Advanced

Features

Fast Read Access Time - 70ns Low Power CMOS Operation

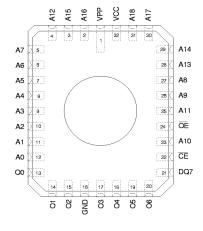
- · 100µa max. Standby
- · 30mA max. Active at 5 MHz

JEDEC Standard Package

· 32 lead LCC, Windowed

5V ±10% Supply

High Reliability CMOS Technology


- · 2000V ESD Protection
- · 200mA Latchup Immunity

Rapid™ Programming Algorithm - 100µs/byte (typical) CMOS and TTL Compatible Inputs and Outputs Integrated Product Identification Code Military and Industrial Temperature Ranges

4 Megabit (512Kx8) UV Erasable CMOS EEPROM

The EDI68512C chip is a low-power, high performance, 4,194,304-bit ultraviolet erasable programmable read only memory (EPROM) organized as 512Kx8 bits. The EDI68612C requires only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 70ns, eliminating the need for speed reducing WAIT states on high-performance microprocessor systems. Atmel's scaled CMOS technology provides low active power consumption and fast programming. Power consumption is typically 8mA in active mode and less than 10µa in standby mode.

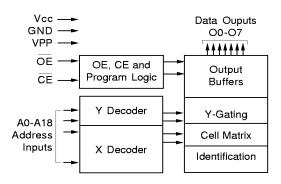
Pin Configurations

Pin Names

AØ-A18 OØ-07 CE ŌĒ

Addresses Outputs Chip Enable Output Enable

Electronic Designs Incorporated


• One Research Drive • Westborough, MA 01581 USA • 508-366-5151 • FAX 508-836-4850 • http://www.electronic-designs.com

Switching Considerations

Switching between active and standby conditions via the Chip Enable pin may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed data sheet limits, resulting in device nonconformance. At a minimum, a 0.1uF high frequency, low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected between the Vcc and Ground terminals of the device, as close to the device as possible. Additionally, to stabilize the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7uF bulk electrolytic capacitor should be utilized, again connected between the Vcc and Ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array.

Block Diagram

Operating Modes

Mode/Pin	Œ	ŌĒ	Ai	V PP	Outputs
Read	$V_{\rm IL}$	$V_{\rm IL}$	Ai	X ⁽¹⁾	Dout
Output Disable	Χ	V_{IH}	Χ	Χ	High Z
Standby	V _{IH}	Χ	Χ	Χ	High Z
Rapid Program (2)	VIL	V _{IH}	Ai	V_{PP}	D _{IN}
PGM Verify	Χ	V_{IL}	Ai	V_{PP}	Dout
PGM Inhibit	VIH	VIH	Χ	V_{PP}	High Z
			$A9 = V_H^{(3)}$		
Product Identification(4)	V_{IL}	V_{IL}	$A0 = V_{IH} \text{ or } V_{IL}$	Χ	Identification Code
-			A1-A18 = V _{IL}		

Notes: 1. X can be $V_{\text{\tiny IL}}$ or $V_{\text{\tiny IH}}$.

- Refer to Programming Characteristics
- 3. V_H=12.0±0.5V.
- 4. Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}), except A9 which is set to V_H and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_H) to select the Device Code byte.

Absolute Maximum Ratings*

Temperature Under Bias	-55 ℃ to +125 ℃
Storage Temperature	-65 ℃ to +150 ℃
Voltage on Any Pin with	
Respect to Ground	-2.0V to +7.0V ⁽¹⁾
Voltage on A9 with	
Respect to Ground	-2.0V to +14.0V ⁽¹⁾
V _{PP} Supply Voltage with	
Respect to Ground	-2.0V to +14.0V ⁽¹⁾

*Note: 1. Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

EDI68512C 4 Megabit (512Kx8) UV Erasable CMOS EPROM

DC and AC Operating Conditions for Read Operation

		-70	-90	-12	-15
Operating	Military		-55 ℃ to +125 ℃	-55 ℃ to +125 ℃	-55 ℃ to +125 ℃
Temperature (Case)	Industrial	-40 ℃ to +85 ℃	-40 ℃ to +85 ℃	-40 ℃ to +85 ℃	-40 °C to +85 °C
Vcc Power Supply		5V±10%	5V±10%	5V±10%	5V±10%

