedback

#### **BENEFITS**

Power Handling, High voltage High Q and Low ESR -55 to +125 °C Operating Range



Radial wire diameter 0.032" (.813mm)

### Mechanical Specifications

| Product<br>Code | В                                             | ody Dimensi   | ons           | Termination Code,<br>Band Dimension and Material |                   |                             |  |  |  |
|-----------------|-----------------------------------------------|---------------|---------------|--------------------------------------------------|-------------------|-----------------------------|--|--|--|
| Code            | Length (L)                                    | Width (W)     | Thickness (T) | Code                                             | Band (B)          | Material                    |  |  |  |
|                 |                                               |               |               | Z                                                |                   | Ni Barrier,<br>Tin Plate    |  |  |  |
| C40             | .380" + .015"<br>010"<br>(9.65 + .381<br>254) | .380" ± .010" | .130"         | S                                                | .020" (.508) Min. | Ni Barrier,<br>Au Flash     |  |  |  |
|                 |                                               |               | (3.30) Max.   | Р                                                | .030" (.762) Max. | AgPd<br>Termination         |  |  |  |
|                 | 3.85                                          |               |               | U                                                |                   | Ni Barrier,<br>Solder Plate |  |  |  |

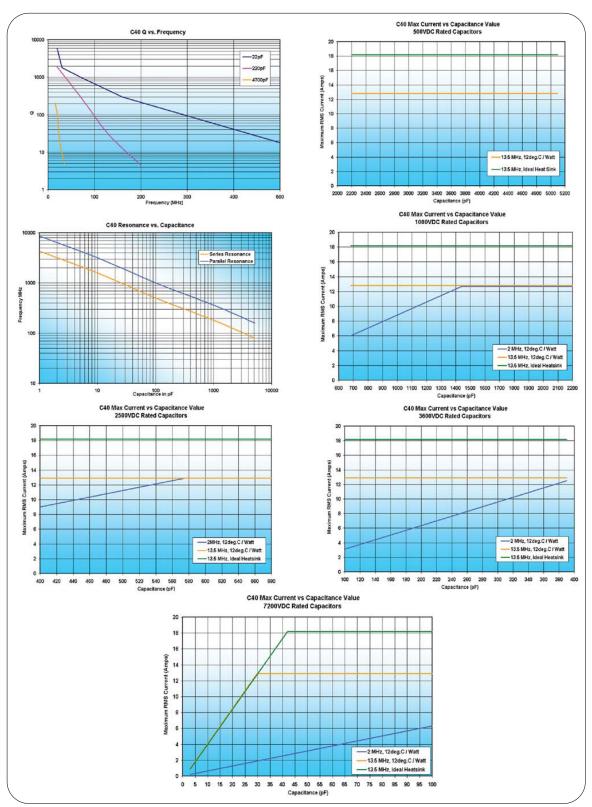
Laser marking available in Horizontal orientation only. Code L.

**Capacitance Table** 

|             |             |      |               |             |             | C40  | ) Capac       | itance      | Value       | s    |               |             |             |      |                   |
|-------------|-------------|------|---------------|-------------|-------------|------|---------------|-------------|-------------|------|---------------|-------------|-------------|------|-------------------|
| CAP<br>CODE | CAP<br>(pF) | Tol. | Rated<br>WVDC     |
| 1R0         | 1.0         |      |               | 100         | 10          |      |               | 121         | 120         |      |               | 821         | 820         |      |                   |
| 1R2         | 1.2         |      |               | 120         | 12          |      |               | 151         | 150         |      |               | 102         | 1000        |      |                   |
| 1R5         | 1.5         |      |               | 150         | 15          |      |               | 181         | 180         |      | 3600V         | 122         | 1200        |      | 1000V             |
| 1R8         | 1.8         |      |               | 180         | 18          |      |               | 221         | 220         |      | Code D        | 152         | 1500        |      | Code 7            |
| 2R2         | 2.2         | Α    |               | 220         | 22          | F    |               | 271         | 270         | F    | Code D        | 182         | 1800        | F    | 154,519,44,71,151 |
| 2R7         | 2.7         | В    | 7200V         | 270         | 27          | G    | 7200V         | 331         | 330         | G    |               | 222         | 2200        | G    |                   |
| 3R3         | 3.3         | C    | Code H        | 330         | 33          | J    | Code H        | 391         | 390         | J    |               | 272         | 2700        | J    |                   |
| 3R9         | 3.9         | D    | Code H        | 390         | 39          | K    | Code H        | 471         | 470         | K    | 2500V         | 332         | 3300        | K    |                   |
| 4R7         | 4.7         |      |               | 470         | 47          | M    |               | 561         | 560         | M    | Code B        | 392         | 3900        | M    | 500V              |
| 5R6         | 5.6         |      |               | 560         | 56          |      |               | 681         | 680         |      | Code B        | 472         | 4700        |      | Code 4            |
| 6R8         | 6.8         |      |               | 680         | 68          |      |               |             |             |      |               | 512         | 5100        |      | Code 4            |
| 8R2         | 8.2         |      |               | 820         | 82          |      |               | l           |             |      |               |             |             |      |                   |
|             |             |      |               | 101         | 100         |      | ,             | l           |             |      |               |             |             |      |                   |

