

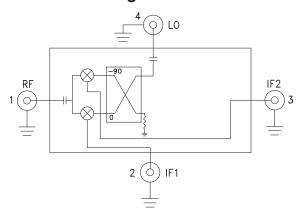
v02.0310

Features

Wide IF Bandwidth: DC - 3.5 GHz

Image Rejection: 30 dB LO to RF Isolation: 35 dB High Input IP3: +28 dBm Hermetically Sealed Module

Field Replaceable SMA Connectors


-55 °C to +85 °C Operating Temperature

Typical Applications

The HMC-C043 is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios & VSAT
- Test Equipment & Sensors
- Military End-Use

Functional Diagram

General Description

The HMC-C043 is a passive I/Q MMIC mixer housed in a miniature hermetic module which can be used as either an Image Reject Mixer or a Single Sideband Upconverter. The module utilizes two standard Hittite double balanced mixer cells and a 90 degree hybrid fabricated on a GaAs MESFET process. A low frequency quadrature hybrid was used to produce a 100 MHz USB IF output. This MMIC based module is a more reliable and consistent alternative to hybrid style I/Q Mixers and Single Sideband Converter assemblies. The module features removable SMA connectors which can be detached to allow direct connection of the I/O pins to a microstrip or coplanar circuit.

Electrical Specifications, $T_A = +25^{\circ}$ C, IF= 100 MHz, LO = +19 dBm*

Parameter	Min.	Тур.	Max.	Units
Frequency Range, RF/LO	11 - 16			GHz
Frequency Range, IF	DC - 3.5			GHz
Conversion Loss (As IRM)		9	12	dB
Image Rejection	15	30		dB
1 dB Compression (Input)		+20		dBm
LO to RF Isolation	30	35		dB
LO to IF Isolation	18	25		dB
IP3 (Input)		+28		dBm
Amplitude Balance		0.5		dB
Phase Balance		5		Deg

^{*} Unless otherwise noted, all measurements performed as downconverter.

HMC-C043* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

DOCUMENTATION

Data Sheet

• HMC-C043 Data Sheet

DESIGN RESOURCES 🖵

- HMC-C043 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

View all HMC-C043 EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

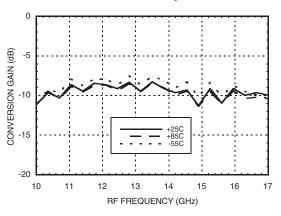
TECHNICAL SUPPORT 🖳

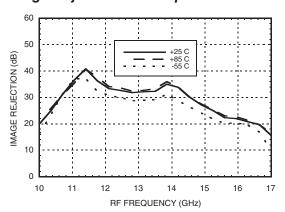
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.


11 - 16 GHz


v02.0310

Data taken As IRM With External IF Hybrid Conversion Gain vs. Temperature

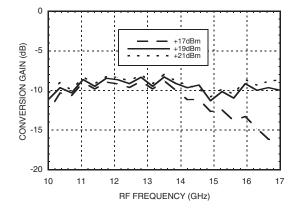
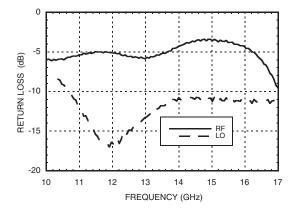
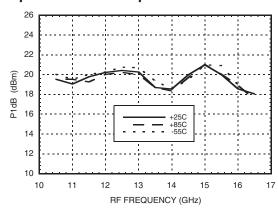
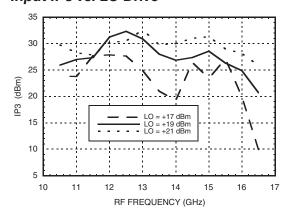