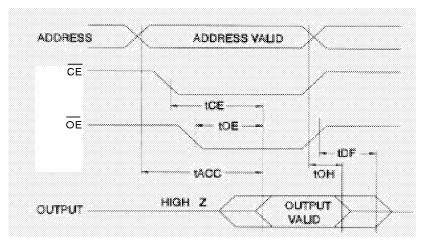
DC and Operating Characteristics for Read Operation

Symbol	Parameter	Condition	Min	Max	Units
lu	Input Load Current	$V{IN} = 0V$ to V_{CC}		±1	μA
Iιο	Output Leakage Current	$V_{OUT} = 0V$ to V_{CC}		±5	μA
PP1 ⁽²⁾	V _{PP} (1) Read/Standby Current	$V_{PP} = V_{CC}$		10	μA
I _{SB}	V _{cc} ⁽¹⁾ Standby Current	I_{SB1} (CMOS), CE = $V_{CC}\pm0.3V$		100	μA
	_	I_{SB2} (TTL), CE = 2.0 to $V_{CC}\pm0.5V$		1	mΑ
Icc	V _{cc} Active Current	$f = 5MHz$, $I_{OUT} = 0mA$, $CE = V_{IN}$		30	mA
VIL	Input Low Voltage		-0.6	8.0	V
VIH	Input High Voltage		2.0	V _{cc} +0.5	
V _{OL}	Output Low Voltage	$I_{OL} = 2.1 \text{mA}$		0.4	V
V _{OH}	Output High Voltage	I _{OH} = -400μA	2.4		V

AC Characteristics for Read Operation

			-70	-90	-12	-15	
Symbol	Parameter	Condition	Min Max	Min Max	Min Max	Min Max	Units
t _{ACC} (3)	Address to Output Delay	CE = OE = V _{IL}	70	90	120	150	ns
t _{CE} ⁽²⁾	CE to Output Delay	$\overline{OE} = V_{IL}$	70	90	120	150	ns
t _{OE} ⁽²⁾⁽³⁾	OE to Output Delay	CE = V _{IL}	30	35	35	40	ns
t _{DF} (4)(5)	OE or CE High to Output						
	Float, whichever occured first		20	20	30	30	ns
t _{OH}	Output Hold from Address, CE						
	or OE, whichever occured first		0	0	0	0	ns

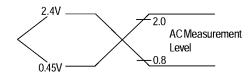
Note: 2, 3, 4, 5: see AC Waveforms for Read Operation.



Notes: 1. Vcc must be applied simultaneously or before Vpp and removed simultaneously or after Vpp.

2. Vpp may be connected directly to Vcc, except during programming. The supply current would then be the sum of lcc and lpp.

AC Waveforms for Read Operation(1)

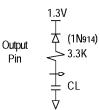


Notes: 1. Timing measurement references are 0.8V and 2.0V. Input AC drive levels are 0.45V and 2.4 V, unless otherwise specified.

2. OE may be delayed up to to: -to: after the falling edge of CE without impact on to:
3. OE may be delayed up to how: -to: after the address is valid without impact on to:
4. This parameter is only sampled and is not 100% tested.
5. Output float is defined as the point when data is no longer driven.

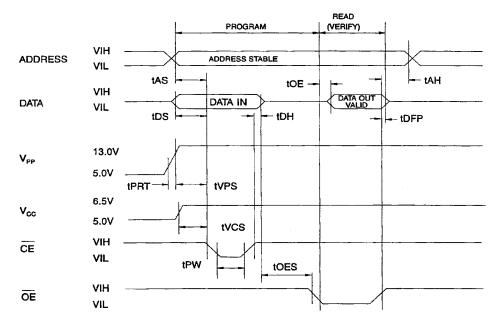
Input Test Waveforms and Measurment Levels

AC Driving Levels


Pin Capacitance

(f=1 MHz, T=25 ℃)(1)

C _{IN} 4			
0114	1 8	pF	$V_{IN} = 0V$
C _{OUT} 8	3 12	pF	V _{OUT} =0V


 $Notes: 1. Typical \ values for nominal supply \ voltage. This parameter is only sampled and not 100\% \ tested.$

Output Test Load

EDI68512C 4 Megabit (512Kx8) UV Erasable CMOS EPROM |

Programming Waveforms(1)

Notes: 1. The Input Timing Reference is 0.8V for $V_{\rm IL}\,$ 2.0V for $V_{\rm IH}.$

- 2. t_{0E} and t_{0FP} are characteristics of the device but must be accommodated by the programmer.

