

# Intel® Server Board S5000VSA

# Technical Product Specification

Intel order number: D36978-010



**Revision 1.8** 

**June 2010** 

**Enterprise Platforms and Services Division – Marketing** 

## Revision History

| Date           | Revision<br>Number | Modifications                                                                                                                            |  |  |  |
|----------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| April 2006     | 1.0                | itial external release.                                                                                                                  |  |  |  |
| September 2006 | 1.1                | Document updates.                                                                                                                        |  |  |  |
| November 2006  | 1.2                | Document updates.                                                                                                                        |  |  |  |
| December 2006  | 1.3                | Document updates, revised memory configuration guideline and clarified support for memory mirroring on the Intel® Server Board S5000VSA. |  |  |  |
| August 2007    | 1.4                | Updated processor support and product codes.                                                                                             |  |  |  |
| March 2009     | 1.5                | Updated the Memory capability from 16 G to 32 G.                                                                                         |  |  |  |
| June 2009      | 1.6                | Updated section 5.3.                                                                                                                     |  |  |  |
| May 2010       | 1.7                | Removed CCC and CNCA.                                                                                                                    |  |  |  |
| June 2010      | 1.8                | Updated Sections 4.3.1 and 4.5.1.                                                                                                        |  |  |  |

## Disclaimers

Information in this document is provided in connection with Intel<sup>®</sup> products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel<sup>®</sup> Server Board S5000VSA may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel Corporation server baseboards support peripheral components and contain a number of high-density VLSI and power delivery components that need adequate airflow to cool. Intel's own chassis are designed and tested to meet the intended thermal requirements of these components when the fully integrated system is used together. It is the responsibility of the system integrator that chooses not to use Intel developed server building blocks to consult vendor datasheets and operating parameters to determine the amount of air flow required for their specific application and environmental conditions. Intel Corporation can not be held responsible if components fail or the server board does not operate correctly when used outside any of their published operating or non-operating limits.

Intel, Pentium, Itanium, and Xeon are trademarks or registered trademarks of Intel Corporation.

\*Other brands and names may be claimed as the property of others.

Copyright © Intel Corporation 2010.

# Table of Contents

| 1. | Introdu | ction                                                     | 1  |
|----|---------|-----------------------------------------------------------|----|
|    | 1.1     | Chapter Outline                                           | 1  |
|    | 1.2     | Server Board Use Disclaimer                               | 1  |
| 2. | Produc  | t Overview                                                | 2  |
| 2  | 2.1     | Feature Set                                               | 2  |
| 2  | 2.2     | Server Board Layout                                       | 3  |
|    | 2.2.1   | Server Board Mechanical Drawing                           | 4  |
| 2  | 2.3     | Feature Set                                               | 6  |
| 3. | Functio | onal Architecture                                         | 7  |
| (  | 3.1     | Intel® 5000V Controller Hub (MCH)                         | 7  |
|    | 3.1.1   | Processor Sub-system                                      | 7  |
|    | 3.1.2   | Thermal Design Power of 35 W (Processor Population Rules) | 9  |
|    | 3.1.3   | Common Enabling Kit (CEK) Design Support                  | 9  |
|    | 3.1.4   | Memory Sub-system                                         | 10 |
|    | 3.1.5   | Supported Memory                                          | 11 |
|    | 3.1.6   | DIMM Population Rules                                     | 11 |
|    | 3.1.7   | Memory Mirroring                                          | 12 |
| (  | 3.2     | Enterprise South Bridge (ESB2-E)                          | 13 |
|    | 3.2.1   | PCI Sub-system                                            | 13 |
|    | 3.2.2   | PCI Express* Overview                                     | 13 |
|    | 3.2.3   | PCI Express* Hot-Plug                                     | 14 |
|    | 3.2.4   | SATA Support                                              | 14 |
|    | 3.2.5   | SATA RAID                                                 | 14 |
|    | 3.2.6   | Intel® Embedded RAID Technology II Option ROM             | 15 |
|    | 3.2.7   | Parallel ATA (PATA) Support)                              | 15 |
|    | 3.2.8   | Ultra ATA/133                                             | 15 |
|    | 3.2.9   | IDE Initialization                                        | 16 |
|    | 3.2.10  | USB 2.0 Support                                           | 16 |
| ;  | 3.3     | Video Support                                             | 16 |
|    | 3.3.1   | Video Modes                                               | 16 |
|    | 3.3.2   | Video Memory Interface                                    | 17 |
|    | 3.3.3   | Dual Video                                                | 17 |

| 3  | 3.4      | Network Interface Controller (NIC)                    | 18 |
|----|----------|-------------------------------------------------------|----|
| 3  | 3.5      | Super I/O                                             | 18 |
|    | 3.5.1    | Serial Ports                                          | 19 |
|    | 3.5.2    | Removable Media Drives                                | 19 |
|    | 3.5.3    | Floppy Disk Controller (FDC)                          | 19 |
|    | 3.5.4    | Keyboard and Mouse Support                            | 20 |
|    | 3.5.5    | Wake-Up Control                                       | 20 |
| 4. | Platforr | n Management                                          | 21 |
| 4  | .1       | Power Button                                          | 21 |
| 4  | .2       | Sleep States Supported                                | 21 |
|    | 4.2.1    | S0 State                                              | 21 |
|    | 4.2.2    | S1 State                                              | 21 |
|    | 4.2.3    | S4 State                                              | 22 |
|    | 4.2.4    | S5 State                                              | 22 |
| 4  | .3       | Wakeup Events                                         | 22 |
|    | 4.3.1    | Wakeup from S1 Sleep State                            | 22 |
|    | 4.3.2    | Wakeup from S3 Sleep State (BFAD Workstation Only)    | 22 |
|    | 4.3.3    | Wakeup from S4 and S5 States                          | 22 |
| 4  | .4       | AC Power Failuar Recovery                             | 22 |
| 4  | .5       | PCI PM Support                                        | 23 |
|    | 4.5.1    | Reset# Control                                        | 23 |
|    | 4.5.2    | PCI Vaux                                              | 23 |
| 4  | .6       | System Management                                     | 23 |
|    | 4.6.1    | CPU Thermal Management                                | 23 |
| 4  | .7       | System Fan Operation                                  | 24 |
| 4  | .8       | Light-Guided Diagnostics – System Status and FRU LEDs | 24 |
| 5. | Connec   | ctor/Header Locations and Pin-outs                    | 26 |
| 5  | 5.1      | Board Connectors                                      | 26 |
| 5  | 5.2      | Power Connectors                                      | 26 |
| 5  | 5.3      | Control Panel Connector                               | 27 |
| 5  | 5.4      | I/O Connectors                                        | 28 |
|    | 5.4.1    | VGA Connector                                         | 28 |
|    | 5.4.2    | NIC Connectors                                        | 29 |
|    | 5.4.3    | ATA-100 Connector                                     | 29 |
|    | 5.4.4    | SATA Connectors                                       | 30 |
|    |          |                                                       |    |

|    | 5.4.5                | Serial Port Connectors                                     | 30 |
|----|----------------------|------------------------------------------------------------|----|
|    | 5.4.6                | Keyboard and Mouse Connector                               | 31 |
|    | 5.4.7                | USB Connector                                              | 32 |
|    | 5.5                  | Fan Headers                                                | 32 |
| 6. | Jumpei               | r Block Settings                                           | 34 |
|    | 6.1                  | Recovery Jumper Blocks                                     | 34 |
|    | 6.2                  | BIOS Select Jumper                                         | 35 |
|    | 6.3                  | Other Configuration Jumpers                                | 35 |
| 7. | Intel <sup>®</sup> L | ight-Guided Diagnostics                                    | 36 |
|    | 7.1                  | 5-Volt Standby LED                                         | 36 |
|    | 7.2                  | Fan Fault LEDs                                             | 36 |
|    | 7.3                  | System ID LED, System Status LED, and POST Diagnostic LEDs | 36 |
|    | 7.4                  | DIMM Fault LEDs                                            | 36 |
|    | 7.5                  | Processor Fault LEDs                                       | 37 |
| 8. | Power                | and Environmental Specifications                           | 38 |
|    | 8.1                  | Intel® Server Board S5000VSA Design Specifications         | 38 |
|    | 8.2                  | Processor Power Support                                    | 38 |
|    | 8.3                  | Power Supply Specifications                                | 39 |
|    | 8.3.1                | Output Power/Currents                                      | 39 |
|    | 8.3.2                | Grounding                                                  | 40 |
|    | 8.3.3                | Standby Outputs                                            | 40 |
|    | 8.3.4                | Remote Sense                                               | 40 |
|    | 8.3.5                | Voltage Regulation                                         | 40 |
|    | 8.3.6                | Dynamic Loading                                            | 41 |
|    | 8.3.7                | Capacitive Loading                                         | 41 |
|    | 8.3.8                | Closed Loop Stability                                      | 41 |
|    | 8.3.9                | Common Mode Noise                                          | 42 |
|    | 8.3.10               | Ripple/Noise                                               | 42 |
|    | 8.3.11               | Timing Requirements                                        | 42 |
|    | 8.3.12               | Residual Voltage Immunity in Standby Mode                  | 44 |
| 9. | Regula               | tory and Certification Information                         | 45 |
|    | 9.1                  | Product Regulatory Compliance                              | 45 |
|    | 9.1.1                | Product Safety Compliance                                  | 45 |
|    | 9.1.2                | Product EMC Compliance – Class A Compliance                | 46 |
|    | 9.1.3                | Certifications/Registrations/Declarations                  | 46 |

|          | C. POST Code Diagnostic LEDS           |    |
|----------|----------------------------------------|----|
|          | C: POST Code Diagnostic LEDs           |    |
| Appendix | B: Sensor Tables                       | 52 |
| Appendix | A: Integration and Usage Tips          | 51 |
| 9.3.6    | RRL (Korea)                            | 50 |
| 9.3.5    | BSMI (Taiwan)                          | 50 |
| 9.3.4    | VCCI (Japan)                           | 50 |
| 9.3.3    | Europe (CE Declaration of Conformity)  | 50 |
| 9.3.2    | ICES-003 (Canada)                      | 49 |
| 9.3.1    | FCC Verification Statement (USA)       | 49 |
| 9.3      | Electromagnetic Compatibility Notices  | 49 |
| 9.2      | Product Regulatory Compliance Markings | 47 |
| 9.1.4    | Product Ecology Requirements           | 46 |

# List of Figures

| Figure 1. Intel <sup>®</sup> Server Board S5000VSA picture                             | 3  |
|----------------------------------------------------------------------------------------|----|
| Figure 2. Intel <sup>®</sup> Server Board S5000VSA – Key Connectors and LED Indicators | 4  |
| Figure 3. Intel <sup>®</sup> Server Board S5000VSA – Mounting Hole Locations           | 5  |
| Figure 4. Intel <sup>®</sup> Server Board S5000VSA – Duct Keep Out Detail              | 6  |
| Figure 5. Intel <sup>®</sup> Server Board S5000VSA ATX I/O Layout                      | 6  |
| Figure 6. CEK Processor Mounting                                                       | 10 |
| Figure 7. Minimum Two DIMM Memory Configuration                                        | 11 |
| Figure 8. Minimum Two DIMM Memory Configuration                                        | 12 |
| Figure 9. Recovery Jumper Blocks (J1J1, J1J2)                                          | 34 |
| Figure 10. BIOS Select Jumper (J3H1)                                                   | 35 |
| Figure 11. System ID LED and System Status LED Locations                               | 36 |
| Figure 12. DIMM Fault LED Locations                                                    | 37 |
| Figure 13. Processor Fault LED Locations                                               | 37 |
| Figure 14. Output Voltage Timing                                                       | 43 |
| Figure 15, POST Code Diagnostic LEDs                                                   | 55 |

# List of Tables

| Table 1. Feature Set                                                                     | 2        |
|------------------------------------------------------------------------------------------|----------|
| Table 2. Processor Support Matrix                                                        | 8        |
| Table 3. I <sup>2</sup> C Addresses for Memory Module SMB                                | 10       |
| Table 4. Maximum 8 DIMM System Memory Configuration – x8 (Width) Single Rank = 1         | Load 11  |
| Table 5. Maximum 8 DIMM System Memory Configuration – x4 (Width) Dual Rank = 2 L         | oads. 11 |
| Table 6. Video Modes                                                                     | 16       |
| Table 7. Video Memory Interface                                                          | 17       |
| Table 8. Dual Video                                                                      | 18       |
| Table 9. NIC Status LED                                                                  | 18       |
| Table 10. Serial A Header Pin-out                                                        | 19       |
| Table 11. Summary of LEDs on the Intel® Server Board S5000VSA                            | 24       |
| Table 12. Board Connector Matrix                                                         | 26       |
| Table 13. Power Connector Pin-Out (J9C1)                                                 | 27       |
| Table 14. 12-V Power Connector Pin-Out (J4K1)                                            | 27       |
| Table 15. Power Supply Signal Connector Pin-Out (J1K1)                                   | 27       |
| Table 16. 24-pin SSI control panel connector (J1F1)                                      | 28       |
| Table 17. VGA Connector Pin-out (J7A1)                                                   | 28       |
| Table 18. RJ-45 10/100/1000 NIC Connector Pin-Out (JA6A1, JA6A2)                         | 29       |
| Table 19. ATA-100 44-pin Connector Pin-Out (J2K3)                                        | 29       |
| Table 20. SATA Connector Pin-Out (J1K3, J1J7, J1J4, J1H3, J1H1, J1G6)                    | 30       |
| Table 21. External RJ-45 Serial B Port Pin-Out (J9A2)                                    | 31       |
| Table 22. Internal 9-pin Serial A Header Pin-Out (J1B1)                                  | 31       |
| Table 23. Stacked PS/2 Keyboard and Mouse Port Pin-Out (J9A1)                            | 31       |
| Table 24. External USB Connector Pin-Out (JA6A1, JA6A2)                                  | 32       |
| Table 25. Internal USB Connector Pin-Out (J1J8)                                          | 32       |
| Table 26. SSI Fan Connector Pin-Out (J9K1, J5K1, J1K4, J1K5, J2K2, J2K5, J9B1, J9B       | 32) 33   |
| Table 27. Recovery Jumper Blocks (J1J1, J1J2)                                            | 34       |
| Table 28. Other Configuration Jumpers                                                    | 35       |
| Table 29. Server Board Design Specifications                                             | 38       |
| Table 30. Intel <sup>®</sup> Xeon <sup>®</sup> Processor 5000 Sequence DP TDP Guidelines | 38       |
| Table 31. Load Ratings                                                                   | 39       |
| Table 32 Voltage Regulation Limits                                                       | 40       |

| Table 33. Transient Load Requirements      | 41 |
|--------------------------------------------|----|
| Table 34. Capacitive Loading Conditions    | 41 |
| Table 35. Ripple and Noise                 | 42 |
| Table 36. Output Voltage Timing            | 42 |
| Table 37. Turn On/Off Timing               | 43 |
| Table 38. Integrated BMC Core Sensors      | 53 |
| Table 39. POST Progress Code LED Example   | 55 |
| Table 40. Diagnostic LED Post Code Decoder | 56 |
| Table 41. Diagnostic LED POST Code Decoder | 56 |

< This page intentionally left blank.>

Intel order number: D36978-010

## 1. Introduction

This Technical Product Specification (TPS) provides board specific information detailing features, functionality, and high-level architecture of the Intel® Server Board S5000VSA. For more in-depth detail of various board sub-systems including chipset, BIOS, and system management, you can also reference the Intel® 5000 Series Chipset Server Board Family Datasheet.

In addition, you can obtain design-level information for specific sub-systems by ordering the External Product Specifications (EPS) or External Design Specifications (EDS) for a given sub-system. EPS and EDS documents are not publicly available and must be ordered through your local Intel representative.