### **Electrical Specifications**

| Dielectric<br>Material | Temperature<br>Coefficient | Dissipation Factor    | Diele<br>Withstandi          | ctric<br>ng Voltage |                 | lation<br>stance<br>inimum) | Aging | Piezoelectric<br>Effects | Dielectric<br>Absorption |  |
|------------------------|----------------------------|-----------------------|------------------------------|---------------------|-----------------|-----------------------------|-------|--------------------------|--------------------------|--|
| Code                   | (ppm/°C<br>Maximum)        | (% @ 1MHz<br>Maximum) | Voltage<br>Rating<br>(Volts) | DWV<br>(Volts)      | @ +25°C         | @ +125°C                    |       |                          |                          |  |
|                        |                            |                       | 7200                         | 8700                |                 |                             |       |                          |                          |  |
| AH                     | P90 ± 20                   | 0.05                  | 3600                         | 4400                |                 |                             | None  | None                     | None                     |  |
| 0.500,000              | 1900000 900000 90000 900   | 1480500               | 2500                         | 3750                | 10 <sup>6</sup> | 10 <sup>5</sup>             |       |                          |                          |  |
| CE                     | CF 0 ± 15                  | 0.05                  | 1000                         | 1500                |                 |                             |       |                          |                          |  |
| CF                     | 0 ± 13                     | 0.05                  | 500                          | 1250                |                 |                             |       |                          |                          |  |


| Toleran | ce Codes  |
|---------|-----------|
| Code    | Tolerance |
| A       | ± 0.05pF  |
| В       | ± 0.10pF  |
| С       | ± 0.25pF  |
| F       | ± 1%      |
| G       | ± 2%      |
| J       | ± 5%      |
| K       | ± 10%     |
| М       | ± 20%     |



Note: Dissipation Factor applies to values > 4.7pF. Parts rated >1000V are 100% IR tested @1000V

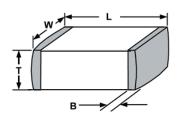
www.dilabs.com









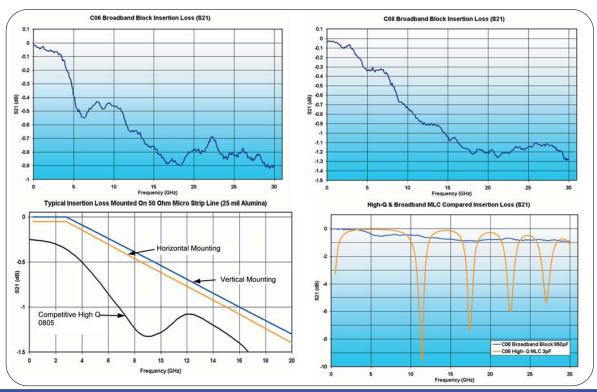

# C04, C06, C08 Broadband Blocks

#### **Functional Applications:**

Fiber Optic Links High Isolation decoupling LANs VCO Frequency Stabilization **Duplexers and Diplexers** RF/Microwave Modules Instruments & Test Equip.

