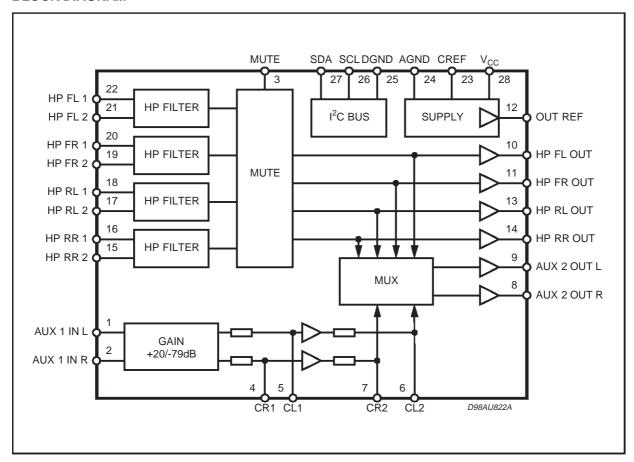


DIGITALLY CONTROLLED AUDIO PROCESSOR WITH LOUDSPEAKERS EQUALIZER

- FOUR HIGH PASS CHANNELS
- ONE STEREO LOW PASS CHANNEL WITH GAIN CONTROL
- DIRECT MUTE PIN
- FULLY PROGRAMMABLE VIA I²C BUS

DESCRIPTION

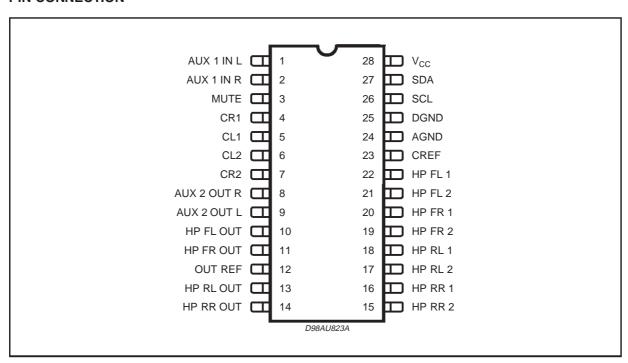
The TDA7401 is an upgrade of the TDA7435 audioprocessor.


Due to a highly linear signal processing, using CMOS-switching techniques very low distortion and very low noise are obtained.

Second order high pass and low pass filters with programmable corner frequencies provide the loudspeaker equalization.

Very low DC stepping is obtained by using a BICMOS technology.

BLOCK DIAGRAM



January 1999 1/10

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Operating Supply Voltage	10.5	V
T _{amb}	Operating Ambient Temperature	-40 to 85	°C
T _{stg}	Storage Temperature Range	-55 to 150	°C

PIN CONNECTION

THERMAL DATA

	Symbol	Parameter	Value	Unit	
Γ	R _{th j-amb}	Thermal Resistance Junction-pins	65	°C/W	

QUICK REFERENCE DATA

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vs	Supply Voltage	6	9	10.2	V
V_{CL}	Max. input signal handling	2.1	2.6		Vrms
THD	Total Harmonic Distortion V = 1Vrms f = 1KHz		0.01	0.08	%
S/N	Signal to Noise Ratio		106		dB
Sc	Channel Separation f = 1KHz	-80	100		dB
V _{REF}	Reference Voltage Output (pin 12)	4.2	4.5	4.8	V