## 1.1 Chapter Outline

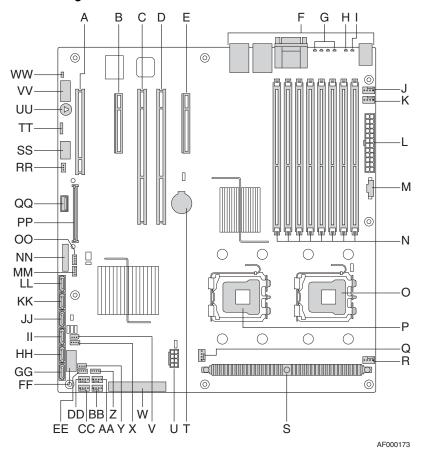
This document is divided into the following chapters:

- Chapter 1 Introduction
- Chapter 2 Intel<sup>®</sup> Server Board S5000VSA Overview
- Chapter 3 Functional Architecture
- Chapter 4 Platform Management
- Chapter 5 Connector/Header Location and Pin-out
- Chapter 6 Jumper Block Settings
- Chapter 7 Intel<sup>®</sup> Light-Guided Diagnostics
- Chapter 8 Power and Environmental Specifications
- Chapter 9 Regulatory and Certification Information
- Appendix A Integration and Usage Tips
- Appendix B Sensor Tables
- Appendix C POST Error Messages and Handling
- Glossary

## 1.2 Server Board Use Disclaimer

Intel<sup>®</sup> Server Boards support add-in peripherals and contain high-density VLSI and power delivery components that need adequate airflow to cool. Intel ensures through its own chassis development and testing that when Intel server building blocks are used together, the fully integrated system will meet the intended thermal requirements of these components. It is the responsibility of the system integrator who chooses not to use Intel developed server building blocks to consult vendor datasheets and operating parameters to determine the amount of air flow required for their specific application and environmental conditions. Intel Corporation cannot be held responsible if components fail or the server board does not operate correctly when used outside any of their published operating or non-operating limits.

## 2. Product Overview


The Intel® Server Board S5000VSA is a monolithic printed circuit board (PCB) with features designed to support the pedestal server markets.

## 2.1 Feature Set

**Table 1. Feature Set** 

| Feature           | Description                                                                                                                                                                                                                               |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Processors        | 771-pin LGA sockets supporting the following processors:  One or two Dual-Core Intel® Xeon® processors 5000 or 5100 sequence with a                                                                                                       |  |  |  |  |
|                   | • 677-, 1066-, or 1333-MHz front side bus with frequencies starting at 2.67 GHz.                                                                                                                                                          |  |  |  |  |
|                   | <ul> <li>Up to two Quad-Core Intel<sup>®</sup> Xeon<sup>®</sup> processors 5300 sequence with a 1066- or</li> </ul>                                                                                                                       |  |  |  |  |
|                   | <ul> <li>1333-MHz front side bus.</li> </ul>                                                                                                                                                                                              |  |  |  |  |
|                   | <ul> <li>Up to two 45 nm 2P Dual-Core Intel Xeon processors. Product codes<br/>S5000VSASATAR, S5000VSASASR, S5000VSASCSIR, and S5000VSA4DIMMR<br/>only.</li> </ul>                                                                        |  |  |  |  |
|                   | <ul> <li>Up to two 45 nm next generation Quad-Core Intel Xeon processors. Product codes<br/>S5000VSASATAR, S5000VSASASR, S5000VSASCSIR, and S5000VSA4DIMMR<br/>only.</li> </ul>                                                           |  |  |  |  |
| Memory            | Maximum support for 32 GB. Four or eight (based on board SKU type) DIMM slots supporting fully buffered DIMM technology (FBDIMM) memory. 240-pin DDR2-533 and DDR2-667 FBDIMMs may be used.  Note: Full DIMM heat spreaders are required. |  |  |  |  |
| Chipset           |                                                                                                                                                                                                                                           |  |  |  |  |
| Onipact           | Intel® S5000V chipset, including: Intel® S5000V MCH                                                                                                                                                                                       |  |  |  |  |
|                   | ■ Intel <sup>®</sup> ESB2-E                                                                                                                                                                                                               |  |  |  |  |
| I/O Control       | External connections:  Stacked PS/2* ports for keyboard and mouse                                                                                                                                                                         |  |  |  |  |
|                   | DB9 Serial port                                                                                                                                                                                                                           |  |  |  |  |
|                   | <ul> <li>Two RJ-45 NIC connectors for 10/100/1000 Mb connections</li> </ul>                                                                                                                                                               |  |  |  |  |
|                   | Seven USB 2.0 ports (4 rear, 2 front, and 1 floppy) Internal Connections:                                                                                                                                                                 |  |  |  |  |
|                   | o One RS-232 Serial                                                                                                                                                                                                                       |  |  |  |  |
|                   | o One P-ATA133                                                                                                                                                                                                                            |  |  |  |  |
|                   | <ul> <li>Six SATA (300MB) connectors with integrated RAID 0/1/5/10 support</li> </ul>                                                                                                                                                     |  |  |  |  |
|                   | SSI-compliant front panel header                                                                                                                                                                                                          |  |  |  |  |
|                   | <ul> <li>SSI-compliant 24-pin main power connector, supporting the ATX-12V standard on<br/>the first 20 pins.</li> </ul>                                                                                                                  |  |  |  |  |
| Video             | On-board ATI* ES1000 video controller with 16MB DDR SDRAM external video memory                                                                                                                                                           |  |  |  |  |
| Hard Drives       | Support for six SATA-300 hard drives                                                                                                                                                                                                      |  |  |  |  |
| LAN               | Intel® 82563EB dual port controller for 10/100/1000 Mbit/sec Ethernet LAN connectivity                                                                                                                                                    |  |  |  |  |
| Fans              | Support for two processor fans, five system fans, and one memory fan                                                                                                                                                                      |  |  |  |  |
| System Management | Support for Intel® System Management Software                                                                                                                                                                                             |  |  |  |  |

## 2.2 Server Board Layout



| A. PCI 32/33 Slot 1            | B. PCI Express* x4 Slot 3  | C. PCI-X* 64/133 Slot 4      |
|--------------------------------|----------------------------|------------------------------|
| D. PCI-X* 64/100 Slot 5        | E. PCI Express* x4 Slot 6  | F. Back Panel I/O Ports      |
| G. Diagnostic LEDs             | H. System ID LED           | I. System Status LED         |
| J. System Fan 6                | K. System Fan 5            | L. Main Power Connector      |
| M. Auxiliary Signal Connector  | N. DIMM Sockets            | O. Processor 1 Socket        |
| P. Processor 2 Socket          | Q. Processor Fan 2 Header  | R. Processor Fan 1 Header    |
| S. Processor Voltage Regulator | T. Battery                 | U. Processor Power Connector |
| V. IPMB Header                 | W. SAS RAID5 Key           | X. IDE Connector             |
| Y. LCP Header                  | Z. SAS_SES2                | AA. SAS SGPIO                |
| BB. System Fan 3               | CC. System Fan 4           | DD. System Fan 2             |
| EE. System Fan 1               | FF. SATA SGPIO             | GG. USB 4-5                  |
| HH. SATA 0 Connector           | II. SATA 1 Connector       | JJ. SATA 2/SAS 0 Connector   |
| KK. SATA 3/SAS 1 Connector     | LL. SATA 4/SAS 2 Connector | MM. SATA 5/SAS 3 Connector   |
| NN. Backplane Connector B      | OO. Front Panel Header     | PP. Backplane Connector A    |
| QQ. USB 6(J1E2)                | RR. SATA RAID5 Key         | SS. Speaker                  |
| TT. Serial B EMP Connector     | UU. Chassis Intrusion      |                              |

Note: The USB 6 (J1E2) port (Q), the diagnostic LEDs (G), the system ID LED (H), and the system status LED (I) are not included on the Intel® Server Board S5000VSA4DIMM/S5000VSA4DIMMR boards.

Figure 1. Intel<sup>®</sup> Server Board S5000VSA picture

## 2.2.1 Server Board Mechanical Drawing

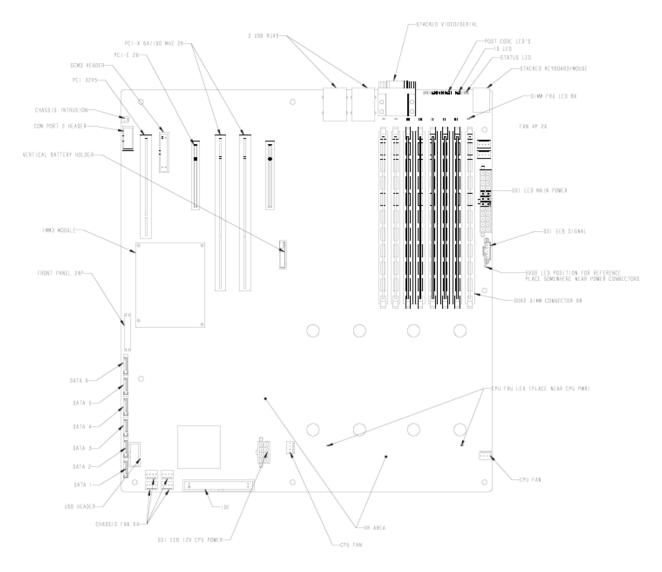



Figure 2. Intel $^{\tiny{\$}}$  Server Board S5000VSA – Key Connectors and LED Indicators

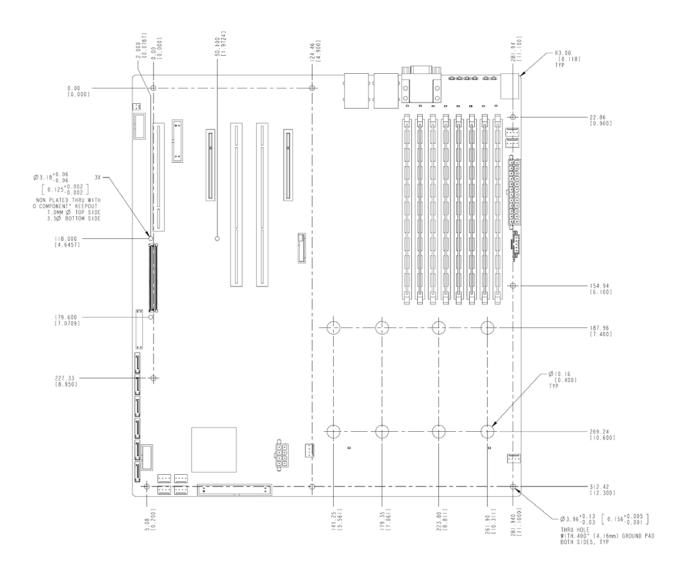



Figure 3. Intel<sup>®</sup> Server Board S5000VSA – Mounting Hole Locations

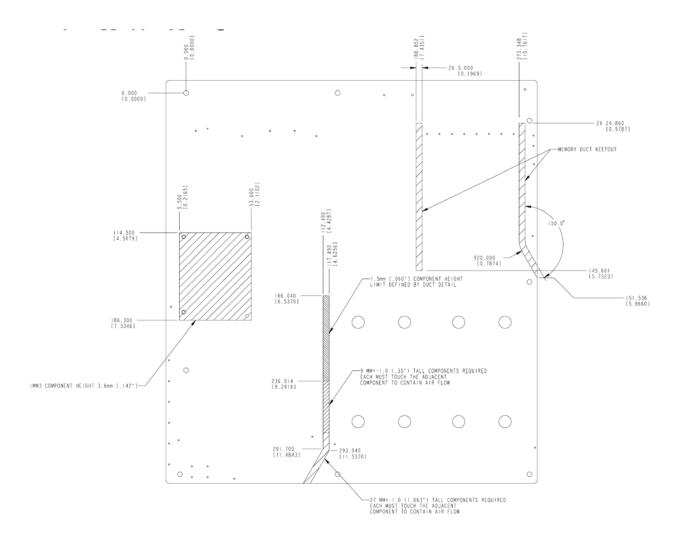



Figure 4. Intel<sup>®</sup> Server Board S5000VSA – Duct Keep Out Detail

## 2.3 Feature Set

The following figure shows the layout of the rear I/O components for the server board.

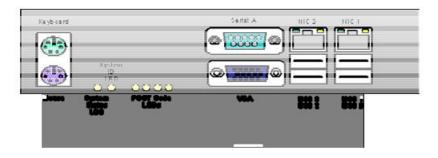



Figure 5. Intel® Server Board S5000VSA ATX I/O Layout

## 3. Functional Architecture

The architecture and design of the Intel® Server Board S5000VSA is based on the Intel® 5000V Chipset. The chipset is designed for systems based on the Intel® Xeon® processor 5000 or 5100 sequence and supports Front Side Bus (FSB) frequencies of 1066 MTS/1333 MTS. The chipset contains two main components: the Memory Controller Hub (MCH) for the host bridge, and the I/O controller hub for the I/O sub-system.

The Intel® 5000V chipset uses the Enterprise South Bridge (ESB2-E) for the I/O controller hub. This chapter provides a high-level description of the functionality associated with each chipset component and the architectural blocks that make up the Intel® Server Board S5000VSA. For more detailed descriptions for each of the functional architecture blocks, refer to the Intel® 5000 Series Chipset Server Board Family Datasheet.

## 3.1 Intel 5000V Controller Hub (MCH)

The Intel® 5000V Memory Controller Hub (MCH) chip is packaged in a 1432 pin FCBGA package. It supports the Intel® Xeon® processor 5000 sequence (1067 MTS/1333 MTS) package. This package uses the matching LGA771 socket.

## 3.1.1 Processor Sub-system

The MCH supports a FSB frequency of 267MHz/333MHz (1067 MTS/1333 MTS) using a point-to-point, dual inline bus (DIB) processor system bus interface. Each processor FSB supports a peak address generation rates of 133 million addresses per second. Both FSB data buses are quad-pumped 64-bits, which allow peak bandwidths of 8.5GB/s (1067MT/s) or 10.7GB/s (1333MT/s) depending on the processor used.

The support circuitry for the processor sub-system consists of the following:

- Dual LGA771 zero insertion force (ZIF) processor sockets
- Processor host bus AGTL+ support circuitry
- Reset configuration logic
- Processor module presence detection logic
- BSEL detection capabilities
- CPU signal level translation
- Common Enabling Kit Direct Chassis Attach (CEK DCA) CPU retention support

For detailed information about the functional architecture provided by the chipset, refer to the Intel® 5000 Series Chipset Server Board Family Datasheet.

### 3.1.1.1 Processor Support

The server board supports the following processors:

- One or two Intel<sup>®</sup> Xeon<sup>®</sup> processors 5000 or 5100 sequence with a 677-, 1066-, or 1333-MHz front side bus (FSB) with frequencies starting at 2.67 GHz.
- Up to two Intel<sup>®</sup> Xeon<sup>®</sup> processors 5300 sequence with a 1066- or 1333-MHz front side bus.
- Up to two 45 nm 2P Intel<sup>®</sup> Xeon<sup>®</sup> processors. Product codes S5000VSASATAR, S5000VSASASR, S5000VSASCSIR, and S5000VSA4DIMMR only.
- Up to two 45 nm next generation Intel<sup>®</sup> Xeon<sup>®</sup> processors. Product codes S5000VSASATAR, S5000VSASASR, S5000VSASCSIR, and S5000VSA4DIMMR only.

This server board does not support previous generations of the Intel<sup>®</sup> Xeon<sup>®</sup> processor. Refer to the following table for a detailed list of supported, multi-core Intel<sup>®</sup> Xeon<sup>®</sup> processors 5000 sequence. For a complete updated list of supported processors, refer to: http://support.intel.com/support/motherboards/server/s5000vsa/.

