VACUUMSCHMELZE

SPECIFICATION

Item no.: T60404-N4646-X461

K-no.: 24620 100 A Current Sensor Module for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (short power) and secondary circuit (electronic circuit)

Date: 24.04.2017

Customer: Standard type

Customers Part no.:

Page 1 of 4

Unit

Description

- Closed loop (compensation)
 Current Sensor with magnetic field probe
- Printed circuit board mounting
- Casing and materials UL-listed

Characteristics

- Excellent accuracy
- · Very low offset current
- Very low temperature dependency and offset current drift
- · Very low hysteresis of offset current
- · Short response time
- · Wide frequency bandwidth
- Compact design
- Reduced offset ripple

<u>Applications</u>

Mainly used for stationary operation in industrial applications:

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Switched Mode Power Supplies (SMPS)
- Power Supplies for welding applications
- Uninterruptible Power Supplies (UPS)

Electrical data - Ratings

I _{PN}	Primary nominal r.m.s. current	100	Α
V_{out}	Output voltage @ I _P	$V_{Ref} \pm (0.625*I_P/I_{PN})$	V
V_{out}	Output voltage @ I _P =0, T _A =25°C	V _{Ref} ± 0.0025	V
V_{Ref}	External Reference voltage range	04	V
	Internal Reference voltage	2.5 ±0.005	V
K_N	Turns ratio	13 : 1100	

Accuracy - Dynamic performance data

		min.	typ.	max.	Unit
I _{P,max}	Max. measuring range	±200			
Χ	Accuracy @ I _{PN} , T _A = 25°C			0.7	%
ϵ_{L}	Linearity			0.1	%
V _{out} - V _{Ref}	Offset voltage @ I _P =0, T _A = 25°C			±2.5	mV
Δ V _o / V _{Ref} / Δ V	Temperature drift of V _{out} @ I _P =0, T _A = -4085°C		3	10	ppm/°C
t _r	Response time @ 90% von I _{PN}		500		ns
Δt (I _{P,max})	Delay time at di/dt = 100 A/μs		500		ns
f	Frequency bandwidth	DC100			kHz

min.

typ.

max.

General data

T_A	Ambient operating	Ambient operating temperature			+85	°C
Ts	Ambient storage t	Ambient storage temperature (acc to M3101)			+85	°C
m	Mass			15		g
V_{C}	Supply voltage		4.75	5	5.25	V
Ic	Current consumpt	ion		16		mA
		nanufactored and tested in acc ion, Insulation material group 1			0-5-1 (Pin 1 - 6 to	Pin 7 – 10)
S _{clear}	Clearance (compo	nent without solder pad)	10.2			mm
S _{creep}	Creepage (compor	nent without solder pad)	10.2			mm
V_{sys}	System voltage	overvoltage category 3			600	V_{RMS}
V_{work}	Working voltage	(table 7 acc. to EN61800-5-1 overvoltage category 2)		1020	V_{RMS}
U_{PD}	Rated discharge v	roltage			1400	V_P
Max. potential difference acc. to UL 508			RMS		600	V _{AC}

Date	Name	Issue	Amendment						
24.04.17	DJ	85	Page A2, Me	ge A2, Mechanical outline changed (3,5 +/- 0,5 deleted) typo. Minor change					
02.02.17	DJ	85	Page A1, M-s	ge A1, M-sheet M3101 added (storage temperature) minor change.					
Hrsg.: MC-PD Bea		arb: DJ		MC-PM: ZP			freig.: BEF released		

VACUUMSCHMELZE

SPECIFICATION

Item no.: T60404-N4646-X461

K-no.: 24620

100 A Current Sensor Module for 5V- Supply Voltage

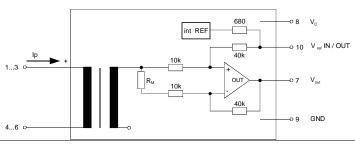
For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (short power) and secondary circuit (electronic circuit) Date: 24.04.2017

Page 2 of 4

Customer: Standard type Mechanical outline (mm):

General tolerances DIN ISO 2768-c Tolerances grid distance ±0,2mm 1,74 1,905 7 10 24 1,29 1,29 1,45 1,205 7,75 1,445 Detail 20,6 0,7 1,445 DC = Date Code F= Factory

Customers Part no.:


Connections:

1...6: Ø 1.5 mm 7..10: 0.7*0.6 mm

Marking:

UL-sign 4646-X461 F DC

Schematic diagram

Possibilities of wiring (@ T_A = 85°C)

primary windings	primar	y current maximal	output current RMS	turns ratio	primary resistance	wiring
N _P	I _P [A]	Î _{P,max} [A]	I _S (I _P) [mA]	\mathbf{K}_{N}	R_P [m Ω]	
1	100	±200	2.5±0.625	1:1100	0.1	1 3 4 6
2	50	±100	2.5±0.625	2:1100	0.45	1 3 4 6>
3	33.3	±66	2.5±0.625	3:1100	1	> 1 3 4 6 >