2/10

ELECTRICAL CHARACTERISTICS ($V_S = 9V$; $R_L = 10K\Omega$; $R_g = 50\Omega$; $T_{amb} = 25^{\circ}C$; all gains = 0dB; f = 1KHz. Refer to the test circuit, unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
INPUT STA	AGE: AUX1					
R_{l}	Input Resistance		37.5	50	62.5	ΚΩ
V _{CL}	Clipping Level	d ≤ 0.3%	2.1	2.6		V _{RMS}
Sı	Input Separation		80	100		dB
GAIN CON	ITROL					
G _{MAX}	Maximum Input Gain			20		dB
A _{MAX}	Maximum Attenuation			79		dB
A _{STEP}	Step Resolution		0.5	1	1.5	dB
E _A	Attenuation Set Error	G = -20 to +20dB	-1.25	0	+1.25	dB
		G = -60 to -20dB	-4		3	dB
E_T	Tracking Error				2	dB
V_{DC}	DC Steps	Adiacent Attenuation Steps		0.1	3	mV
		From 0dB to G _{MIN}		0.5	5	mV
AUDIO OL	JTPUT (Pin 8 - 9, 10 - 14)					
V _{clip}	Clipping Level	d = 0.3%	2.1	2.6		Vrms
RL	Output Load Resistance	AC coupled	2			ΚΩ
Ro	Output Impedance			30	100	Ω
V_{DC}	DC Voltage Level		4.2	4.5	4.8	V
STAGE: H	P FII TER					
R1	Resistance at pin HP1	HIGHPASS BYTE = XXXX1000	127.5	170	212.5	ΚΩ
R2	Resistance at pin HP2	1	1			MΩ
V _{CL}	Clipping Level	d ≤ 0.3%	2.1	2.6		Vrms
MUTE	To appear of the second of the	,				
A _{MUTE}	Mute Attenuation		80	100		dB
V _{THM}	Mute Threshold		1.2	1.7	2.2	V
R _{INT}	Pullup Resistor (pin 3)	((4)	37.5	50	62.5	ΚΩ
		(note 1)	07.0	- 00	02.0	1132
GENERAL			_	_		
V _{CC}	Supply Voltage		6	9	10.2	V
I_{CC}	Supply Current		7	8	9	mA
PSRR	Power Supply Rejection Ratio	f = 1KHz	60	70		dB
e _{NO}	Output Noise	Non Inverting Output Muted (B = 20 to 20kHz flat)		3.5	15	μV
		All Gains 0dB (B = 20 to 20kHz flat)		5	15	μV
S/N	Signal to Noise Ratio	All Gains = 0dB; V _O = 1V _{rms}		106		dB
Sc	Channel Separation		80	100		dB
d	Distortion	V _{IN} =1V		0.01	0.08	%
BUS INPU	TS					
V _{IL}	Input Low Voltage				0.8	V
V _{IH}	Input High Voltage		2.5			V
I _{IN}	Input Current	V _{IN} = 0.4V	-5		5	μΑ
Vo	Output Voltage SDA Acknowledge	$I_0 = 1.6 \text{mA}$	0.1		0.4	V

Note 1: Internal pullup resistor to 3.3V; "LOW" = mute active

Figure 1. HP Filter

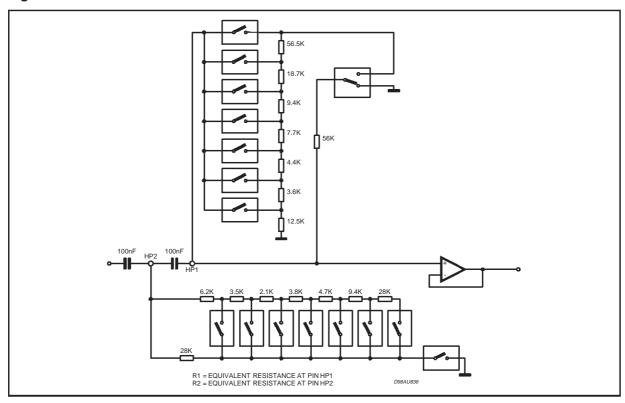
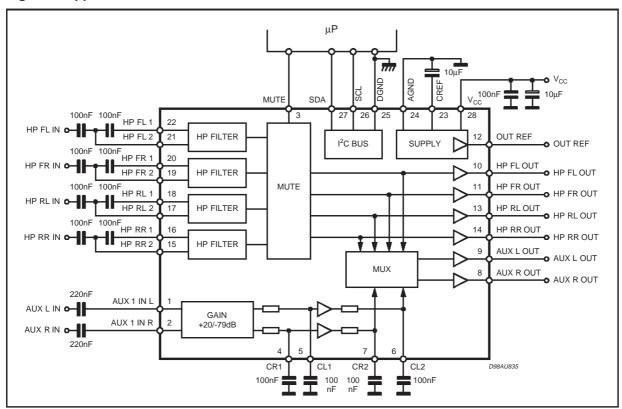



Figure 2. Application Circuit

4

I²C BUS INTERFACE

Data transmission from microprocessor to the TDA7401 and viceversa takes place thru the 2 wires I²C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be externally connected).