**Table 2. Processor Support Matrix** 

| CPU Number                          | sSpec Number        | Core Speed | Bus Speed | L2 Cache Size | Core Stepping | Notes<br>(See Below) |
|-------------------------------------|---------------------|------------|-----------|---------------|---------------|----------------------|
| Intel® Xeon® Processor 5300 series: |                     |            |           |               |               |                      |
| X5355                               | SLAC4               | 2.66 GHz   | 1333 MHz  | 8 MB          | B3            | 4,5                  |
| X5355                               | SL9YM               | 2.66 GHz   | 1333 MHz  | 8 MB          | B3            | 4,5                  |
| E5345                               | SLAC5               | 2.33 GHz   | 1333 MHz  | 8 MB          | B3            | 4,5                  |
| E5345                               | SL9YL               | 2.33 GHz   | 1333 MHz  | 8 MB          | B3            | 4,5                  |
| E5335                               | SLAC7               | 2.00 GHz   | 1333 MHz  | 8 MB          | В3            | 4,5                  |
| E5335                               | SL9YK               | 2.00 GHz   | 1333 MHz  | 8 MB          | B3            | 4,5                  |
| E5320                               | SLAC8               | 1.86 GHz   | 1066 MHz  | 8 MB          | B3            | 4,5                  |
| E5320                               | SL9MV               | 1.86 GHz   | 1066 MHz  | 8 MB          | B3            | 4,5                  |
| L5320                               | SLAC9               | 1.86 GHz   | 1066 MHz  | 8 MB          | B3            | 4,5,6                |
| L5320                               | SLA4Q               | 1.86 GHz   | 1066 MHz  | 8 MB          | В3            | 4,5,6                |
| E5310                               | SLACB               | 1.60 GHz   | 1066 MHz  | 8 MB          | В3            | 4,5                  |
| E5310                               | SL9XR               | 1.60 GHz   | 1066 MHz  | 8 MB          | В3            | 4,5                  |
| L5310                               | SLACA               | 1.60 GHz   | 1066 MHz  | 8 MB          | В3            | 4,5,6                |
| L5310                               | SLAEQ               | 1.60 GHz   | 1066 MHz  | 8 MB          | В3            | 4,5,6                |
| L5310                               | SL9MT               | 1.60 GHz   | 1066 MHz  | 8 MB          | В3            | 4,5,6                |
| Intel® Xeon® Pro                    | cessor 5100 series: |            |           |               |               |                      |
| 5160                                | SLABS               | 3.00 GHz   | 1333 MHz  | 4 MB          | B2            | 2                    |
| 5160                                | SL9RT               | 3.00 GHz   | 1333 MHz  | 4 MB          | B2            | 2                    |
| 5150                                | SLABM               | 2.66 GHz   | 1333 MHz  | 4 MB          | B2            | 2                    |
| 5150                                | SL9RU               | 2.66 GHz   | 1333 MHz  | 4 MB          | B2            | 2                    |
| 5148                                | SLABH               | 2.33 GHz   | 1333 MHz  | 4 MB          | B2            | 2,3, 7               |
| 5148                                | SL9RR               | 2.33 GHz   | 1333 MHz  | 4 MB          | B2            | 2,7                  |
| 5140                                | SLABN               | 2.33 GHz   | 1333 MHz  | 4 MB          | B2            | 2                    |
| 5140                                | SL9RW               | 2.33 GHz   | 1333 MHz  | 4 MB          | B2            | 2                    |
| 5138                                | SL9RN               | 2.13 GHz   | 1066 MHz  | 4 MB          | B2            | 8                    |
| 5130                                | SLABP               | 2.00 GHz   | 1333 MHz  | 4 MB          | B2            | 2                    |
| 5130                                | SL9RX               | 2.00 GHz   | 1333 MHz  | 4 MB          | B2            | 2                    |
| 5120                                | SLABQ               | 1.86 GHz   | 1066 MHz  | 4 MB          | B2            | 2                    |

| CPU Number       | sSpec Number       | Core Speed  | Bus Speed | L2 Cache Size | Core Stepping | Notes<br>(See Below) |
|------------------|--------------------|-------------|-----------|---------------|---------------|----------------------|
| 5120             | SL9RY              | 1.86 GHz    | 1066 MHz  | 4 MB          | B2            | 2                    |
| 5110             | SLABR              | 1.60 GHz    | 1066 MHz  | 4 MB          | B2            | 2                    |
| 5110             | SL9RZ              | 1.60 GHz    | 1066 MHz  | 4 MB          | B2            | 2                    |
| Dual-Core Intel® | Xeon® Processor 50 | 000 series: |           |               |               |                      |
| 5030             | SL96E              | 2.67 GHz    | 667 MHz   | 2x2MB         | C1            |                      |
| 5050             | SL96C              | 3.00 GHz    | 667 MHz   | 2x2MB         | C1            |                      |
| 5060             | SL96A              | 3.20 GHz    | 1066 MHz  | 2x2MB         | C1            |                      |
| 5063             | SL96B              | 3.20 GHz    | 1066 MHz  | 2x2MB         | C1            | 1                    |
| 5080             | SL968              | 3.73 GHz    | 1066 MHz  | 2x2MB         | C1            | ·                    |

#### Notes:

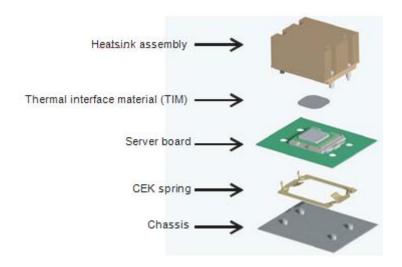
- Intel<sup>®</sup> Xeon<sup>®</sup> processor 5063 is a medium voltage SKU with lower wattage consumption—ideal for rack servers.
- 2. Your Intel<sup>®</sup> Server Board requires BIOS version 54 or later to support this processor.
- Intel<sup>®</sup> Xeon<sup>®</sup> processor LV 5148 is a low voltage SKU with lower wattage consumption—ideal for rack servers.
- 4. Intel<sup>®</sup> Xeon<sup>®</sup> processor 5300 series employs Intel<sup>®</sup> Advanced Smart Cache (Shared Cache). Features 4 MB Smart Cache per core pair.
- Important Information on: <a href="http://www.intel.com/support/motherboards/server/sb/CS-023585.htm">http://www.intel.com/support/motherboards/server/sb/CS-023585.htm</a> of the Intel<sup>®</sup> Xeon<sup>®</sup> processor 5300 series.
- 6. These processors have a Thermal Design Power (TDP) of 50 W.
- 7. These processors have a TDP of 40 W.

## 3.1.2 Thermal Design Power of 35 W (Processor Population Rules)

When two processors are installed, both must be of identical revision, core voltage, and bus/core speed. When only one processor is installed, it must be in the socket labeled CPU1. The other socket must be empty.

You must populate the processors in sequential order. Therefore, you must populate processor socket 1 (CPU1) *before* processor socket 2 (CPU2).

The board is designed to provide up to 130 A of current per processor. This server board does not support processors with higher current requirements.


No terminator is required in the second processor socket when using a single processor configuration.

## 3.1.3 Common Enabling Kit (CEK) Design Support

The server board complies with Intel's Common Enabling Kit (CEK) processor mounting and heatsink retention solution. The server board ships with a CEK spring snapped onto the underside of the server board, beneath each processor socket. The heatsink attaches to the CEK over the top of the processor and the thermal interface material (TIM). Refer to the

following figure for the stacking order of the chassis, CEK spring, server board, TIM, and heatsink.

The CEK spring is removable, allowing the use of non-Intel heatsink retention solutions.



**Figure 6. CEK Processor Mounting** 

## 3.1.4 Memory Sub-system

The MCH provides two channels of fully buffered DIMM (FB-DIMM) memory. Each channel can support up to 4 DIMMs. FB-DIMM memory channels are organized in to a single branch. The MCH can support up to 8 DIMM or a maximum memory size of 32 GB. The read bandwidth for each FB-DIMM channel is 4.25 GB/s for DDR533 FB-DIMM memory, which gives a total read bandwidth of 8.5 GB/s for two FB-DIMM channels. The read bandwidth for each FB-DIMM channel is 5.35 GB/s for DDR667 FB-DIMM memory which gives a total read bandwidth of 10.7GB/s for two FB-DIMM channels. Therefore, this provides 2.65 GB/s of write memory bandwidth for two FB-DIMM channels. This bandwidth is based on read bandwidth; therefore, the total bandwidth is 8.5 GB/s for 533 FB-DIMM and 10.7 GB/s for 667 FB-DIMM.

To boot the system, the system BIOS on the server board uses a dedicated I<sup>2</sup>C bus to retrieve DIMM information needed to program the MCH memory registers. The following table provides the I<sup>2</sup>C addresses for each DIMM slot:

Device Address DIMM A1 0xA0 DIMM A2 0xA2 DIMM A3 0xA4 DIMM A4 0xA6 DIMM B1 0xA0 DIMM B2 0xA2 DIMM B3 0xA4 DIMM B4 0xA6

Table 3. I<sup>2</sup>C Addresses for Memory Module SMB

## 3.1.5 Supported Memory

The server board supports up to eight (four for the 4-DIMM SKU) DDR2-533 or DDR2-667 Fully Buffered DIMM memory (FBDIMM memory). This board does NOT support non-fully buffered DDR2 DIMMs. The following tables show the maximum memory configurations supported using specified memory technology.

Table 4. Maximum 8 DIMM System Memory Configuration – x8 (Width) Single Rank = 1 Load

| DRAM Technology x8<br>Single Rank (64M8=64M x | Maximum Capacity |
|-----------------------------------------------|------------------|
| $8b=16M \times 8b \times 4 $ banks)           |                  |
| 512 Mb (Density)                              | 2 GB             |

Table 5. Maximum 8 DIMM System Memory Configuration – x4 (Width) Dual Rank = 2 Loads

| DRAM Technology x4<br>Dual Rank(128M4=128M<br>x4b=32M x 4b x 4 banks) | Maximum Capacity |
|-----------------------------------------------------------------------|------------------|
| 512 Mb (Density)                                                      | 4 GB             |

## 3.1.6 DIMM Population Rules

DIMM population rules depend on the operating mode of the memory controller. On the server board, you must populate DIMMs in the following order: A1 and B1, A2 and B2, and so forth. The server board will support the population of DIMMs with different speed ratings; however, this is not recommended. The overall system memory speed is determined by the slowest DIMM populated.

#### 3.1.6.1.1 Minimum Configuration

The following diagram shows a minimum two DIMM memory configuration for the server board. Populated DIMM slots are shown in Gray.

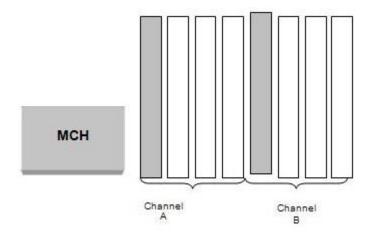



Figure 7. Minimum Two DIMM Memory Configuration

**Note:** The server board BIOS supports single DIMM mode operation, although this is generally not recommended for "performance" applications. This configuration is only supported with a 512MB FBDIMM installed in DIMM slot A1.

The Intel® Server Board S5000VSA (all SKUs) does not support the memory mirroring feature; this is a chipset limitation.

### 3.1.7 Memory Mirroring

The Intel 5000P MCH and Intel 5000X MCH components provide the ability to configure the available set of FBDIMMs in the mirrored configuration. Server boards with only one memory branch do not support memory mirroring.

### Memory RAS Limitation:

The Intel Server Board S5000VSA uses the Intel 5000V MCH chipset. The Intel 5000V has only one memory branch. Consequently, memory mirroring is not supported and memory is limited to a maximum of 32 GB.

### 3.1.7.1.1 Memory Upgrades

The minimum memory upgrade increment is two DIMMs. The DIMMs must cover the same slot number on both channels. DIMMs that cover a slot number must be identical with respect to size, speed, and organization. DIMMs that cover adjacent slot positions do need to be identical.

When adding two DIMMs to the configuration shown in the following figure, you should populate the DIMMs in DIMM slots A2 and B2 as shown. Populated DIMM slots are shown in Gray.

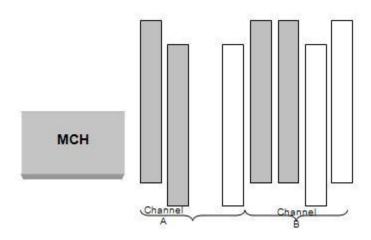



Figure 8. Minimum Two DIMM Memory Configuration

## 3.2 Enterprise South Bridge (ESB2-E)

The ESB2-E is a multi-function device that merges four distinct functions: an ICH6-like controller; a PCI-X\* Bridge, a Gigabit Ethernet controller, and a BMC. Each function within the ESB2-E has its own set of configuration registers. Once configured, each appears to the system as a distinct hardware controller.

A primary role of the ESB2-E is to provide the gateway to all PC-compatible I/O devices and features. The baseboard uses the following ESB2-E features:

- PCI-X\* bus interface
- Six Channel SATA interface w/SATA Busy LED Control
- Dual Gbe MAC
- Baseboard Management Controller (BMC)
- Single ATA interface with Ultra DMA 100 capability
- Universal Serial Bus 2.0 (USB) interface
- LPC bus interface
- PC-compatible timer/counter and DMA controllers
- APIC and 8259 interrupt controller
- Power management
- System RTC
- General purpose I/O

This section describes the function of each I/O interface and how they operate on the server board.

#### 3.2.1 PCI Sub-system

### 3.2.2 PCI Express\* Overview

The MCH supports three x4 PCI Express\* ports. PCI Express is a high-speed, frame-based, serial I/O interface that can achieve peak theoretical bandwidths of 2 GB/s per x4 port (1 GB/s in each direction). You can configure these ports in a number of different combinations thus enhancing the scalability and performance of the system. The following is the PCI Express\* port configuration used by the server board.

Server Board Configuration:

Port 0 (x4): Otherwise known as the Enterprise Server Interface (ESI) port, Port [0] connects to the ESB2-E. Although the ESI port follows the standard PCI Express\* protocol, it also executes proprietary commands only used between Intel chipsets.

Port 2 and Port 3 (2 x4 = x8): Otherwise known as the Direct Memory Access (DMA) port, x4 Ports [3:2] combine to create a x8 port which also connects to the ESB2-E. The DMA port follows the standard PCI Express\* protocol, but allows direct access to memory for higher speed I/O transactions.

#### 3.2.3 PCI Express\* Hot-Plug

The server board does not support PCI Express\* hot-plug.

### 3.2.4 SATA Support

The integrated Serial ATA (SATA) controller of the ESB2-E provides six SATA ports on the server board. You can enable/disable and/or configure the SATA ports by accessing the BIOS Setup Utility during POST.

The SATA function in the ESB2-E has dual modes of operation to support different operating system conditions. In the case of native IDE-enabled operating systems, the ESB2-E has separate PCI functions for serial and parallel ATA. To support legacy operating systems, there is only one PCI function for both the serial and parallel ATA ports. The MAP register provides the ability to share PCI functions. When sharing is enabled, all decode of I/O is done through the SATA registers. A software write to the Function Disable Register (D31, F0, offset F2h, bit 1) causes Device 31, Function 1 (IDE controller) to hidden, and its configuration registers are not used. The SATA Capability Pointer Register (offset 34h) will change to indicate that MSI is not supported in the combined mode.

The ESB2-E SATA controller features two sets of interface signals that can be independently enabled or disabled. Each interface is supported by an independent DMA controller. The ESB2-E SATA controller interacts with an attached mass storage device through a register interface that is equivalent to that presented by a traditional IDE host adapter. The host software follows existing standards and conventions when accessing the register interface and follows standard command protocol conventions.

SATA interface transfer rates are independent of UDMA mode settings. SATA interface transfer rates operate at the bus's maximum speed, regardless of the UDMA mode reported by the SATA device or the system BIOS.

#### 3.2.5 SATA RAID

The Intel® Embedded RAID Technology II solution, available with the ESB2-E ICH6, offers data striping for higher performance (RAID Level 0), alleviating disk bottlenecks by taking advantage of the dual independent SATA controllers integrated in the ESB2-E ICH6. There is no loss of PCI resources (request/grant pair) or add-in card slot.

Intel® Embedded RAID Technology II functionality requires the following items:

- ESB2-E ICH6
- Intel<sup>®</sup> Embedded RAID Technology II Option ROM must be on the server board
- Intel<sup>®</sup> Application Accelerator RAID Edition drivers, most recent revision
- Two SATA hard disk drives

Intel® Embedded RAID Technology II is not available in the following configurations:

- The SATA controller in compatible mode.
- Intel<sup>®</sup> Embedded RAID Technology II is disabled.

### 3.2.6 Intel® Embedded RAID Technology II Option ROM

The Intel® Embedded RAID Technology II for SATA Option ROM provides a pre-operating system user interface for the Intel® Embedded RAID Technology II implementation and provides the ability for an Intel® Embedded RAID Technology II volume to be used as a boot disk and detect any faults in the Intel® Embedded RAID Technology II volume(s) attached to the Intel® RAID controller.