 3. When programming the EDI68512C a 0.1 uF capacitor is required accross Vpp ground to supress spurious voltage transients.

DC Programming Characteristics

 $T_A=25\pm 5$ °C, Vcc=6.5 ± 0.25 V, Vpp=13.0 ± 0.25 V

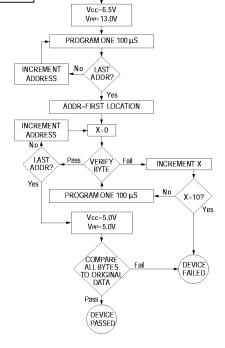
			Lin	nits	
Symbol	Parameter	Test Conditions	Min	Max	Units
lu	Input Load Current	$V_{IN}=V_{IL}$, V_{IH}		±10	μΑ
V _{IL}	Input Low Level		-0.6	8.0	V
V _{IH}	Input High Level		2.0	Vcc+0.7	V
V _{OL}	Output Low Voltage	I _{OL} =2.1mA	-	0.4	V
V _{OH}	Output High Voltage	I _{он} = -400µА	2.4		V
V _{CC2}	Vcc Supply Current (Program and Verify)			40	mA
I _{PP2}	Vpp Supply Current	CE= V _{IL}		20	mA
V _{ID}	A9 Product Identification Voltage		11.5	12.5	V

AC Programming Characteristics

 $T_A=25\pm5$ °C, Vcc=6.5±0.25V, Vpp=13.0±0.25V

			Lin	nits	
Symbol	Parameter	Test Conditions(1)	Min	Max	Units
tas	Address Setup Time	land Discount Fall Times	2		μs
toes	OE Setup Time	Input Rise and Fall Times	2		μs
t _{DS}	Data Setup Time	(10% to 90%) 20ns	2		μs
t _{AH}	Address Hold Time	Input Pulse Levels	0		μs
t _{DH}	Data Hold Time	0.45 to 2.4V	2		μs
t _{DFP}	OE High to Output Float Delay(2)		0	130	μs
tvPS	Vpp Setup Time	Input Timing Reference Level	2		μs
tvcs	Vcc Setup Time	0.8V to 2.0V	2		μs
t _{PW}	CE Program Pulse Width ⁽³⁾	Output Timing Reference Level	95	105	μs
toE	Data Valid from OE ⁽²⁾	0.8V to 2.0V		150	μs
t _{PRT}	Vpp Pulse Rise Time During Programming	0.00 to 2.00	50		μs

- Notes: 1. Vcc must be applied simultaneously or before Vpp and removed simultaneously or after Vpp.


 2. This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven see timing diagram.
 - 3. Program Pulse width tolerance is 100 µsec ±5%.

Product Identification Code

	Pins									
Codes	A0	07	06	05	04	03	02	01	00	Hex Data
Manufacturer	0	0	0	0	1	1	1	1	0	1E
Device Type	1	0	0	0	0	1	0	1	1	1E

Rapid Programming Algorith

A 100 μs \overline{CE} pulse width is used to program. The address is set to the first location. Vcc is raised to 6.5V and Vpp is raised to 13.0V. Each address is first programmed with one 100 μs CE pulse without verification. Then a verification/ reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive μs pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. Vpp is then lowered to 5.0V and Vcc to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails.

START

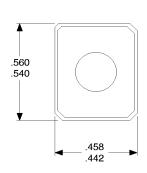
ADDR=FIRST LOCATION

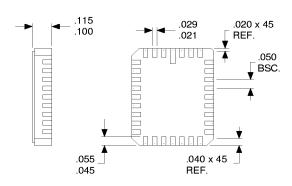
EDI68512C 4 Megabit (512Kx8) UV Erasable CMOS EPROM

Ordering Information

Industrial Temperature -40°C +85°C

Part No.	Speed (ns)	Package No.
EDI68512C70LI	70	426
EDI68512C90LI	90	426
EDI68512C120LI	120	426
EDI68512C150LI	150	426


MilitaryTemperature -55°C +125°C


Part No.	Speed (ns)	Package No.
EDI68512C90LM	90	426
EDI68512C120LM	120	426
EDI68512C150LM	150	426
		120

Package Description

Package No. 426

32 Pad Windowed Leadless Chip Carrier

Electronic Designs Incorporated

•One Research Drive • Westborough, MA 01581USA • 508-366-5151 • FAX 508-836-4850 •

http://www.electronic-designs.com Electronic Designs Inc. reserves the right to change specifications without notice, CAGE No. 66301