Data Validity

As shown in fig. 2, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

Start and Stop Conditions

As shown in fig.3 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.

A STOP conditions must be sent before each START condition.

Byte Format

Every byte transferred to the SDA line must con-

tain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first.

Acknowledge

The master (μ P) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see fig. 4). The peripheral (audioprocessor) that acknowledges has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock pulse.

The audioprocessor which has been addressed has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer.

Transmission without Acknowledge

Avoiding to detect the acknowledge of the audioprocessor, the μP can use a simplier transmission: simply it waits one clock without checking the slave acknowledging, and sends the new data.

This approach of course is less protected from misworking and decreases the noise immunity.

Figure 3. Data Validity on the I²CBUS

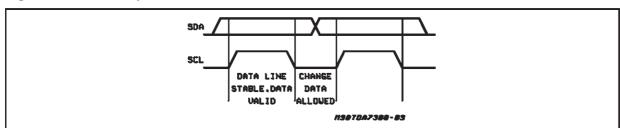


Figure 4. Timing Diagram of I²CBUS

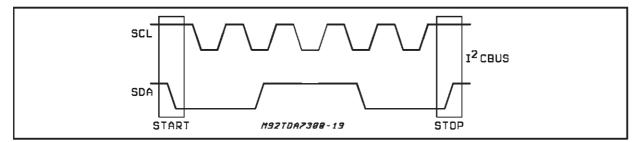
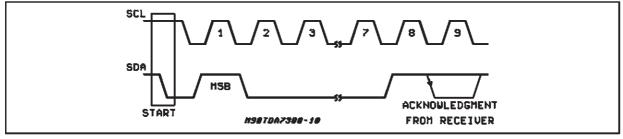
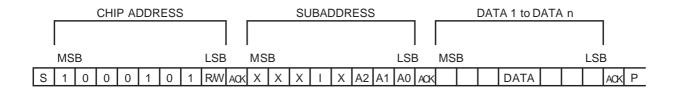



Figure 5. Acknowledge on the I²CBUS

4

SOFTWARE SPECIFICATION


Interface Protocol

The interface protocol comprises:

- A start condition (s)
- A chip address byte,(the LSB bit determines

read/write transmission)

- A subaddress byte.
- A sequence of data (N-bytes + acknowledge)
- A stop condition (P)

ACK = Acknowledge

S = Start

P = Stop

I = Auto Increment

X = Not used

AUTO INCREMENT

If bit I in the subaddress byte is set to "1", the autoincrement of the subaddress is enabled **SUBADDRESS** (receive mode)

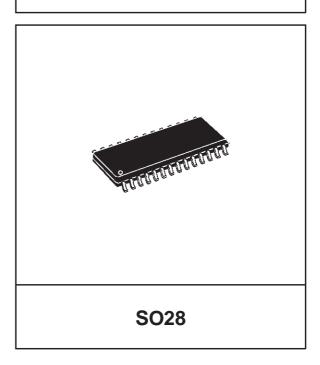
MSB				FUNCTION				
Х	Х	Х	I	Х	D2	D1	D0	
					0	0	0	Not used
					0	0	1	Mode
					0	1	0	Gain AUX 1 L
					0	1	1	Gain AUX 1 R
					1	0	0	High Pass Filter FL
					1	0	1	High Pass Filter FR
					1	1	0	High Pass Filter RL
					1	1	1	High Pass Filter RR