## 3.2.7 Parallel ATA (PATA) Support)

The integrated IDE controller of the ESB2-E ICH6 provides one IDE channel. This IDE channel is capable of supporting one optical drive. A standard high density 40-pin IDE connector interfaces with the primary IDE channel signals. You can configure and enable or disable the IDE channels by accessing the BIOS Setup Utility during POST.

The BIOS supports the ATA/ATAPI Specification, version 6 or later. It initializes the embedded IDE controller in the chipset south-bridge and the IDE devices connected to these devices. The BIOS scans the IDE devices and programs the controller and devices with their optimum timings. The IDE disk read/write services provided by the BIOS use PIO mode, but the BIOS programs the necessary Ultra DMA registers in the IDE controller so the operating system can use the Ultra DMA modes.

The BIOS initializes and supports ATAPI devices such as LS-120/240, CD-ROM, CD-RW, and DVD.

The BIOS initializes and supports SATA devices just like PATA devices. It initializes the embedded the IDE controllers in the chipset and any SATA devices connected to these controllers. From a software standpoint, SATA controllers present the same register interface as the PATA controllers. Hot-plugging SATA drives during the boot process is not supported by the BIOS and may result in undefined behavior.

#### 3.2.8 Ultra ATA/133

The IDE interface of the ESB2-E ICH DMA protocol redefines signals on the IDE cable to allow both host and target throttling of data and transfer rates of up to 133MB/s.

#### 3.2.9 IDE Initialization

The BIOS supports the ATA/ATAPI Specification, version 6 or later. The BIOS initializes the embedded IDE controller in the chipset (ESB2-E ICH) and the IDE device connected to these devices. The BIOS scans the IDE device and programs the controller and the device with their optimum timings. The IDE disk read/write services provided by the BIOS use PIO mode, but the BIOS programs the necessary Ultra DMA registers in the IDE controller so the operating system can use the Ultra DMA Modes.

### 3.2.10 USB 2.0 Support

The USB controller functionality integrated into ESB2-E ICH6 provides the server board with the interface for up to seven USB 2.0 ports. Four external connectors are located on the back edge of the server board. One internal 1x10 header is provided, capable of supporting an additional two optional USB 2.0 ports. There is also a USB port intended for USB floppy support.

Considering board positioning, the Intel<sup>®</sup> Server Board 5000SVA SATA 4DIMM SKU will not have USB 6 (J1E2) built on the board.

## 3.3 Video Support

The server board provides an ATI\* ES1000 PCI graphics accelerator, along with 16MB of video DDR SDRAM and support circuitry for an embedded SVGA video sub-system. The ATI\* ES1000 chip contains an SVGA video controller, clock generator, 2D and 3D engine, and RAMDAC in a 272-pin PBGA. One 4 Mx16x4 bank DDR SDRAM chip provides 16 MB of video memory.

The SVGA sub-system supports a variety of modes, up to 1600 x 1200 resolution in 8/16/32 bpp modes under 2D, and up to 1024 x 768 resolution in 8/16/24/32 bpp modes under 3D.

It also supports both CRT and LCD monitors with up to 100 Hz vertical refresh rate.

Video is accessed using a standard 15-pin VGA connector found on the back edge of the server board.

You can disable on-board video using the BIOS Setup Utility or when an add-in video card is installed. The system BIOS also provides the option for dual video operation when an add-in video card is configured in the system.

#### 3.3.1 Video Modes

The chip supports all standard IBM\* VGA modes. The following table shows the 2D/3D modes supported for both CRT and LCD.

2D Mode Refresh Rate (Hz) 2D Video Mode Support 8 bpp 16 bpp 24 bpp 32 bpp 640x480 60, 72, 75, 90, 100 Supported Supported Supported Supported 800x600 60, 70, 75, 90, 100 Supported Supported Supported Supported

Table 6. Video Modes

Intel order number: D36978-010

| 2D Mode   | Refresh Rate (Hz)   | 2D Video Mode Support |           |           |           |
|-----------|---------------------|-----------------------|-----------|-----------|-----------|
|           |                     | 8 bpp                 | 16 bpp    | 24 bpp    | 32 bpp    |
| 1024x768  | 60, 72, 75, 90, 100 | Supported             | Supported | Supported | Supported |
| 1280x1024 | 43, 60              | Supported             | Supported | Supported | Supported |
| 1280x1024 | 70, 72              | Supported             | _         | Supported | Supported |
| 1600x1200 | 60, 66              | Supported             | Supported | Supported | Supported |
| 1600x1200 | 76, 85              | Supported             | Supported | Supported | _         |

## 3.3.2 Video Memory Interface

The memory controller sub-system of the ES1000 passes requests from the direct memory interface, VGA graphics controller, drawing coprocessor, display controller, video scalar, and hardware cursor. Requests are serviced in a manner that ensures display integrity and maximum CPU/coprocessor drawing performance.

The server board supports a 16 MB (4 MB x 16-bit x 4 banks) DDR SDRAM device for video memory. The following table shows the video memory interface signals:

| Signal Name | I/O Type | Description             |
|-------------|----------|-------------------------|
| V_M_CAS_N   | 0        | Column Address Select   |
| V_M_CKE     | 0        | Clock Enable for Memory |
| V_M_CS_N    | 0        | Chip Select for Memory  |
| V_M_DQM[10] | 0        | Memory Data Byte Mask   |
| V_M_QS[10]  | I/O      | Memory Data Strobe      |
| V_M_CLK     | I        | Memory Clock            |
| V_M_CLK_N   | I        | Memory Clock Compliment |
| V_M_MA[150] | 0        | Memory Address Bus      |
| V_M_MD[150] | I/O      | Memory Data Bus         |
| V_M_RAS_N   | 0        | Row Address Select      |
| V_M_WE_N    | 0        | Write Enable            |

**Table 7. Video Memory Interface** 

### 3.3.3 Dual Video

The BIOS supports single and dual video modes. The dual video mode is enabled by default.

In single mode (Dual Monitor Video=Disabled), the on-board video controller is disabled when an add-in video card is detected.

In dual mode (On-board Video=Enabled, Dual Monitor Video=Enabled), the on-board video controller is enabled and is the primary video device. The external video card is allocated resources and considered the secondary video device. The BIOS Setup provides user options to configure the feature as follows:

Video is routed to the rear video connector by default. When a monitor is plugged in to the front panel video connector, the video is routed to it and the rear connector is disabled. You can do this by "hot-plugging" the video connector.

Table 8. Dual Video

| Video Type         | Enabled/Disabled        | Description                                   |
|--------------------|-------------------------|-----------------------------------------------|
| On-board Video     | <b>Enabled</b> Disabled |                                               |
| Dual Monitor Video | <b>Enabled</b> Disabled | Shaded if on-board video is set to "Disabled" |

## 3.4 Network Interface Controller (NIC)

The Intel® 82563EB Gigabit Platform LAN Connect is a dual, compact Physical Layer.

Transceiver (PHY) component designed for 10/100/1000 Mbps operation.

The Intel® 82563EB device is based upon proven PHY technology integrated into Intel® Gigabit Ethernet Controllers. The physical layer circuitry provides a standard IEEE 802.3 Ethernet interface for 1000BASE-T, 100BASE-TX, and 10BASE-T applications (802.3, 802.3u, and 802.3ab). The 82563EB device is capable of transmitting and receiving data at rates of 1000 Mbps, 100 Mbps, or 10 Mbps.

Each Network Interface Controller (NIC) drives two LEDs located on each network interface connector. The link/activity LED (to the left of the connector) indicates a network connection when on, and Transmit/Receive activity when blinking. The speed LED (to the right of the connector) indicates 1000-Mbps operation when amber; 100-Mbps operation when green; and 10-Mbps when off. The following table provides an overview of the LEDs.

Table 9. NIC Status LED

| LED Color          | LED State | NIC State                 |  |
|--------------------|-----------|---------------------------|--|
|                    | Off       | 10 Mbps                   |  |
| Green/Amber (Left) | Green     | 100 Mbps                  |  |
|                    | Amber     | 1000 Mbps                 |  |
| Green (Right)      | On        | Active Connection         |  |
|                    | Blinking  | Transmit/Receive activity |  |

## 3.5 Super I/O

Legacy I/O support is provided by using a National Semiconductor\* PC87427 Super I/O device. This chip contains all of the necessary circuitry to control two serial ports, one parallel port, floppy disk, and PS/2-compatible keyboard and mouse. Of these, the server board supports the following:

- GPIOs
- Two serial ports
- Removable media drives

- Floppy controller
- Keyboard and mouse support
- Wake-up control
- System health support

#### 3.5.1 Serial Ports

The server board provides two serial ports: an external DBb-9 serial port and an internal DH10 serial header.

Serial B is an optional port, accessed through a 9-pin internal DH-10 header. You can use a standard DH10 to DB9 cable to direct serial B to the rear of a chassis. The serial B interface follows the standard RS232 pin-out as defined in the following table.

Pin Signal Name Serial A Header Pin-out DCD 1 2 DSR 2 3 RX 3 4 RTS 4 5 TX 6 5 6 CTS 7  $\cap$ 8 7 DTR 9 8 RI 9 GND

Table 10. Serial A Header Pin-out

The rear DB-9 serial A port is a fully functional serial port that can support any standard serial device.

#### 3.5.2 Removable Media Drives

The BIOS supports removable media devices, including 1.44 MB floppy removable media devices and optical devices, such as a CD-ROM or a read-only DVD-ROM drive. The BIOS supports booting from USB mass storage devices connected to the chassis USB port, such as a USB key device.

The BIOS supports USB 2.0 media storage devices that are backward-compatible to the USB 1.1 specification.

## 3.5.3 Floppy Disk Controller (FDC)

The server board does not support a floppy disk controller (FDC) interface. However, the system BIOS does recognize USB floppy devices.

## 3.5.4 Keyboard and Mouse Support

Dual-stacked PS/2 ports, located on the back edge of the server board, are provided for keyboard and mouse support. Either port can support a mouse or keyboard but both ports do not support hot plugging.

## 3.5.5 Wake-Up Control

The super I/O contains functionality that allows various events to control the power-on and power-off the system.

## 4. Platform Management

The platform management sub-system on the server board is based on the integrated Baseboard Management Controller (BMC) features of the ESB2-E. In addition, the on-board platform management sub-system consists of communication buses, sensors, system BIOS, and system management firmware.

For additional information, see the Intel® 5000 Series Chipset Server Board Family Datasheet.

Platform management involves:

- ACPI implementation specific details
- System monitoring, control and response to thermal, voltage, and intrusion events
- BIOS security

### 4.1 Power Button

The system power button is connected to the ESB2-E component. When the button is pressed, the ESB2-E receives the signal and transitions the system to the proper sleep-state as determined by the operating system and software. If the power button is pressed and held for four seconds, the system powers off (S5 state). This feature is called "power button override" and is helpful in the case of system hang and locking up the system. The server board is fully ACPI 1.0a compliant.

## 4.2 Sleep States Supported

The ESB2-E controls the system sleep states. States S0, S1, S4 and S5 are supported. Either the BIOS or an operating system invokes the sleep states. This is done in response to a power button being pressed or an inactivity timer countdown. Normally, the operating system determines which sleep state to transition into. However a 4-second power button override event places the system immediately into S5. When transitioning into a software-invoked sleep state, the ESB2-E attempts to put the system to sleep by first going into the CPU C2 state.

#### 4.2.1 S0 State

This is the normal operating state, even though there are some power savings modes in this state using CPU Halt and Stop Clock (CPU C1and C2 states). S0 affords the fastest wake-up response time of any sleep state because the system remains fully-powered and memory is intact.

#### 4.2.2 S1 State

This state is entered via a CPU sleep signal from the ESB2-E (CPU C3 state). The system remains fully powered and memory contents intact but the CPUs enter their lowest power state. The operating system uses ACPI drivers to disable bus masters for uni-processor configurations, while the operating system flushes and invalidates caches before entering this

state in multi-processor configurations. Wake-up latency is slightly longer in this state than S0; however, power savings are quite improved from S0.

#### 4.2.3 S4 State

This state is called Suspend to Disk. From a hardware perspective, it is equivalent to an S5 (Soft Off) state; however, S4 has the distinction of avoiding a full boot sequence. The operating system is responsible for saving the system context in a special partition on the hard drive. Although the system must power up and fully boot, boot time to an application is reduced because the computer is returned to the same system state as when the preceding power-off occurred.

#### 4.2.4 S5 State

This state is the normal off state whether entered through the power button or soft off. All power is shut off except for the logic required to restart. This state supports several "wake up events". The system only remains in the S5 state while the power supply is plugged into the wall. If the power supply is unplugged from the wall, this is considered a mechanical OFF or G3.

## 4.3 Wakeup Events

The types of wake events and wake-up latencies are related to the actual power rails available to the system in a particular sleep state and to the location in which the system context is stored. Regardless of the sleep state, wake on the power button is always supported except in a "mechanical off" situation. When in a sleep state, the server board complies with the PCI 2.2 Specification by supplying the optional 3.3V standby voltage to each PCI slot as well as the PME signal. This enables any compliant PCI card to wake the system up from any sleep state except mechanical off.

## 4.3.1 Wakeup from S1 Sleep State

Advanced management features are enabled by the BMC only when it detects the presence of the Intel<sup>®</sup> Remote Management Module 2 (Intel<sup>®</sup> RMM2) card. Without the Intel<sup>®</sup> RMM2, the advanced features are dormant.

## 4.3.2 Wakeup from S3 Sleep State (BFAD Workstation Only)

During S1, the system is fully-powered, permitting support for wake on USB, wake on PS/2 keyboard/Mouse, wake on RTC alarm, and wake on PCI PME. Wake on USB, wake on PS/2 Keyboard/Mouse and wake on RTC alarm are not supported by the server board POE BIOS.

#### 4.3.3 Wakeup from S4 and S5 States

In S4 or S5, wake from power button and LAN are supported.

## 4.4 AC Power Failuar Recovery

The design supports two modes of operation with regard to AC power recovery. The user can select (via a BIOS Setup Screen) whether the system should power back up or remain off after AC is restored. The ESB2-E does not rely on BIOS to boot and check system status in the case

of AC failure. The ESB2-E contains a register variable named "afterG3" which BIOS can set based on user configuration input. The ESB2-E internally examines after it detects an AC recovery.

## 4.5 PCI PM Support

The PCI Power Management Specification calls out three areas to be compliant: the system reset signal must be held low when in a sleep state, system must support the PCI PME signal, and the system should provide 3.3v standby to the PCI slots. The server board design complies with the PCI PM Specification and the PCI 2.2

Specification for optional 3.3V standby voltage to be supplied to each PCI, PCI-X\*, and PCI Express\* slots. This support allows any compliant PCI, PCI-X\*, or PCI Express\* adapter card to wake the system up from any sleep state except mechanical off.

Because of the limited amount of power available on 3.3V standby, the user and the operating system must configure the system carefully following the PCI Power Management Specification.

#### 4.5.1 Reset# Control

The ESB2-E always drives the Platform Reset signal (LOW or HIGH), even when the system is in a sleep state. This is required for PCI power management. Any device that may be active is able to sample this signal to know the system is in a reset condition.

#### 4.5.2 PCI Vaux

All standard PCI, PCI-X\*, and PCI Express\* slots are provided with 3.3 V aux power to support wake events from all sleep states. The MIC2169 power supply will deliver 4 A of 5 VSB, which in turn is regulated to 3.3 VSB when the system is in the S4 or S5 sleep state. Standby 3.3-V power will not be connected to x1 PCI Express debug slots and these debug slots will not wake events.

## 4.6 System Management

The LM94 monitors the majority of the system voltages. The LM94 also monitors the VID signals from the Intel<sup>®</sup> Xeon<sup>®</sup> processor 5000 sequence. All voltage levels can be read from the LM94 via the SMBus.

## 4.6.1 CPU Thermal Management

Each CPU monitors its own core temperature and thermally manages itself when it reaches a certain temperature. The system also uses the internal CPU diode(s) to monitor the die temperature. The diode pins are routed to the diode input pins in the LM94. For valid thermal diode configurations for dual-core processors, refer to the thermal diode options table. You can program the LM94 to force the CPU fans to full-speed operation when it senses the CPU core temperature exceeding a specific value. In addition, the LM94 itself has an on-chip thermal monitor. The placement of the LM94 allows it to monitor the incoming ambient temperature blown in by the chassis input fan in front of the processors.