#### **Benefits:**

Resonance free DC Blocking / Decoupling Low loss Surface mountable




| Product | Dimensions                     |                                |                      |                                           |  |  |  |  |
|---------|--------------------------------|--------------------------------|----------------------|-------------------------------------------|--|--|--|--|
| Code    | Length (L)                     | Width (W)                      | Thickness (T)        | Band (B)                                  |  |  |  |  |
| C04 BL  | .040" ± .004"<br>(1.02 ± 0.1)  | .020" ± .004"<br>(0.51 ± 0.1)  | .024"<br>(0.61) Max. | .008" ± .004"<br>(0.2 ± 0.1)              |  |  |  |  |
| C06 BL  | .060" ± .060"<br>(1.52 ± .152) | .030" ± .006"<br>(.762 ± .152) | .030"<br>(.762) Max. | .010" + .010"<br>005"<br>(.254 + .254127) |  |  |  |  |
| C08 BL  | .080" ± .008"<br>(2.03 ± .203) | .050" ± .008"<br>(1.27 ± .203) | .030"<br>(.762) Max. | .035" = .004"<br>(.889 ± .102)            |  |  |  |  |

#### **Part Characteristics**

| Part Number                                   | Capacitance<br>Guarded<br>Minimum Value | Voltage<br>Rating | Temperature<br>Coefficient<br>-55°C to 125°C | Maximum<br>Dissipation<br>Factor | Insulation<br>Resistance<br>(MΩMinimum) | Age<br>Rate              | Frequency<br>Range | Metallization                                       |
|-----------------------------------------------|-----------------------------------------|-------------------|----------------------------------------------|----------------------------------|-----------------------------------------|--------------------------|--------------------|-----------------------------------------------------|
| C04BLBB2X5_<br>UX / ZX / SX<br>0402 case size | 120pF @<br>1KHz,.2Vrms                  |                   |                                              |                                  |                                         |                          | 5MHz - 30GHz       | "U"= Ni barrier<br>w /solder plate                  |
| C06BLBB2X5_<br>UX / ZX / SX<br>0603 case size | 850pF @<br>1KHz,.2Vrms                  | 50 V dc           | ± 15%                                        | 3.0% @<br>1 KHz, .2<br>Vrms      | 10 <sup>4</sup>                         | ≤1.5%<br>Decade<br>hours | 2MHz – 30GHz       | "S"= Ni barrier<br>w /gold flash.<br>RoHS Compliant |
| C08BLBB1X5_<br>UX / ZX / SX<br>0805 case size | 2400pF @<br>1KHz,,2Vrms                 |                   |                                              |                                  |                                         |                          | 1MHz – 20GHz       | "Z"= Ni/Sn<br>RoHS Compliant                        |

#### **Performance Characteristics**





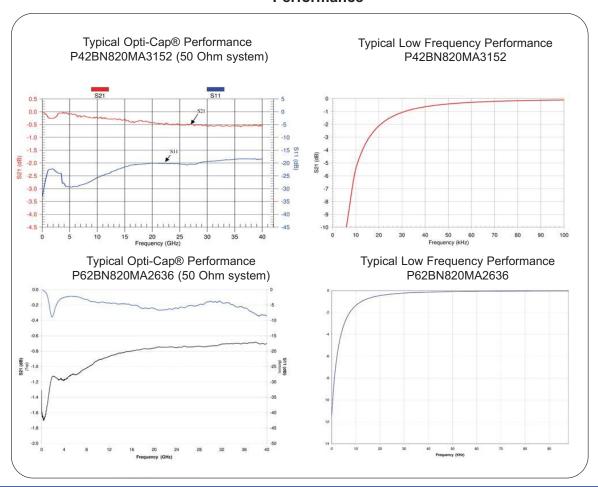
www.dilabs.com



#### **Functional Applications:**

Ultra Broadband, Low Loss 0402, 0602 Mounting Footprints Very Low Series Inductance X7R Temperature and Voltage Stability

#### **Benefits:**


Resonance Free DC Blocking to >40GHz Surface Mountable by Solder or Epoxy Bonding Available in Tape & Reel or Waffle Pack Format Improved Low Frequency Temperature Stability

#### **Electrical Characteristics**

| PART NUMBER<br>(Includes T&R) | Capacitance /<br>MLC Case<br>Size | Voltage<br>Rating | Temperature<br>Coefficient              | IR<br>(@+20°C,<br>Rated<br>Voltage) | Max DF<br>1kHz | Aging<br>Rate<br>(% per<br>Decade<br>Hour Max.) | Term          | Fp<br>(GHz) | Maximum Process<br>Temperature /<br>Recommended<br>Attachment method |
|-------------------------------|-----------------------------------|-------------------|-----------------------------------------|-------------------------------------|----------------|-------------------------------------------------|---------------|-------------|----------------------------------------------------------------------|
| P62BN820MA2636                | 100 nF<br>0603                    | 25 Vdc            | X7R<br>ΔC max: ±15%<br>(-55°C to 125°C) | $10^2\mathrm{M}\Omega$              | 3.0%           | 1.0%                                            | Au<br>(Flash) | 1.3         | 250°C/ Conductive<br>Epoxy or Solder                                 |
| P42BN820MA3152                | 220 nF<br>0402                    | 10 Vdc            | X5R<br>ΔC max: ±15%<br>(-55°C to 85°C)  | $10^2\mathrm{M}\Omega$              | 4.0%           | 1.0%                                            | Au<br>(Flash) | 1.8         | Conductive Epoxy                                                     |