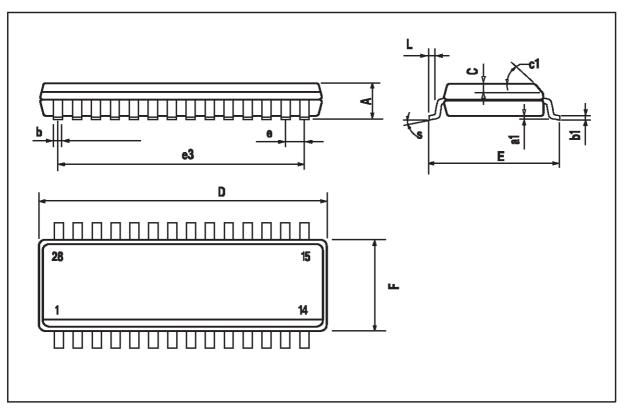
MODE

MSB							LSB	FUNCTION	
D7	D6	D5	D4	D3	D2	D1	D0		
						0	Х	High Pass Mute ON	
						1		High Pass Mute OFF	
					0			AUX1 Input Mute ON	
					1			AUX1 Input Mute OFF	
				0				AUX2 Inverted Output	
				1				AUX2 Non Inv. Output	
						AUX 2 Output Selection			
		0	0					High Pass Filter Front	
		0	1					High Pass Filter Rear	
		1	0					Aux 1 Input	
		1	1					Mute	
			AUX1 Low Pass Filter (C1 = C2 = 100nF)						
0	0							Flat	
0	1							120Hz	
1	0							80Hz	
1	1							50Hz	

GAIN AUX1L, AUX1R

MSB							LSB	GAIN AUX1L, R			
D7	D6	D5	D4	D3	D2	D1	D0	GAIN AGAIL, IX			
1	0	0	1	1	1	1	1	+31dB			
:	:	:	:	:	:	:	:	:			
1	0	0	1	0	0	0	1	+17dB			
1	0	0	1	0	0	0	0	+16dB			
1	0	0	0	1	1	1	1	+15dB			
:	:	:	:	:	:	:	:	:			
1	0	0	0	0	0	0	1	+1dB			
1	0	0	0	0	0	0	0	0dB			
0	0	0	0	0	0	0	0	0dB			
0	0	0	0	0	0	0	1	-1dB			
:	:	:	:	:	:	:	:	:			
0	0	0	0	1	1	1	1	-15dB			
0	0	0	1	0	0	0	0	-16dB			
:	:	:	:	:	:	:	:	:			
0	1	0	0	1	1	1	0	-78dB			
0	1	0	0	1	1	1	1	-79dB			
Х	1	1	Х	Х	Х	Х	Х	Mute			


Note: Is is not recommended to use a gain more than 20dB for system performance reason. In general, the max. gain should be limited by software to the maximum value, which is needed for the system.


HIGH PASS FILTERS

MSB					FL, FR, RL, RR			
D7	D6	D5	D4	D3	D2	D1	D0	
			2nd order HP Filter Mode (C1 = C2 = 100nF)					
Х	Х	Х	Х	0	0	0	0	$f_c = 40Hz$
				0	0	0	1	f _c = 60Hz
				0	0	1	0	$f_c = 80Hz$
				0	0	1	1	f _c = 100Hz
				0	1	0	0	f _c = 120Hz
				0	1	0	1	f _c = 150Hz
				0	1	1	0	$f_c = 180Hz$
				0	1	1	1	f _c = 220Hz
			First order HP Flat Mode					
	·			1	0	0	0	f _c = 9Hz

DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			2.65			0.104	
a1	0.1		0.3	0.004		0.012	
b	0.35		0.49	0.014		0.019	
b1	0.23		0.32	0.009		0.013	
С		0.5			0.020		
c1			45° ((typ.)			
D	17.7		18.1	0.697		0.713	
Е	10		10.65	0.394		0.419	
е		1.27			0.050		
е3		16.51			0.65		
F	7.4		7.6	0.291		0.299	
L	0.4		1.27	0.016		0.050	
S			8°(n	nax.)			

OUTLINE AND MECHANICAL DATA

47/

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 $\ \odot$ 1999 STMicroelectronics – Printed in Italy – All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