## 4.7 System Fan Operation

The server board uses both the LM94 and super I/O to monitor and control the fans in the system. Both devices use pulse width modulated (PWM) outputs that can modulate the voltage across the fans, providing a variable duty-cycle to affect a reduced DC voltage from nominal 12 VDC. The fan drive circuit and headers are the new 4-pin type. The 4-pin fans now have a dedicated PWM input for speed control, in addition to the standard ground, +12V, and tachometer pins.

Both the LM94 and super I/O have fan tachometer inputs that you can use to monitor and control fan speeds. You can extract all fan tachometer data from the controllers via the SMBus. The fan speed control circuit does not control the power supply fan. To support limited controller and/or firmware functionality during power on and debug activities, each PWM output has a bypass jumper that causes all fans to run at full-speed and ignore the PWM control.

Each CPU fan has its own dedicated PWM input and tachometer output, so they can be controlled and monitored independently. The LM94 is dedicated to processor fan speed control and monitor, and the SIO will drive and monitor the remaining fans in the system: the chassis and memory fans.

Refer to the fan manual override jumpers table for identification of fan speed override jumpers. Refer to the National Semiconductor\* PC87427 and LM94 (National Semiconductor\* LM93) specifications regarding fan monitor and control capabilities and programming requirements.

## 4.8 Light-Guided Diagnostics – System Status and FRU LEDs

The standard system status LEDs for PWR/SLP, HDD, and other LEDs as specified in SSI EEB are supported on the front panel header.

For 10/100/1000 LAN, status LEDs are supported through the back panel 10/100/1000 RJ-45 jack and the front panel per the SSI-EEB specification. The dual-color LED indicates the LAN speed at 10Mbit/s (off), 100Mbit/s (green), or 1000 Mbit/s (yellow). The green link LED represents both link integrity (on/off) and LAN activity (blinking).

Name Color | Condition What it describes Power/Sleep Green ON Power On BLINK Sleep (S1/S3) **Green** (S1/S3) OFF Power Off (also S4) Status Green ON System READY System Degraded (memory, CPU failure) Green BLINK Front-Panel & <mark>Amber</mark> ON BW/BIOS: Fatal Alarm. Post error/NMI event Baseboard FW Only: CPU/Terminator Missing, Fan, Temperature, Voltage, visible if fatal error causes a power down <mark>Amber</mark> BLINK FAN Alarm. Temperature or Voltage Non-Critical Alarm, Drive Fault

Table 11. Summary of LEDs on the Intel® Server Board S5000VSA

| Name                            | Color                 | Condition | What it describes                                       |
|---------------------------------|-----------------------|-----------|---------------------------------------------------------|
|                                 |                       | OFF       |                                                         |
| FANS                            |                       | OFF       |                                                         |
| IANO                            | Amber                 |           | BIOS/FW: In redundant fan system, if one or more        |
|                                 |                       |           | fans are missing during POST, BIOS should turn on       |
| CPU                             | -<br>^                | OFF       | Fotal Alama CDI I/Tamainatan Missing/CDI I              |
| DIMM                            | Amber                 |           | Fatal Alarm.CPU/Terminator Missing/CPU                  |
| DIMM                            | ^ l                   | OFF       | Manager failure fatal                                   |
|                                 | <u>Amber</u>          | ON        | Memory failure - fatal                                  |
| Progress Code                   |                       |           | See Flash tab for details of the code                   |
| GEM424                          | Green                 |           | Hard Disk Drive Access                                  |
| (SATA/SAS)<br>GEM359 (SCSI)     |                       | BLINK     | <b>NOTE</b> : Only some SATA drive support this feature |
|                                 | Amber                 | ON        | Disk drive fault                                        |
| Vitesse                         | Green                 |           | HDD in Standby/Stopped. HDD may be                      |
|                                 | Green                 |           | removed. LED normally OFF                               |
| (SATA/SAS)                      |                       | OFF       |                                                         |
| NOTE: Amber                     | Green                 |           | Spin-up/Spin-down                                       |
| ON, and GREEN OFF indicates its |                       | BLINK 1s  | LED on 0.5s, OFF 0.5s, 50% duty cycle of 1s             |
| OK to remove<br>HDD             | Green                 | ON        | Active/Idle power                                       |
|                                 | Green                 |           | Formatting                                              |
|                                 |                       | BLINK 2s  | LED ON for 1s, OFF for 1s, 50% duty-cycle of 2s         |
|                                 | Amber                 | ON        | Fault                                                   |
|                                 | Amber                 |           | Flashing - On 1s, OFF 1s, 50% duty-cycle of             |
|                                 |                       |           | 2s                                                      |
|                                 |                       | BLINK     | Indicates Rebuild                                       |
| Power Supply                    |                       |           |                                                         |
| HDD ACTIVITY                    | Green                 | BLINK     | Hard Disk Drive Access                                  |
|                                 | _                     | OFF       | No Access                                               |
| LAN#1-Link/Act                  | Green                 |           | Link                                                    |
|                                 |                       | BLINK     | LAN Access (off when there is traffic)                  |
|                                 | -                     | OFF       | Disconnect                                              |
| LAN#1-Speed                     | Green                 |           | Green, link speed is 100Mbits/sec                       |
|                                 | Amber                 |           | Amber, link speed is 1000Mbits/sec                      |
|                                 | _                     | OFF       | OFF, link speed is 10Mbits/sec                          |
| LAN#2-Link/Act                  | Green                 | ON        | l ink                                                   |
|                                 |                       | BLINK     | LAN Access (off when there is traffic)                  |
|                                 | -                     | OFF       | Disconnect                                              |
| LAN#2-Speed                     | Green                 |           | Green, link speed is 100Mbits/sec                       |
| LAN#2-Speeu                     | <u>Green</u><br>Amber |           | Amber, link speed is 1000Mbits/sec                      |
|                                 | Amber                 |           |                                                         |
| Laboratificate Control          | -<br>DI               | OFF       | OFF, link speed is 10Mbits/sec                          |
| Identification                  | Blue                  | ON        | Unit selected for identification                        |
|                                 | Blue                  | BLINK     | blink under software control                            |
|                                 |                       | OFF       | No Identification                                       |

## 5. Connector/Header Locations and Pin-outs

## 5.1 Board Connectors

**Table 12. Board Connector Matrix** 

| Connector                | Quantity | Reference Designators                          | Connector Type                  | Pin<br>Count |
|--------------------------|----------|------------------------------------------------|---------------------------------|--------------|
| Power supply             | 3        | J4K1<br>J9C1                                   | CPU Power Main<br>Power P/S Aux | 8            |
|                          |          | J9D1                                           |                                 | 5            |
| CPU                      | 2        | J1000, J2000                                   | CPU Sockets                     | 771          |
| Main Memory              | 8        | U7B1, U7B2, U7B3, U8B1, U8B2, U8B3, U9B1, U9B2 | DIMM Sockets                    | 240          |
| RAID Key                 | 1        | J1D1                                           | Key Holder                      | 3            |
| IDE                      | 1        | J2K3                                           | Shrouded<br>Header              | 44           |
| System Fans              | 4        | J1K4, J1K5, J2K2, J2K5                         | Header                          | 4            |
| Memory Fans              | 2        | J9B1, J9B2                                     | Header                          | 4            |
| CPU Fans                 | 2        | J5K1, J9K1                                     | Header                          | 4            |
| Battery                  | 1        | BT4E1                                          | Battery Holder                  | 3            |
| Keyboard/Mouse           | 1        | J9A1                                           | PS2, stacked                    | 12           |
| Rear 2xUSB/LAN connector | 2        | JA6A1, JA6A2                                   | External                        | 16           |
| Serial Port B            | 1        | J1B1                                           | Header                          | 9            |
| Serial Port A Video      | 1        | J7A1                                           | External, RJ45                  | 10           |
| Connector                | 1        |                                                | External, D-Sub                 | 15           |
| Front panel, main        | 1        | J1F1                                           | Header                          | 24           |
| Front panel, USB         | 1        | J1J8                                           | Header                          | 10           |
| Intrusion detect         | 1        | J1A1                                           | Header                          | 2            |
| Serial ATA               | 2        | J1K3, J1J7                                     | Header                          | 7            |
| SATA/SAS                 | 4        | J1J4, J1H3, J1H1, J1G6                         | Header                          | 7            |
| IPMB/LCP                 | 1        | J1J5                                           | Header                          | 4            |
| IPMB                     | 1        | J1J6                                           | Header                          | 3            |
| Configuration<br>Jumpers | 3        | J1J1, J1J2, J1J3                               | Jumper                          | 3            |

## 5.2 Power Connectors

The main power supply connection is obtained using an SSI compliant 2x12 pin connector (J9C1). In addition, there are two additional power related connectors; one SSI compliant 2x4 pin power connector (J4K1) providing support for additional 12 V, and one SSI compliant 1x5 pin connector (J9D1) providing I<sup>2</sup>C monitoring of the power supply. The following tables define their pin-outs.

Pin Signal Color Pin Signal Color +3.3Vdc 13 +3.3Vdc Orange Orange 14 +3.3Vdc -12Vdc Blue Orange GND Black 15 GND Black +5Vdc Red 16 PS\_ON Green GND Black 17 GND Black 18 GND +5Vdc Red Black GND 19 GND Black Black PWR\_GND 20 NC White Gray 5VSB Purple 21 +5Vdc Red 10 +12Vdc Yellow 22 +5Vdc Red +12Vdc 23 11 Yellow +5Vdc Red 12 +3.3Vdc 24 GND Black Orange

**Table 13. Power Connector Pin-Out (J9C1)** 

Table 14. 12-V Power Connector Pin-Out (J4K1)

| Pin | Signal | Color        |
|-----|--------|--------------|
| 1   | GND    | Black        |
| 2   | GND    | Black        |
| 3   | GND    | Black        |
| 4   | GND    | Black        |
| 5   | +12Vdc | Yellow/Black |
| 6   | +12Vdc | Yellow/Black |
| 7   | +12Vdc | Yellow/Black |
| 8   | +12Vdc | Yellow/Black |

Table 15. Power Supply Signal Connector Pin-Out (J1K1)

| Pin | Signal               | Color  |
|-----|----------------------|--------|
| 1   | SMB_CLK_ESB_FP_PWR_R | Orange |
| 2   | SMB_DAT_ESB_FP_PWR_R | Black  |
| 3   | SMB_ALRT_3_ESB_R     | Red    |
| 4   | 3.3V SENSE-          | Yellow |
| 5   | 3.3V SENSE+          | Green  |

## 5.3 Control Panel Connector

The server board provides an optional 24-pin SSI control panel connector (J1F1) for use with reference chassis. The following tables provide the pin-out for this connector.

Pin Signal Name Front Panel Pin-out Pin Signal Name P5V Power 2 P5V STBY 3 4 Key Cool Fault P5V STBY **LED** 5 FP\_PWR\_LED\_L HDD System 6 FP\_COOL\_FLT\_LED\_R 7 P5V LED Fault 8 P5V STBY 9 HDD\_LED\_ACT\_R Power LAN A 10 FP STATUS LED2 R 11 FP\_PWR\_BTN\_L Link/Act 12 LAN\_ACT\_A\_L **Button** 13 **GND** 14 LAN LINKA L Reset SM Bus 15 Reset Button Sleep Intruder 16 PS\_I2C\_5VSB\_SDA 17 **GND Button** LAN B 18 PS I2C 5VSB SCL FP\_SLP\_BTN\_L 19 NMI Link/Act 20 FP CHASSIS INTRU 21 **GND** ID LED ID 22 LAN ACT B L 23 FP NMI BTN L 24 LAN LINKB L 25 26 Key Key P5V\_STBY P5V STBY 27 28 29 FP STATUS LED1 R FP ID LED L 30 31 FP ID BTN L 32 P5V 33 **GND** 34 FP HDD FLT LED R

Table 16. 24-pin SSI control panel connector (J1F1)

## 5.4 I/O Connectors

## 5.4.1 VGA Connector

The following table shows the pin-out definition of the VGA connector (J7A1):

Signal Name Description Pin Red (analog color signal R) V IO R CONN Green (analog color signal G) V\_IO\_G\_CONN V\_IO\_B\_CONN Blue (analog color signal B) TP VID CONN B4 No connection Ground GND Ground GND GND Ground GND Ground TP VID CONN B9 No Connection 10 GND Ground 11 TP\_VID\_CONN\_B11 No connection 12 V IO DDCDAT DDCDAT 13 V IO HSYNC CONN HSYNC (horizontal sync) 14 V IO VSYNC CONN VSYNC (vertical sync) 15 V IO DDCCLK DDCCLK

Table 17. VGA Connector Pin-out (J7A1)

## 5.4.2 NIC Connectors

The server board provides two RJ-45 NIC connectors located side by side on the back edge of the board (JA6A1, JA6A2). The pin-out for each connector is identical and defined in the following table.

Pin Signal Name GND P1V8 NIC NIC A MDI3P NIC A MDI3N NIC\_A\_MDI2P NIC A MDI2N NIC A MDI1P NIC A MDI1N NIC A MDI0P 10 NIC\_A\_MDI0N 11 (D1) NIC LINKA 1000 N (LED 12 (D2) NIC\_LINKA\_100\_N (LED) 13 (D3) NIC ACT LED N 14 NIC\_LINK\_LED\_N 15 GND 16 GND

Table 18. RJ-45 10/100/1000 NIC Connector Pin-Out (JA6A1, JA6A2)

### 5.4.3 ATA-100 Connector

The server board provides one legacy ATA-100 44-pin connector (J2K3). The pin-out is defined in the following table:

| Pin            | Signal Name       | Pin | Signal Name |
|----------------|-------------------|-----|-------------|
| 1              | ESB_PLT_RST_IDE_N | 2   | GND         |
| 3              | RIDE_DD_7         | 4   | RIDE_DD_8   |
| 5              | RIDE_DD_6         | 6   | RIDE_DD_9   |
| 7              | RIDE_DD_5         | 8   | RIDE_DD_10  |
| 9              | RIDE_DD_4         | 10  | RIDE_DD_11  |
| 11             | RIDE_DD_3         | 12  | RIDE_DD_12  |
| 13 RIDE_DD_2 1 |                   | 14  | RIDE_DD_13  |
| 15             | RIDE_DD_1         |     | RIDE_DD_14  |
| 17             | 7 RIDE_DD_0 1     |     | RIDE_DD_15  |
| 19             | GND               | 20  | KEY         |
| 21             | RIDE_DDREQ        | 22  | GND         |
| 23             | RIDE_DIOW_N       | 24  | GND         |
| 25             | RIDE_DIOR_N       |     | GND         |
| 27             | RIDE_PIORDY       | 28  | GND         |

Table 19. ATA-100 44-pin Connector Pin-Out (J2K3)

| Pin | Signal Name  | Pin | Signal Name    |
|-----|--------------|-----|----------------|
| 29  | RIDE_DDACK_N | 30  | GND            |
| 31  | IRQ_IDE      | 32  | TP_PIDE_32     |
| 33  | RIDE_DA1     | 34  | IDE_PRI_CBLSNS |
| 35  | RIDE_DA0     | 36  | RIDE_DA2       |
| 37  | RIDE_DCS1_N  | 38  | RIDE_DCS3_N    |
| 39  | LED_IDE_N    | 40  | GND            |
| 41  | P5V          | 42  | P5V            |
| 43  | GND          | 44  | GND            |

## 5.4.4 SATA Connectors

The server board provides six SATA (Serial ATA) connectors:

- SATA-0 (J1K3)
- SATA-1 (J1J7)
- SATA-2 (J1J4)
- SATA-3 (J1H3)
- SATA-4 (J1H1)
- SATA-5 (J1G6)

The pin configuration for each connector is identical and is defined in the following table:

Table 20. SATA Connector Pin-Out (J1K3, J1J7, J1J4, J1H3, J1H1, J1G6)

| Pin | Signal Name  | Description                                 |
|-----|--------------|---------------------------------------------|
| 1   | GND          | GND1                                        |
| 2   | SATA#_TX_P_C | Positive side of transmit differential pair |
| 3   | SATA#_TX_N_C | Negative side of transmit differential pair |
| 4   | GND          | GND2                                        |
| 5   | SATA#_RX_N_C | Negative side of Receive differential pair  |
| 6   | SATA#_RX_P_C | Positive side of Receive differential pair  |
| 7   | GND          | GND3                                        |

## 5.4.5 Serial Port Connectors

The server board provides one external DB-9 serial A port (J7A1) and one internal 9-pin serial B header (J1B1). The following tables define the pin-outs for each.