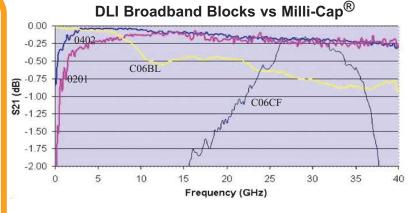
Note: P62BN820MA2636 is new part number for P02BN820MA2636

#### **Performance**

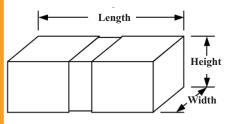







#### **Functional Applications**

0201, 0402, 0502, 0602 Footprints Very Low Series Inductance Ultra High Series Resonance Low Loss, High Q


#### **Benefits**

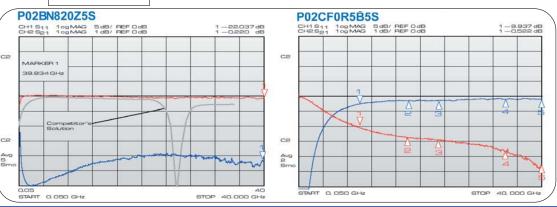
Matches typical 50 Ohm Line Widths Preserves Board Space Behaves Like An Ideal Capacitor More Usable Bandwidth

## Insertion Loss Comparison of



- ♦ 0402 MilliCap® wide-band, very low loss, no resonances
- 0201 MilliCap® wide-band, very low loss, no resonances
- ♦ C06BL 850pF capacitor
- ♦ C06CF 0.2pF Hi Q material




- Terminations : Gold
- Assembly temperatures not to exceed 260°C.
- Ideal for Test Equipment, Photonics, SONET, Digital radios, and Matching Filter applications

| Dimension Key |
|---------------|
| P21=0201      |
| P42=0402      |
| P02=0502      |
| P62=0602      |

| Part Number | Cap.   | Voltage<br>Rating | Temperature<br>Coefficient<br>-55°C to<br>125°C | Maximum<br>Dissipation<br>Factor | Insulation<br>Resistance<br>(MΩ Minimum)   | Aging<br>Rate              | Frequency<br>Range |          |
|-------------|--------|-------------------|-------------------------------------------------|----------------------------------|--------------------------------------------|----------------------------|--------------------|----------|
| P_BN820Z5ST | 82 pF  |                   | ± 10%                                           | 3.0%@<br>1MHz,<br>25°C           | 10 <sup>5</sup> MΩ @ 25°C at rated voltage | <=1.5%/<br>decade<br>hours | 20MHz-<br>40GHz    |          |
| P_NR3R0K5ST | 3.0 pF | 50 V dc           | N1500<br>±500PPM / °C                           | 0.25%@<br>1MHz,<br>25°C          |                                            |                            | 4–20GHz            |          |
| P_CG1R5C5ST | 1.5 pF |                   |                                                 | 0.7%@<br>1KHz.                   |                                            |                            | 8-32GHz            |          |
| P_CG1R0C5ST | 1.0 pF |                   | 50 V dc                                         | 0 ± 30PPM                        | 25°C                                       | 10 <sup>6</sup> MΩ @ 25°C  | N/A*               | 18-40GHz |
| P_CD0R7B5ST | 0.7 pF |                   | N20<br>±15PPM / °C                              | 0.15%@<br>1MHz,<br>25°C          | at rated voltage                           | N/A                        | 20–46GHz           |          |
| P_CF0R5B5ST | 0.5 pF |                   | 0<br>±15PPM / °C                                | 0.6%@<br>MHz.                    |                                            |                            | 28-40GHz           |          |
| P_CF0R3B5ST | 0.3 pF |                   |                                                 | 25°C                             |                                            |                            | 35-50GHz           |          |

Consult Factory for custom values Class 1 materials do not age





www.dilabs.com

DLI is committed to supporting your needs worldwide. Please contact us at:

#### Factory & Application Engineering

2777 Route 20 East Cazenovia, NY, USA 13035-9433

Tel: 315-655-8710 Fax: 315-655-0445 Email: sales@dilabs.com

#### **East Coast Sales Office**

Hartford, Connecticut, USA

Tel: 860-741-0846 Fax: 860-741-8543

Email: bnyulassy@dilabs.com

If no answer, consult Factory for immediate response.