Image Rejection vs. Temperature



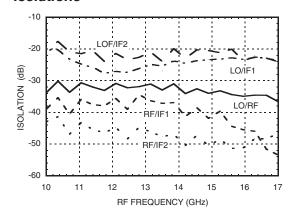
GaAs MMIC I/Q MIXER MODULE

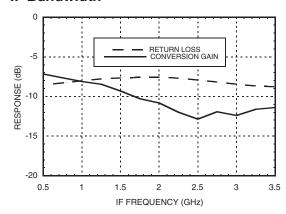

Conversion Gain vs. LO Drive


Return Loss

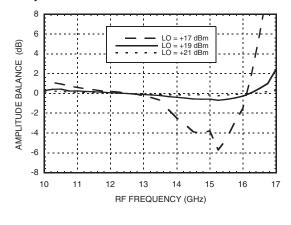
Input P1dB vs. Temperature

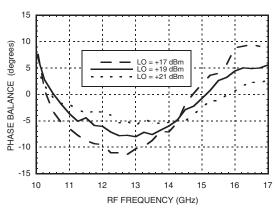
Input IP3 vs. LO Drive

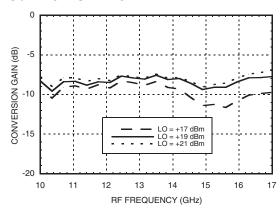


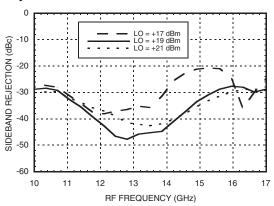

GaAs MMIC I/Q MIXER MODULE 11 - 16 GHz

Quadrature Channel Data Taken Without IF Hybrid


Isolations


IF Bandwidth*


Amplitude Balance vs. LO Drive


Phase Balance vs. LO Drive

Upconverter Performance Conversion Gain vs. LO Drive*

Upconverter Performance Sideband Rejection vs. LO Drive*

^{*} Conversion gain data taken with external IF hybrid

v02.0310

GaAs MMIC I/Q MIXER MODULE 11 - 16 GHz

Harmonics of LO

10 5 (011-)	nLO Spur at RF Port			
LO Freq. (GHz)	1	2	3	4
10.5	32	49	58	79
11.5	32	47	61	61
12.5	32	51	63	53
13.5	34	52	67	xx
14.5	35	48	69	xx
15.5	34	54	71	xx

LO = +19 dBm

Values in dBc below input LO level measured at RF Port.

MxN Spurious Outputs

	nLO				
mRF	0	1	2	3	4
0	xx	-12	7	14	xx
1	24	0	51	59	70
2	79	73	74	79	91
3	87	102	99	86	97
4	xx	84	102	97	105

RF = 13.6 GHz @ -10 dBm

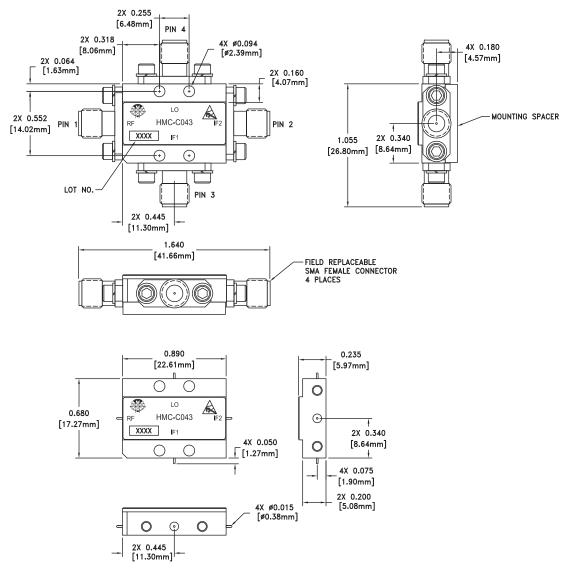
LO = 13.5 GHz @ +19 dBm

Data taken without IF hybrid

All values in dBc below IF power level

Absolute Maximum Ratings

RF / IF Input	+20 dBm	
LO Drive	+27 dBm	
Channel Temperature	150°C	
Continuous Pdiss (T=85°C) (derate 6.9 mW/°C above 85°C)	448 mW	
Thermal Resistance (R _{TH}) (junction to die bottom)	145 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-55 to +85 °C	



GaAs MMIC I/Q MIXER MODULE 11 - 16 GHz

Outline Drawing

VIEW SHOWN WITH CONNECTORS REMOVED

Package Information

Package Type	C-4
Package Weight [1]	20 gms [2]
Spacer Weight	2.6 gms [2]

- [1] Includes the connectors
- [2] ±1 gms Tolerance

NOTES:

- 1. PACKAGE, LEADS, COVER MATERIAL: KOVAR™
- 2. FINISH: GOLD PLATE OVER NICKEL PLATE
- 3. MOUNTING SPACER: NICKEL PLATED ALUMINUM
- 4. ALL DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 5. TOLERANCES:
 - $5.1.XX = \pm 0.02$
 - $5.2.XXX = \pm 0.010$
- 6. FIELD REPLACEABLE SMA CONNECTORS TENSOLITE 5602 - 5CCSF OR EQUIVALENT
- 7. TO MOUNT MODULE TO SYSTEM PLATFORM REPLACE 0 -80 HARDWARE WITH DESIRED MOUNTING SCREWS

v02.0310

GaAs MMIC I/Q MIXER MODULE 11 - 16 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	RF	This pin is AC coupled and matched to 50 Ohms.	RF ○──
2	IF1	This pin is DC coupled. For applications not requiring operation to DC, this port should be DC blocked externally using a series capacitor whose value has	IF1,IF2 0————————————————————————————————————
3	IF2	been chosen to pass the necessary IF frequency range. For operation to DC, this pin must not source/ sink more than 3 mA of current or part non-function and possible part failure will result.	
4	LO	This pin is AC coupled and matched to 50 Ohms.	LO ○──