Table 21. External RJ-45 Serial B Port Pin-Out (J9A2)

| Pin | Signal Name | Description         |
|-----|-------------|---------------------|
| 1   | SPA_DCD     | Data Carrier Detect |
| 2   | SPA_RD      | Receive Data        |
| 3   | SPA_TD      | Transmit data       |
| 4   | SPA_DTR     | Data Terminal Ready |
| 5   | GND         | Ground              |
| 6   | SPA_DSR     | Data Set Ready      |
| 7   | SPA_RTS     | Request to Send     |
| 8   | SPA_CTS     | Clear to Send       |
| 9   | SPA_RI      | Ring Indicator      |

Table 22. Internal 9-pin Serial A Header Pin-Out (J1B1)

| Pin | Signal Name | Description               |
|-----|-------------|---------------------------|
| 1   | SPB_DCD     | DCD (carrier detect)      |
| 2   | SPB_DSR     | DSR (data set ready)      |
| 3   | SPB_SIN_L   | RXD (receive data)        |
| 4   | SPB_RTS     | RTS (request to send)     |
| 5   | SPB_SOUT_N  | TXD (Transmit data)       |
| 6   | SPB_CTS     | CTS (clear to send)       |
| 7   | SPB_DTR     | DTR (Data terminal ready) |
| 8   | SPB_RI      | RI (Ring Indicate)        |
| 9   | GND         | Ground                    |

## 5.4.6 Keyboard and Mouse Connector

Two stacked PS/2 ports (J9A1) are provided to support both a keyboard and a mouse. Either PS/2 port can support a mouse or keyboard. The following table defines the pin-out of the PS/2 connector:

Table 23. Stacked PS/2 Keyboard and Mouse Port Pin-Out (J9A1)

| Pin | Signal Name | Description                 |
|-----|-------------|-----------------------------|
| 1   | KB_DATA_F   | Keyboard Data               |
| 2   | TP_PS2_2    | Test point – keyboard       |
| 3   | GND         | Ground                      |
| 4   | P5V_KB_F    | Keyboard/mouse power        |
| 5   | KB_CLK_F    | Keyboard Clock              |
| 6   | TP_PS2_6    | Test point – keyboard/mouse |
| 7   | MS_DAT_F    | Mouse Data                  |
| 8   | TP_PS2_8    | Test point – keyboard/mouse |
| 9   | GND         | Ground                      |
| 10  | P5V_KB_F    | Keyboard/mouse power        |

| Pin | Signal Name | Description                 |  |
|-----|-------------|-----------------------------|--|
| 11  | MS_CLK_F    | Mouse Clock                 |  |
| 12  | TP_PS2_12   | Test point – keyboard/mouse |  |
| 13  | GND         | Ground                      |  |
| 14  | GND         | Ground                      |  |
| 15  | GND         | Ground                      |  |
| 16  | GND         | Ground                      |  |
| 17  | GND         | Ground                      |  |

### 5.4.7 USB Connector

The following table details the pin-out of the external USB connectors (JA6A1, JA6A2) found on the back edge of the server board:

Table 24. External USB Connector Pin-Out (JA6A1, JA6A2)

|   | Pin | Signal Name  | Description                                        |
|---|-----|--------------|----------------------------------------------------|
|   | 1   | USB_OC#_FB_1 | USB_PWR                                            |
| Ī | 2   | USB_P#N_FB_2 | DATAL0 (Differential data line paired with DATAH0) |
| Ī | 3   | USB_P#N_FB_2 | DATAH0 (Differential data line paired with DATAL0) |
|   | 4   | GND          | Ground                                             |

One 2x5 connector on the server board (J1J8) provides an option to support an additional two USB ports. The following table details the pin-out of the connector.

**Note:** Considering board positioning, one board in the Intel<sup>®</sup> Server Board 5000VSA board families, the 5000VSA SATA 4DIMM will not have the J1J8 internal USB port built on the board.

Table 25. Internal USB Connector Pin-Out (J1J8)

| Pin | Signal Name      | Description                |
|-----|------------------|----------------------------|
| 1   | P5V_USB2_VBUS0   | USB Power (Ports 0,1)      |
| 2   | P5V_USB2_VBUS1   | USB Power (Ports 0,1)      |
| 3   | USB_ESB_P0N_CONN | USB Port 0 Negative Signal |
| 4   | USB_ESB_P1N_CONN | USB Port 0 Positive Signal |
| 5   | USB_ESB_P0P_CONN | USB Port 1 Negative Signal |
| 6   | USB_ESB_P1P_CONN | USB Port 1 Positive Signal |
| 7   | Ground           |                            |
| 8   | Ground           |                            |
| 9   |                  | No Pin                     |
| 10  | TP_USB_ESB_NC    | TEST POINT                 |

## 5.5 Fan Headers

The server board provides eight SSI-compliant, 4-pin fan connectors. Two fans are designated as processor cooling fans, CPU1 Fan (J9K1) and CPU2 Fan (J5K1); six fans are designated as System Fan 1 (J1K4), System Fan 2 (J1K5), System Fan 3 (J2K2), System Fan 4 (J2K5), System Fan 5 (J9B1), and System Fan 6 (J9B2).

Table 26. SSI Fan Connector Pin-Out (J9K1, J5K1, J1K4, J1K5, J2K2, J2K5, J9B1, J9B2)

| Pin | Signal Name | Туре  | Description                                                      |
|-----|-------------|-------|------------------------------------------------------------------|
| 1   | Ground      | GND   | GROUND is the power supply ground                                |
| 2   | 12V         | Power | Power supply 12V                                                 |
| 3   | Fan Tach    | Out   | FAN_TACH signal is connected to the BMC to monitor the fan speed |
| 4   | Fan PWM     | In    | FAN_PWM signal to control fan speed                              |

# 6. Jumper Block Settings

The Intel<sup>®</sup> Server Board S5000VSA has several jumper blocks that you can use to configure, protect, or recover specific features of the server board. Pin 1 on each jumper block is denoted by "▼".

# 6.1 Recovery Jumper Blocks

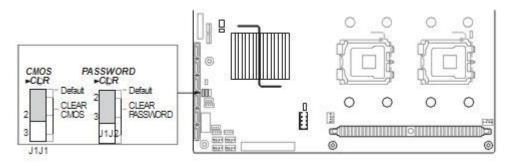



Figure 9. Recovery Jumper Blocks (J1J1, J1J2)

Table 27. Recovery Jumper Blocks (J1J1, J1J2)

| Jumper Name      | Pins | What happens at system reset                                                                                                                                   |  |
|------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| J1J2: Password   | 1-2  | These pins should have a jumper in place for normal system operation. (Default)                                                                                |  |
| Clear            |      | If these pins are jumpered, administrator and user passwords will be cleared on the next reset. These pins should <b>not</b> be jumpered for normal operation. |  |
| J1J1: CMOS Clear | 1-2  | These pins should have a jumper in place for normal system operation. (Default)                                                                                |  |
|                  |      | If these pins are jumpered, the CMOS settings will be cleared on the next reset. These pins should <b>not</b> be jumpered for normal operation                 |  |

Intel order number: D36978-010

# 6.2 BIOS Select Jumper

The jumper block at J1J3, located next the recovery jumper blocks, is used to select which BIOS image the system boots to. Pin 1 on the jumper is identified with a '▼'.

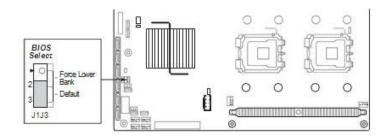



Figure 10. BIOS Select Jumper (J3H1)

| Pins | What happens at system reset                                 |  |
|------|--------------------------------------------------------------|--|
| 1-2  | Force BIOS to bank 2                                         |  |
| 2-3  | System is configured for normal operation (bank 1) (Default) |  |

# 6.3 Other Configuration Jumpers

**Table 28. Other Configuration Jumpers** 

| Function                  | Pins      | Operation                    |
|---------------------------|-----------|------------------------------|
| BMC Force Update          | 1-2       | Normal Operation             |
|                           | 2-3       | Force Update Mode            |
| FRB3 Timer Disable        | 1-2       | FRB3 Timer Enabled           |
|                           | 2-3       | FRB3 Timer Disabled          |
| FSB Speed Select          | 1-2       | 533 MHz                      |
|                           | 2-3       | Default Position. 1066 MHz   |
| XDP CPU1 Isolation Jumper | 1-2       | Isolate CPU2 from scan chain |
|                           | 2-3       | Include CPU2 in scan chain   |
| Processor Select          | Installed | Nocona-T/Dempsey-T           |
|                           | Removed   | Dempsey-J                    |

# 7. Intel Light-Guided Diagnostics

The server board has several on-board diagnostic LEDs to assist in troubleshooting board-level issues. This section provides a description of where each LED is located on the board and their function. For a more detailed description of what drives the diagnostic LED operation, refer to the Intel® 5000 Series Chipset Server Board Family Datasheet.

## 7.1 5-Volt Standby LED

This LED is illuminated when AC is applied to the platform and 5-V standby voltage is supplied to the server board by the power supply.

## 7.2 Fan Fault LEDs

Fan fault LEDs are present for all eight cooling fan headers. Each LED is located adjacent to its corresponding header.

## 7.3 System ID LED, System Status LED, and POST Diagnostic LEDs

The server board provides LEDs for both system ID and system status. POST code diagnostic LEDs are located on the back edge of the server board. For a complete description of how these LEDs are read and for a list of all supported POST codes, refer to Appendix C.

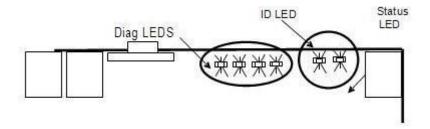



Figure 11. System ID LED and System Status LED Locations

## 7.4 DIMM Fault LEDs

The server board provides a memory fault LED for each DIMM slot.

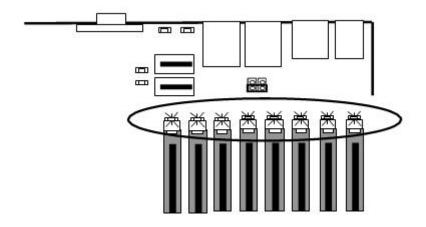



Figure 12. DIMM Fault LED Locations

## 7.5 Processor Fault LEDs

The server board provides a fault LED for each processor socket.

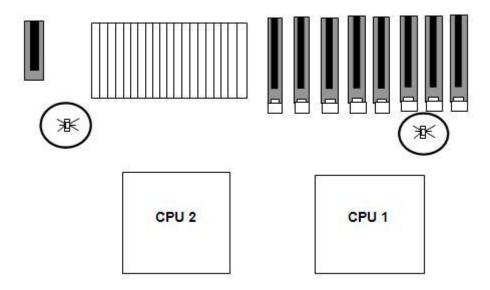



Figure 13. Processor Fault LED Locations

# 8. Power and Environmental Specifications

## 8.1 Intel® Server Board S5000VSA Design Specifications

Operating the server board at conditions beyond the specifications outlined in the following table may cause permanent damage to the system. Exposure to maximum conditions for extended periods may impact system reliability.

 Parameter
 Limit

 Operating Temperature
 5° C to 50° C ¹ (32° F to 131° F)

 Non-Operating Temperature
 -40° C to 70° C (-40° F to 158° F)

 DC Voltage
 ± 5% of all nominal voltages

 Shock (unpackaged)
 Trapezoidal, 50 g, 170 inches/sec

 Shock (packaged):
 24 inches

 ≥ 40 lbs to < 80 lbs</td>
 5 Hz to 500 Hz 3.13 g RMS random

**Table 29. Server Board Design Specifications** 

**Note**: Chassis design must provide proper airflow to avoid exceeding the Intel<sup>®</sup> Xeon<sup>®</sup> processor 5000 sequence maximum case temperature.

**Disclaimer Note**: Intel Corporation server boards contain a number of high-density VLSI and power delivery components that need adequate airflow to cool. Intel ensures through its own chassis development and testing that when Intel server building blocks are used together, the fully integrated system will meet the intended thermal requirements of these components. It is the responsibility of the system integrator who chooses not to use Intel developed server building blocks to consult vendor datasheets and operating parameters to determine the amount of air flow required for the specific application and environmental conditions. Intel Corporation cannot be held responsible, if components fail or the server board does not operate correctly when used outside any of their published operating or non-operating limits.

## 8.2 Processor Power Support

The server board supports the Thermal Design Point (TDP) guideline for Intel<sup>®</sup> Xeon<sup>®</sup> processors 5000 sequence. The Flexible Motherboard Guidelines (FMB) were also followed to help determine the suggested thermal and current design values for anticipating future processor needs. The following table provides maximum values for Icc, TDP power, and TCASE for the Intel<sup>®</sup> Xeon<sup>®</sup> processor 5000 sequence family.

Table 30. Intel<sup>®</sup> Xeon<sup>®</sup> Processor 5000 Sequence DP TDP Guidelines

| TDP Power | Max TCASE | Icc MAX |
|-----------|-----------|---------|
| 130 W     | 70° C     | 150 A   |

Intel order number: D36978-010

**Note:** These values are for reference only. The processor EMTS contains the actual specifications for the processor. If the values found in the EMTS are different then those published here, the EMTS values will supersede these, and should be used.

# 8.3 Power Supply Specifications

This section provides power supply design guidelines for a system using the Intel<sup>®</sup> Server Board S5000VSA, including voltage and current specifications, and power supply on/off sequencing characteristics.

## 8.3.1 Output Power/Currents

The following table defines power and current ratings for the 550-W power supply. The combined output power of all outputs does not exceed the rated output power. The power supply meets both static and dynamic voltage regulation requirements for the minimum loading conditions.

| Output  | Load Range |      | Peak          |
|---------|------------|------|---------------|
| Voltage | Min.       | Max. |               |
| +3V3    | 1.0A       | 24A  |               |
| +5V     | 2A         | 20A  |               |
| +12V1   | 0.5A       | 24A  | 48A           |
| +12V2   | 0.5A       | 17A  | 22A (500msec) |
| -12V    | 0A         | 0.5A |               |
| +5VSB   | 0A         | 2A   |               |

**Table 31. Load Ratings** 

### Notes:

- 1. Maximum continuous total output power will not exceed 550 W.
- 2. The maximum continuous total output power capability increases at lower ambient temperatures at a rate of 3.3W/ °C up to 600 W with a 30° C ambient temperature.
- Maximum continuous load on the combined 12-V output will not exceed 40 A at 45° C, ramping up to 44
  A at 30 C.
- 4. Peak load on the combined 12-V output will not exceed 48 A.
- Peak total DC output power will not exceed 600 W.
- 6. Peak power and current loading is supported for a minimum of 12 seconds.
- 7. Combined 3.3 V and 5 V power should not exceed 160 W.

## 8.3.2 Grounding

The ground of the pins of the power supply output connector provides the power return path. The output connector ground pins are connected to the safety ground (power supply enclosure).

The power supply must be provided with a reliable protective earth ground. All secondary circuits are connected to protective earth ground. Resistance of the ground returns to chassis does not exceed 1.0 m. This path may be used to carry DC current.

## 8.3.3 Standby Outputs

The 5 VSB output is present when an AC input greater than the power supply turn on voltage is applied.

## 8.3.4 Remote Sense

The power supply has remote sense return (ReturnS) to regulate out ground drops for all output voltages; +3.3 V, +5 V, +12 V1, +12 V2, -12 V, and 5 VSB. The power supply uses remote sense to regulate out drops in the system for the +3.3 V, +5 V, and 12 V1 outputs. The remote sense input impedance to the power supply is greater than 200 □ on 3.3 VS, 5 VS. This is the value of the resistor connecting the remote sense to the output voltage internal to the power supply.

Remote sense is able to regulate out a minimum of 200 mV drop on the +3.3 V output. The remote sense return (ReturnS) is able to regulate out a minimum of 200 mV drop in the power ground return. The current in any remote sense line is less than 5 mA to prevent voltage sensing errors. The power supply operates within specification over the full range of voltage drops from the power supply's output connector to the remote sense points.