Hrsg.: MC-PD	Bearb: DJ	MC-PM: ZP		freig.: BEF
editor	designer	check		released

SPECIFICATION Item no.: T60404-N4646-X461 K-no.: 24620 Date: 24.04.2017 100 A Current Sensor Module for 5V- Supply Voltage For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (short power) and secondary circuit (electronic circuit) Customers Part no.: Page 4 3 of Customer: Standard type **Electrical Data**

		min.	typ.	max.	Unit
V_{Ctot}	Maximum supply voltage (without function)			6	V
I _C	Supply Current with primary current	16r	$mA + I_p * K_N + V_{ol}$	_{ut} /R _L	mA
I _{out,SC}	Short circuit output current		±20		mA
R_P	Resistance / primary winding @ T _A =25°C			0.3	$m\Omega$
Rs	Secondary coil resistance @ T _A =85°C			15	Ω
$R_{i,Ref}$	Internal resistance of Reference input		670		Ω
R_{i} ,(V_{out})	Output resistance of Vout			1	Ω
R_L	External recommended resistance of Vout	1			$k\Omega$
C_L	External recommended capacitance of Vout			500	pF
$\Delta X_{Ti}/\Delta V$	Temperature drift of X @ T _A = -40 +85 °C			40	ppm/K
$\Delta V_0 = \Delta (V_{out} - V_{Ref})$	Sum of any offset drift including:		2	6	mV
V_{0t}	Longtermdrift of V ₀		1		mV
V _{0T}	Temperature drift von V ₀ @ T _A = -40+85°C		1		mV
V_{0H}	Hystereses of Vout @ I _P =0A (after an overload of 1	0 x I _{PN})		0.5	mV
$\Delta V_0/\Delta V_C$	Supply voltage rejection ratio			1	mV/V
V _{oss}	Offsetripple (with 1 MHz- filter first order)			21	mV
V _{OSS}	Offsetripple (with 100 kHz- filter firdt order)		3.5	6	mV
V _{OSS}	Offsetripple (with 20 kHz- filter first order)		1	1.5	mV
	ssible coupling capacity (primary – secondary)	5	pF	N	lechanical stress
according to M3209/3	30g				

Settings: 10 - 2000 Hz, 1 min/Oktave, 2 hours

Inspection (Measurement after temperature balance of the samples at room temperature, SC = significant characteristic)

V _{out} (SC)	(V) M3011/6:	Output voltage vs. reference (I _P =3x10A _{Peak} , 40-80Hz)	625±0,7%	mV
V_{out} - V_{Ref}	(V) M3226:	Offset voltage (I _P =0A)	± 0.0025	V
V_d	(V) M3014:	Test voltage, 1 s pin 1 – 6 vs. pin 7 – 10	2.5	kV _{RMS}
V _e	(AQL 1/S4)	Partial discharge voltage acc.M3024 with V _{vor}	1500 1875	V _{RMS} V _{RMS}

Type Testing (Pin 1 - 6 to Pin 7 - 10)

V _W	HV transient test according to M3064 (1,2 μs / 50 μs-wave	e form)	8	kV
V_d	Testing voltage to M3014	(5 s)	5	kV
Ve	Partial discharge voltage acc.M3024		1500	V_{RMS}
	with V_{vor}		1875	V_{RMS}

Applicable documents

Temperature of the primary conductor should not exceed 100°C.

Current direction: A positive output current appears at point V_{out} , by primary current in direction of the arrow. Further standards UL 508; file E317483, category NMTR2 / NMTR8

Enclosures according to IEC529: IP50.

Hrsg.: MC-PD	Bearb: DJ	MC-PM: ZP		freig.: BEF
editor	designer	check		released

SPECIFICATION

Item no.: T60404-N4646-X461

K-no.: 24620

100 A Current Sensor Module for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (short power) and secondary circuit (electronic circuit) Date: 24.04.2017

Date. 24.04.2017

Customer: Standard type Customers Part no.: Page 4 of 4

Explanation of several of the terms used in the tablets (in alphabetical order)

t_r: Response time (describe the dynamic performance for the specified measurement range), measured as delay time at $I_P = 0.9 \cdot I_{PN}$ between a rectangular current and the output voltage V_{OUt} (I_p)

 Δt (I_{Pmax}): Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) measured between I_{Pmax} and the output voltage V_{out}(I_{Pmax}) with a primary current rise of di_P/dt \geq 100 A/ μ s.

 U_{PD} Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage V_e U_{PD} = $\sqrt{2} * V_e / 1,5$

V_{vor} Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1,875 * U_{PD} required for partial discharge test in IEC 61800-5-1

 $V_{vor} = 1,875 * U_{PD} / \sqrt{2}$

V_{sys} System voltage RMS value of rated voltage according to IEC 61800-5-1

Vwork Working voltage voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation

 V_0 : Offset voltage between V_{out} and the rated reference voltage of $V_{ref}=2,\!5V.$ $V_o=V_{out}(0)$ - $2,\!5V$

 V_{0H} : Zero variation of V_0 after overloading with a DC of tenfold the rated value

V_{0t}: Long term drift of V₀ after 100 temperature cycles in the range -40 bis 85 °C.

X: Permissible measurement error in the final inspection at RT, defined by

 $X = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{out}(0)}{0.625V} - 1 \right| \%$

X_{ges}(I_{PN}): Permissible measurement error including any drifts over the temperature range by the current measurement I_{PN}

 $\mathbf{X}_{\text{ges}} = 100 \cdot \left| \frac{\mathbf{V}_{\text{out}} \left(\mathbf{I}_{\text{PN}} \right) - 2,5V}{0,625 \text{V}} - 1 \right| \quad \% \quad \text{or} \quad \mathbf{X}_{\text{ges}} = 100 \cdot \left| \frac{\mathbf{V}_{\text{out}} \left(\mathbf{I}_{\text{PN}} \right) - V_{\textit{ref}}}{0,625 \text{V}} - 1 \right| \quad \%$

 $\varepsilon_{\text{L}}: \qquad \qquad \text{Linearity fault defined by} \qquad \varepsilon_{\text{L}} = 100 \cdot \left| \frac{I_{\text{P}}}{I_{\text{PN}}} - \frac{V_{out}(I_{P}) - V_{out}(0)}{V_{out}(I_{PN}) - V_{out}(0)} \right| \%$

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vacuumschmelze: T60404-N4646-X461