#### **West Coast Sales Office**

Valencia, California, USA

Tel: 661-295-5928 Fax: 661-295-5928

Email: bcrowley@novacap.com

If no answer, consult Factory for immediate response.

Other USA sales offices in Pennsylvania and New Mexico.

#### **European Business Office**

Howard Ingleson Norwich, UK

Tel: (+44) 1603-723325 Fax: (+44) 1603-723301

Email: europesales@dilabs.com

Other European sales offices in Germany and France.

#### **China Sales Office & Distribution**

Dielectric Laboratories, Asia Trading (Shanghai) Co., Ltd.

Finance Square, Suite 1307, 333 Jiujiang Road

Shanghai 200001, China Tel: (+86) 21-6360-7308 Fax: (+86) 21-6360-4596 Email: chinasales@dilabs.com

Other China sales offices in Beijing, Suzhou, Shenzhen, Wuhan and Chengdu.

DLI also offers support through an extensive network of regional representatives and distributors. Please consult our sales offices or web site for your local representative.



### Disruptive Technologies for Spectrum Management

XTREME QTM



Cavity Resonators

XTREME QTM



Miniature **Filters** 



Gain Equalizers



Heat Sinks

Please refer to DLI Catalog, "Resonators, Filter and Custom Ceramic Components" for full details

Single Layer Capacitors

#### Di-Cap®

Highest performance SLC for RF, MW and MMW applications from 100 MHz to 100 GHz.

Most cap for size. 0.02 - 10,000 pF

Available in non-

mag

### Border Cap® Gap Cap

SLC w/1- or 2sided recessed metallization to minimize the potential for shorting during die attach. Ideal for epoxy attach. 0.02 - 3000 pF

Series configured precision SLC for elimination of wire-bonds and microstrip applications. Minimum performance variation.

#### Bar Cap®

Multiple decoupling/ bypass or blocking SLC configured in a single array. Ideal for decoupling MMICs.

#### **Binary Cap**

Multi-value binary tunable SLC for design tuning or MIC hybrids.

#### T-Cap®

SLC used in series connected open circuited transmission line and is designed for repeatable resonance behavior.

### Build-to-Print Thin Film Processing

DLI offers a build-to-print service designed to facilitate thin film product design, manufacturing, and testing. DLI offers a comprehensive set of materials and process capabilities to serve as your onestop thin film foundry. DLI's experienced engineering staff is ready to answer your questions.

### Precision Variable Capacitors

Glass &

Voltronics Corporation is one of the world's largest and most respected precision variable capacitor manufacturers. Consistent product quality, excellent customer service and product customization flexibility set Voltronics apart from its competitors. Whether it's a reliable high voltage or a high purity non-magnetic or a lower cost high performance application, Voltronics has the right variable capacitor for you. Voltronics has been a Dover company since 2004.

|                     | Olass a           |               |                   |                      |
|---------------------|-------------------|---------------|-------------------|----------------------|
| <u>Teflon</u>       | <u>Sapphire</u>   | <u>Air</u>    | <u>Ceramic</u>    | Non-caps             |
| Low cost, miniature | Sealed sapphire   | Solder sealed | Low cost 1/2-turn | Custom inductors,    |
| 0.3 thru 12pF       | 0.6 thru 8pF      | 0.6 thru 14pF | 1.25 thru 130pF   | diodes and resistors |
| Available in non-   | Available in non- | Surface mount | Surface or        | Non-Magnetic only    |
| mag                 | mag               |               | through-hole      |                      |
| Surface mount       | Surface mount     |               | mount             |                      |
|                     |                   | Epoxy sealed  |                   | Connectors & Cable   |
| High Voltage        | Sealed Glass      | 0.6 thru 14pF | Higher voltage    | Assemblies PC Plug,  |
| Up to 2KV           | 1.0 thru 250pF    | Surface mount | single turn       | Straight & 90° Crimp |
| 0.2 thru 55pF       | Surface mount     |               | Surface or        | Jack                 |
| Extended Voltage    | Vertical, panel & |               | through-hole      | Non-magnetic only    |
| Up to 15KV          | Horizontal Mount  |               | mount             |                      |
| 0.1 thru 85pF       |                   |               |                   |                      |