## 8.3.5 Voltage Regulation

The power supply output voltages are within the following voltage limits when operating at steady state and dynamic loading conditions. These limits include the peak-peak ripple/noise.

All outputs are measured with reference to the return remote sense signal (ReturnS). The 5 V, 12 V1, 12 V2, -12 V, and 5 VSB outputs are measured at the power supply connectors referenced to ReturnS. The +3.3 V is measured at the remote sense signal (3.3 VS) located at the signal connector.

| Parameter | Tolerance | MIN    | NOM    | MAX    | Units            |
|-----------|-----------|--------|--------|--------|------------------|
| + 3.3V    | - 5%/+5%  | +3.14  | +3.30  | +3.46  | V <sub>rms</sub> |
| + 5V      | - 5%/+5%  | +4.75  | +5.00  | +5.25  | V <sub>rms</sub> |
| + 12V1    | - 5%/+5%  | +11.40 | +12.00 | +12.60 | V <sub>rms</sub> |
| + 12V2    | - 5%/+5%  | +11.40 | +12.00 | +12.60 | V <sub>rms</sub> |
| - 12V     | - 5%/+9%  | -11.40 | -12.00 | -13.08 | V <sub>rms</sub> |
| + 5VSB    | - 5%/+5%  | +4.75  | +5.00  | +5.25  | V <sub>rms</sub> |

**Table 32. Voltage Regulation Limits** 

## 8.3.6 Dynamic Loading

The output voltages are within limits specified for the step loading and capacitive loading specified in the following table. The step load may occur anywhere within the MIN load to the MAX load conditions.

| Output   | Step Load Size | Load Slew Rate | Test Capacitive Load   |
|----------|----------------|----------------|------------------------|
|          | (see note 2)   |                |                        |
| +3.3 VDC | 5.0 A          | 0.25 A/□sec    | 250 □F                 |
| +5 V     | 4.0 A          | 0.25 A/□sec    | 400 □F                 |
| +12 V1   | 25.0 A         | 0.25 A/□sec    | 2200 □F <sup>1,2</sup> |
| +12 V2   | 25.0 A         | 0.25 A/□sec    | 2200 □F <sup>1,2</sup> |
| +5 VSB   | 0.5 A          | 0.25 A/□sec    | 20 □F                  |

**Table 33. Transient Load Requirements** 

### Notes:

- 1. Step loads on each 12-V output may happen simultaneously.
- 2. The +12 V should be tested with 2200 □F evenly split between the two +12 V rails.

## 8.3.7 Capacitive Loading

The power supply is stable and meets all requirements with the following capacitive loading ranges.

| Output     | MIN      | MAX    | Units |
|------------|----------|--------|-------|
| +3.3V      | 250      | 6,800  | □F    |
| +5V        | 400      | 4,700  | □F    |
| +12V(1, 2) | 500 each | 11,000 | □F    |
| -12V       | 1        | 350    | □F    |
| +5VSB      | 20       | 350    | □F    |

**Table 34. Capacitive Loading Conditions** 

## 8.3.8 Closed Loop Stability

The power supply is unconditionally stable under all line/load/transient load conditions, including capacitive load ranges. A minimum of: 45° phase margin and -10dB-gain margin is required. Closed-loop stability is ensured at the maximum and minimum loads as applicable.

## 8.3.9 Common Mode Noise

The common mode noise on any output does not exceed 350 mV pk-pk over the frequency band of 10 Hz to 20 MHz.

- 1. The measurement shall be made across a 100  $\Omega$  resistor between each of DC outputs, including ground, at the DC power connector and chassis ground (power sub-system enclosure).
- 2. The test set-up shall use an FET probe such as Tektronix\* model P6046 or equivalent.

## 8.3.10 Ripple/Noise

The maximum allowed ripple/noise output of the power supply is defined in the following table. This is measured over a bandwidth of 0 Hz to 20 MHz at the power supply output connectors.

Table 35. Ripple and Noise

| +3.3V   | +5V     | +12V1/2  | -12V     | +5VSB   |
|---------|---------|----------|----------|---------|
| 50mVp-p | 50mVp-p | 120mVp-p | 120mVp-p | 50mVp-p |

## 8.3.11 Timing Requirements

The timing requirements for power supply operation are as follows. The output voltages must rise from 10% to within regulation limits (Tvout\_rise) within 5 to 70 ms except for 5 VSB; it is allowed to rise from 1.0 to 25 ms. The +3.3 V, +5 V and +12 V output voltages should start to rise approximately at the same time. All outputs rise monotonically. The +5 V output needs to be greater than the +3.3 V output during any point of the voltage rise. The +5 V output must never be greater than the +3.3 V output by more than 2.25 V. Each output voltage shall reach regulation within 50 ms (Tvout\_on) of each other during turn on of the power supply. Each output voltage shall fall out of regulation within 400 ms (Tvout\_off) of each other during turn off. The following figure shows the timing requirements for the power supply being turned on and off through the AC input with PSON held low and the PSON signal with the AC input applied.

**Table 36. Output Voltage Timing** 

| Item                                   | Description                                                                | Minimum | Maximum | Units |
|----------------------------------------|----------------------------------------------------------------------------|---------|---------|-------|
| Tvout_rise                             | Output voltage rise time from each main output.                            | 5.0 *   | 70 *    | msec  |
| ************************************** | All main outputs must be within regulation of each other within this time. |         | 50      | msec  |
| T vout_off                             | All main outputs must leave regulation within this time.                   |         | 400     | msec  |

Intel order number: D36978-010

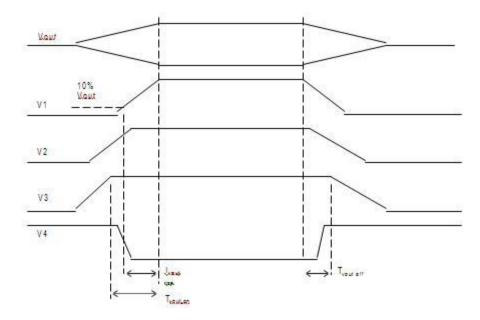



Figure 14. Output Voltage Timing

Table 37. Turn On/Off Timing

| Item                       | Description                                                                                                                   | Minimum | Maximum | Units |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------|---------|-------|
| T <sub>sb_on_delay</sub>   | Delay from AC being applied to 5VSB being within regulation.                                                                  |         | 1000    | msec  |
| T <sub>ac_on_delay</sub>   | Delay from AC being applied to all output voltages being within regulation.                                                   |         | 2500    | msec  |
| Tvout_holdup               | Time all output voltages stay within regulation after loss of AC.                                                             | 21      |         | msec  |
| Tpwok_holdup               | Delay from loss of AC to de-assertion of PWOK                                                                                 | 20      |         | msec  |
| T <sub>pson_on_delay</sub> | Delay from PSON <sup>#</sup> active to output voltages within regulation limits.                                              | 5       | 400     | msec  |
| T <sub>pson_pwok</sub>     | Delay from PSON <sup>#</sup> de-active to PWOK being de-asserted.                                                             |         | 50      | msec  |
| T <sub>pwok_on</sub>       | Delay from output voltages within regulation limits to PWOK                                                                   | 100     | 1000    | msec  |
| Tpwok_off                  | asserted at turn on.  Delay from PWOK de-asserted to output voltages (3.3V, 5V, 12V, -12V) dropping out of regulation limits. | 1       |         | msec  |
| T <sub>pwok_low</sub>      | Duration of PWOK being in the de-asserted state during an off/on cycle using AC or the PSON signal.                           | 100     |         | msec  |
| T <sub>sb_vout</sub>       | Delay from 5VSB being in regulation to O/Ps being in regulation at AC turn on.                                                | 50      | 1000    | msec  |
| T5VSB_holdup               | Time the 5VSB output voltage stays within regulation after loss of AC.                                                        | 70      |         | msec  |

## 8.3.12 Residual Voltage Immunity in Standby Mode

The power supply is immune to any residual voltage placed on its outputs (typically a leakage voltage through the system from standby output) up to 500 mV. There is neither additional heat generated nor stress of any internal components with this voltage applied to any individual output and all outputs simultaneously. It also does not trip the protection circuits during turn on.

The residual voltage at the power supply outputs for no load condition does not exceed 100 mV when AC voltage is applied.

Intel order number: D36978-010

### **Regulatory and Certification Information** 9.

## MARNING

To ensure regulatory compliance, you must adhere to the assembly instructions in this guide to ensure and maintain compliance with existing product certifications and approvals. Use only the described, regulated components specified in this guide. Use of other products/components will void the UL listing and other regulatory approvals of the product and will most likely result in noncompliance with product regulations in the region(s) in which the product is sold.

To help ensure EMC compliance with your local regional rules and regulations, before computer integration, make sure that the chassis, power supply, and other modules have passed EMC testing using a server board with a microprocessor from the same family (or higher) and operating at the same (or higher) speed as the microprocessor used on this server board. The final configuration of your end system product may require additional EMC compliance testing. For more information please contact your local Intel Representative.

This is an FCC Class A device. Integration of it into a Class B chassis does not result in a Class B device.

#### **Product Regulatory Compliance** 9.1

Intended Application – This product was evaluated as Information Technology Equipment (ITE), which may be installed in offices, schools, computer rooms, and similar commercial type locations. The suitability of this product for other product categories and environments (such as: medical, industrial, telecommunications, NEBS, residential, alarm systems, test equipment, etc.), other than an ITE application, may require further evaluation. This is an FCC Class A device. Integration of it into a Class B chassis does not result in a Class B device.

Note: The use and/or integration of telecommunication devices such as modems and/or wireless devices have not been planned for with respect to these systems. If there is any change of plan to use such devices, then telecommunication type certifications will require additional planning. If NEBS compliance is required for system level products, additional certification planning and design will be required.

#### 9.1.1 **Product Safety Compliance**

- UL60950 CSA 60950 (USA/Canada)
- EN60950 (Europe)
- IEC60950 (International)
- CB Certificate & Report, IEC60950 (report to include all country national deviations)
- BSMI Declaration of Conformity (Taiwan)
- Belarus License Listed on System License (Belarus)
- UL 60950 Recognition (USA)

## 9.1.2 Product EMC Compliance – Class A Compliance

**Note:** This product requires complying with Class A EMC requirements. However, Intel targets a 10 db margin to support customer enablement.

- CISPR 22 Emissions (International)
- EN55022 Emissions (Europe)
- EN55024 Immunity (Europe)
- CE EMC Directive 89/336/EEC (Europe)
- FCC Part 15 Emissions (USA) Verification
- AS/NZS 3548 Emissions (Australia/New Zealand)
- BSMI CNS13438 Emissions (Taiwan)
- RRL MIC Notice No. 1997-41 (EMC) & 1997-42 (EMI) (Korea)

### **IMPORTANT NOTE:**

The host system with the Server Board S5500BC requires the use of shielded LAN cable to comply with Immunity regulatory requirements. Use of non-shield cables may result in the product having insufficient protection against electromagnetic effects, which may cause improper operation of the product.

## 9.1.3 Certifications/Registrations/Declarations

- UL Certification (US/Canada)
- CE Declaration of Conformity (CENELEC Europe)
- FCC/ICES-003 Class A Attestation (USA/Canada)
- C-Tick Declaration of Conformity (Australia)
- MED Declaration of Conformity (New Zealand)
- BSMI Declaration (Taiwan)
- RRL Certification (Korea)
- GOST Listed on one System License (Russia)
- Belarus Listed on one System License (Belarus)
- Ecology Declaration (International)

## 9.1.4 Product Ecology Requirements

Intel restricts the use of banned substances in accordance with world wide product ecology regulatory requirements. Suppliers Declarations of Conformity to the banned substances must be obtained from all suppliers; and a Material Declaration Data Sheet (MDDS) must be produced to illustrate compliance. Due verification of random materials is required as a screening/audit to verify suppliers declarations.

The server board complies with the following ecology regulatory requirements:

 All materials, parts, and subassemblies must not contain restricted materials as defined in Intel's Environmental Product Content Specification of Suppliers and Outsourced Manufacturers – http://supplier.intel.com/ehs/environmental.htm.

- Europe European Directive 2002/95/EC Restriction of Hazardous Substances (RoHS)
   Threshold limits and banned substances are noted below.
- Quantity limit of 0.1% by mass (1000 PPM) for Lead, Mercury, Hexavalent Chromium, Polybrominated Biphenyls Diphenyl Ethers (PBB/PBDE)
- Quantity limit of 0.01% by mass (100 PPM) for Cadmium
- China RoHS
- All plastic parts that weigh >25gm shall be marked with the ISO11469 requirements for recycling. Example >PC/ABS<</li>
- EU Packaging Directive
- CA. Lithium Perchlorate insert Perchlorate Material Special handling may apply. Refer to <a href="http://www.dtsc.ca.gov/hazardouswaste/perchlorate">http://www.dtsc.ca.gov/hazardouswaste/perchlorate</a>.
   This notice is required by California Code of Regulations, Title 22, Division 4.5, Chapter 33: Best Management Practices for Perchlorate Materials. This product/part includes a battery which contains Perchlorate material.
- German Green Dot
- Japan Recycling

## 9.2 Product Regulatory Compliance Markings

The server board is provided with the following regulatory marks:

| Regulatory Compliance  | Region                 | Marking                                                               |
|------------------------|------------------------|-----------------------------------------------------------------------|
| UL Mark                | USA/Canada             | C E139761 US                                                          |
| CE Mark                | Europe                 | CE                                                                    |
| EMC Marking (Class A)  | Canada                 | CANADA ICES-003 CLASS A                                               |
| BSMI Marking (Class A) | Taiwan                 | D33025  警告使用者: 這是甲類的資訊產品,在居住的環境中使用時,可能會造成射頻干擾,在這種情況下,使用者會被要求採取某些適當的對策 |
| C-tick Marking         | Australia/New Zealand  | N232                                                                  |
| RRL MIC Mark           | Korea                  | 인증번호: CPU-Model Name (A)                                              |
| Country of Origin      | Exporting Requirements | MADE IN xxxxx (Provided by label, not silk screen)                    |

| Regulatory Compliance                                                | Region                         | Marking                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model Designation                                                    | Regulatory Identification      | Examples (Intel® Server Board S5500BC) for boxed type boards; or Board PB number for non-boxed boards (typically high-end boards)                                                                                                                                                                                               |
| PB Free Marking?                                                     | Environmental<br>Requirements  | 2nd IVI intct  Refer to the spec  http://prodregs.intel.com/ProductCertifications/Servers/GG-1035%20spec%20Rev%2002.pdf.                                                                                                                                                                                                        |
| China RoHS Marking                                                   | China                          | 207                                                                                                                                                                                                                                                                                                                             |
| China Recycling Package<br>Marking<br>(Marked on packaging<br>label) | China                          | 2                                                                                                                                                                                                                                                                                                                               |
| Other Recycling Package<br>Marking<br>(Marked on packaging<br>label) | Other Recycling Package Marks  | Corrugated Recycles                                                                                                                                                                                                                                                                                                             |
| Other Recycling Package<br>Marking<br>(Marked on packaging<br>label) | CA. Lithium Perchlorate insert | Perchlorate Material – Special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate This notice is required by California Code of Regulations, Title 22, Division 4.5, Chapter 33: Best Management Practices for Perchlorate Materials. This product/part includes a battery which contains Perchlorate material. |

## 9.3 Electromagnetic Compatibility Notices

## 9.3.1 FCC Verification Statement (USA)

This device complies with Part 15 of the FCC Rules. Operation is subject to two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Intel Corporation 5200 N.E. Elam Young Parkway Hillsboro, OR 97124-6497 Phone: 1-800-628-8686

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of these measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and the receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Any changes or modifications not expressly approved by the grantee of this device could void the user's authority to operate the equipment. The customer is responsible for ensuring compliance of the modified product.

All cables used to connect to peripherals must be shielded and grounded. Operation with cables, connected to peripherals that are not shielded and grounded may result in interference to radio and TV reception.

## 9.3.2 ICES-003 (Canada)

Cet appareil numérique respecte les limites bruits radioélectriques applicables aux appareils numériques de Classe B prescrites dans la norme sur le matériel brouilleur: "Appareils Numériques", NMB-003 édictée par le Ministre Canadian des Communications.

## English translation of the notice above:

This digital apparatus does not exceed the Class B limits for radio noise emissions from digital apparatus set out in the interference-causing equipment standard entitled "Digital Apparatus," ICES-003 of the Canadian Department of Communications.

## 9.3.3 Europe (CE Declaration of Conformity)

This product has been tested in accordance too, and complies with the Low Voltage Directive (73/23/EEC) and EMC Directive (89/336/EEC). The product has been marked with the CE Mark to illustrate its compliance.

## 9.3.4 VCCI (Japan)

この装置は、情報処理装置等電波障害自主規制協議会(VCCI)の基準に基づくクラスB情報技術装置です。この装置は、家庭環境で使用することを目的としていますが、この装置がラジオやテレビジョン受信機に近接して使用されると、受信障害を引き起こすことがあります。

取扱説明書に従って正しい取り扱いをして下さい。

### English translation of the notice above:

This is a Class B product based on the standard of the Voluntary Control Council for Interference (VCCI) from Information Technology Equipment. If this is used near a radio or television receiver in a domestic environment, it may cause radio interference. Install and use the equipment according to the instruction manual.

## 9.3.5 BSMI (Taiwan)

The BSMI Certification Marking and EMC warning is located on the outside rear area of the product.

## 警告使用者:

這是甲類的資訊產品,在居住的環境中使用時,可能會造成射頻干擾,在這種情況下,使用者會被要求採取某些適當的對策

## 9.3.6 RRL (Korea)

Following is the RRL certification information for Korea.



### **English translation of the notice above:**

- 1. Type of Equipment (Model Name): On License and Product
- 2. Certification No.: On RRL certificate. Obtain certificate from local Intel representative
- 3. Name of Certification Recipient: Intel Corporation
- 4. Date of Manufacturer: Refer to date code on product
- 5. Manufacturer/Nation: Intel Corporation/Refer to country of origin marked on product

# Appendix A: Integration and Usage Tips

- When adding or removing components or peripherals from the server board, you must remove AC power. With AC plugged in to the server board, 5-volt standby is still present even though the server board is powered off.
- You must install processors in order. CPU 1 is located near the edge of the server board and must be populated to operate the board.
- On the back edge of the server board are four diagnostic LEDs that display a sequence of red, green, or amber POST codes during the boot process. If your server board hangs during POST, the LEDs display the last POST event run before the hang.
- You must install memory DIMMs in pairs across branches in similarly numbered slots (for example, A2 and B2). Upgrade pairs must be identical with respect to size, speed, and organization.

# Appendix B: Sensor Tables

This appendix lists the sensor identification numbers and information regarding the sensor type, name, supported thresholds, assertion and de-assertion information, and a brief description of the sensor purpose. See the *Intelligent Platform Management Interface Specification, Version 2.0*, for sensor and event/reading-type table information.

## Sensor Type

The sensor type references the values in the sensor type codes table in the Intelligent Platform Management Interface Specification Second Generation v2.0. It provides the context to interpret the sensor.

### Event/Reading Type

The event/reading type references values from the event/reading type code ranges and the generic event/reading type code tables in the Intelligent Platform Management Interface Specification Second Generation v2.0. Digital sensors are a specific type of discrete sensors that only have two states.

### Event Thresholds/Triggers

The following event thresholds are supported for threshold type sensors.

[u,l][nr,c,nc] upper non-recoverable, upper critical, upper non-critical, lower non-

recoverable, lower critical, lower non-critical

uc, lc upper critical, lower critical

Event triggers are supported, event-generating offsets for discrete type sensors. You can find the offsets in the generic event/reading type code or sensor type code tables in the Intelligent Platform Management Interface Specification Second Generation v2.0, depending on whether the sensor event/reading type is generic or a sensor-specific response.

### Assertion/De-assertion Enables

Assertion and de-assertion indicators reveal the type of events the sensor can generate:

As: Assertions
De: De-assertion

### Readable Value/Offsets

Readable Value indicates the type of value returned for threshold and other non-discrete type sensors.

Readable Offsets indicate the offsets for discrete sensors that are readable via the Get Sensor Reading command. Unless otherwise indicated, all event triggers are readable (for example, Readable Offsets consists of the reading type offsets that do not generate events).

### Event Data

This is the data included in an event message generated by the associated sensor. For threshold-based sensors, these abbreviations are used:

R: Reading value

T: Threshold value

### Rearm Sensors

The rearm is a request for the event status for a sensor to be rechecked and updated upon a transition between good and bad states. Rearming the sensors can be done manually or automatically. This column indicates the type supported by the sensor. The following abbreviations are used in the comment column to describe a sensor:

A: Auto-rearm

M: Manual rearm

I: Rearm by init agent

### Default Hysteresis

Hysteresis setting applies to all thresholds of the sensor. This column provides the count of hysteresis for the sensor, which can be 1 or 2 (positive or negative hysteresis).

### Criticality

Criticality is a classification of the severity and nature of the condition. It also controls the behavior of the Control Panel Status LED.

### Standby

Some sensors operate on standby power. These sensors may be accessed and/or generate events when the main (system) power is off, but AC power is present.

**Table 38. Integrated BMC Core Sensors** 

| Sensor<br>Name          | Sensor<br>Number | System<br>Applica<br>-bility | Senso r<br>Type      | Event/Reading<br>Type | Event<br>Offset<br>Triggers                                             | Criticality | Assert/De-<br>assert | Readable<br>Value/Offsets | Event<br>Data  | Rearm | Stand<br>-by |
|-------------------------|------------------|------------------------------|----------------------|-----------------------|-------------------------------------------------------------------------|-------------|----------------------|---------------------------|----------------|-------|--------------|
| Power<br>Unit<br>Status | 01h              | All                          | Power<br>Unit<br>09h | Specific<br>6Fh       | down Power cycle A/C lost Soft power control failure Power unit failure | Crit        | As                   |                           | Trig<br>Offset | A     | X            |

| Sensor<br>Name                    | Sensor<br>Number | System<br>Applica<br>-bility                        | Senso r<br>Type                                     | Event/Reading<br>Type     | Event<br>Offset<br>Triggers                                                                  | Criticality | Assert/De-<br>assert | Readable<br>Value/Offsets | Event<br>Data  | Rearm | Stand<br>-by |
|-----------------------------------|------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------|-------------|----------------------|---------------------------|----------------|-------|--------------|
| Power<br>Unit<br>Redund<br>ancy   | 02h              | Chassis<br>- specific                               | Power<br>Unit<br>09h                                | 0Bh                       | Redundan<br>cy<br>regained<br>Non-red:<br>suff res<br>from<br>redund                         | OK          | As                   |                           | Trig<br>Offset | A     | Х            |
|                                   |                  |                                                     |                                                     |                           | Redundan<br>cy lost<br>Redundan<br>cy                                                        | Degraded    |                      |                           |                |       |              |
|                                   |                  |                                                     |                                                     |                           | Non-red:<br>suff from<br>insuff                                                              | OK          |                      |                           |                |       |              |
|                                   |                  |                                                     |                                                     |                           | Non-red:<br>insufficient                                                                     | Critical    |                      |                           |                |       |              |
|                                   |                  |                                                     |                                                     |                           | Redun<br>degrade<br>from full<br>Redun<br>degrade<br>from non-<br>redundant                  | OK          |                      |                           |                |       |              |
| Watchdo<br>g                      | 03h              | All                                                 | Watch<br>dog 2<br>23h                               | 6Fh                       |                                                                                              |             | As                   |                           | Trig<br>Offset | Α     | X            |
| Platform<br>Security<br>Violation |                  | All                                                 | Platform<br>Security<br>Violation<br>Attempt<br>06h | Specific<br>6Fh           | Secure<br>mode<br>violation<br>attempt<br>Out-of-<br>band<br>access<br>password<br>violation | ОК          | As                   |                           | Trig<br>Offset | A     | X            |
| Physical<br>Security              | 05h              | Chassis<br>Intrusion<br>is<br>chassis<br>- specific | al<br>Security<br>05h                               | Sensor<br>Specific<br>6Fh | Chassis<br>intrusion<br>LAN leash<br>lost 1                                                  | OK          | As and<br>De         |                           | Trig<br>Offset | A     | X            |

# Appendix C: POST Code Diagnostic LEDs

All port 80 codes are displayed using the diagnostic LEDs found on the back edge of the baseboard. The diagnostic LED feature consists of a hardware decoder and four dual-color LEDs. During POST, the LEDs display all normal POST codes representing the progress of the BIOS POST. Each code is represented by a combination of colors from the four LEDs.

The LEDs are capable of displaying three colors: green, red, and amber. The POST codes are divided into two nibbles: an upper nibble and a lower nibble. Each bit in the upper nibble is represented by a red LED and each bit in the lower nibble is represented by a green LED. If both bits are set in the upper and lower nibbles then both red and green LEDs are lit, resulting in an amber color. If both bits are clear, then the LED is off.

In the following example, the BIOS sends a value of ACh to the diagnostic LED decoder. The LEDs are decoded as follows:

- Red bits = 1010b = Ah
- Green bits = 1100b = Ch

Since the red bits correspond to the upper nibble and the green bits correspond to the lower nibble, the two are concatenated to be ACh.

**Table 39. POST Progress Code LED Example** 

| LEDs   | Red   | Green | Red | Green | Red | Green | Red | Green |
|--------|-------|-------|-----|-------|-----|-------|-----|-------|
| Ach    | 1     | 1     | 0   | 1     | 1   | 0     | 0   | 0     |
| Result | Amber |       | Gre | een   | Re  | ed    | C   | off   |
|        | MS    | SB    |     |       |     |       | LS  | SB    |

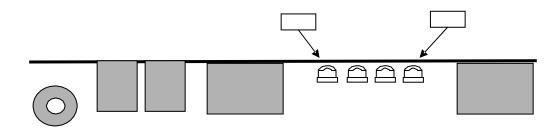



Figure 15. POST Code Diagnostic LEDs

Table 40. Diagnostic LED Post Code Decoder

|        |        | Upper Nit | oble LEDs |        | Lower Nibble LEDs |        |        |        |  |
|--------|--------|-----------|-----------|--------|-------------------|--------|--------|--------|--|
|        | MSB    |           |           |        |                   |        |        | LSB    |  |
|        | LED #7 | LED #6    | LED #5    | LED #4 | LED #3            | LED #2 | LED #1 | LED #0 |  |
|        | 8h     | 4h        | 2h        | 1h     | 8h                | 4h     | 2h     | 1h     |  |
| Status | ON     | OFF       | ON        | OFF    | ON                | ON     | OFF    | OFF    |  |
|        | 1      | 0         | 1         | 0      | 1                 | 1      | 0      | 0      |  |
|        |        | Α         | h         |        | Ch                |        |        |        |  |

Upper nibble bits = 1010b = Ah; Lower nibble bits = 1100b = Ch; the two are concatenated as ACh.

Table 41. Diagnostic LED POST Code Decoder

| Checkpoint     | Diagnostic LED Decoder  |     |       |     | Description                                                         |
|----------------|-------------------------|-----|-------|-----|---------------------------------------------------------------------|
|                | G=Green, R=Red, A=Amber |     | Amber |     |                                                                     |
|                | MSB                     |     |       | LSB |                                                                     |
| Host Processor |                         |     |       |     |                                                                     |
| 0x10h          | OFF                     | OFF | OFF   | R   | Power-on initialization of the host processor (bootstrap processor) |
| 0x11h          | OFF                     | OFF | OFF   | Α   | Host processor cache initialization (including AP)                  |
| 0x12h          | OFF                     | OFF | G     | R   | Starting application processor initialization                       |
| 0x13h          | OFF                     | OFF | G     | Α   | SMM initialization                                                  |
| Chipset        |                         |     |       |     |                                                                     |
| 0x21h          | OFF                     | OFF | R     | G   | Initializing a chipset component                                    |
| Memory         |                         |     |       |     |                                                                     |
| 0x22h          | OFF                     | OFF | Α     | OFF | Reading configuration data from memory (SPD on DIMM)                |
| 0x23h          | OFF                     | OFF | Α     | G   | Detecting presence of memory                                        |
| 0x24h          | OFF                     | G   | R     | OFF | Programming timing parameters in the memory controller              |
| 0x25h          | OFF                     | G   | R     | G   | Configuring memory parameters in the memory controller              |
| 0x26h          | OFF                     | G   | Α     | OFF | Optimizing memory controller settings                               |
| 0x27h          | OFF                     | G   | Α     | G   | Initializing memory, such as ECC init                               |
| 0x28h          | G                       | OFF | R     | OFF | Testing memory                                                      |
| PCI Bus        | •                       | •   | •     |     |                                                                     |
| 0x50h          | OFF                     | R   | OFF   | R   | Enumerating PCI buses                                               |
| 0x51h          | OFF                     | R   | OFF   | Α   | Allocating resources to PCI buses                                   |
| 0x52h          | OFF                     | R   | G     | R   | Hot Plug PCI controller initialization                              |
| 0x53h          | OFF                     | R   | G     | Α   | Reserved for PCI bus                                                |
| 0x54h          | OFF                     | Α   | OFF   | R   | Reserved for PCI bus                                                |
| 0x55h          | OFF                     | А   | OFF   | Α   | Reserved for PCI bus                                                |
| 0x56h          | OFF                     | А   | G     | R   | Reserved for PCI bus                                                |
| 0x57h          | OFF                     | Α   | G     | Α   | Reserved for PCI bus                                                |
| USB            |                         |     | •     | •   | •                                                                   |
| 0x58h          | G                       | R   | OFF   | R   | Resetting USB bus                                                   |
| 0x59h          | G                       | R   | OFF   | Α   | Reserved for USB devices                                            |

Intel order number: D36978-010

| Checkpoint           | Dia               | agnostic | LED Dec | oder    | Description                                                                 |
|----------------------|-------------------|----------|---------|---------|-----------------------------------------------------------------------------|
|                      | G=Green, R=Red, A |          | Red, A= |         |                                                                             |
| A T A (A T A D) (C A | MSB               |          |         | LSB     |                                                                             |
| ATA/ATAPI/SAT        |                   | <b>_</b> | 10      | <u></u> | D W DATA/OATA                                                               |
| 0x5Ah                | G                 | R        | G       | R       | Resetting PATA/SATA bus and all devices                                     |
| 0x5Bh                | G                 | R        | G       | Α       | Reserved for ATA                                                            |
| SMBUS                |                   |          |         |         |                                                                             |
| 0x5Ch                | G                 | Α        | OFF     | R       | Resetting SMBUS                                                             |
| 0x5Dh                | G                 | Α        | OFF     | Α       | Reserved for SMBUS                                                          |
| Local Console        |                   |          |         |         |                                                                             |
| 0x70h                | OFF               | R        | R       | R       | Resetting the video controller (VGA)                                        |
| 0x71h                | OFF               | R        | R       | Α       | Disabling the video controller (VGA)                                        |
| 0x72h                | OFF               | R        | Α       | R       | Enabling the video controller (VGA)                                         |
| Remote Console       | 5                 |          | •       |         |                                                                             |
| 0x78h                | G                 | R        | R       | R       | Resetting the console controller                                            |
| 0x79h                | G                 | R        | R       | Α       | Disabling the console controller                                            |
| 0x7Ah                | G                 | R        | Α       | R       | Enabling the console controller                                             |
| Keyboard (PS2 o      | or USB)           |          |         |         | <u> </u>                                                                    |
| 0x90h                | R                 | OFF      | OFF     | R       | Resetting the keyboard                                                      |
| 0x91h                | R                 | OFF      | OFF     | Α       | Disabling the keyboard                                                      |
| 0x92h                | R                 | OFF      | G       | R       | Detecting the presence of the keyboard                                      |
| 0x93h                | R                 | OFF      | G       | A       | Enabling the keyboard                                                       |
| 0x94h                | R                 | G        | OFF     | R       | Clearing keyboard input buffer                                              |
| 0x95h                | R                 | G        | OFF     | A       | Instructing keyboard controller to run Self Test (PS2 only)                 |
| Mouse (PS2 or l      |                   | <u> </u> | 011     |         | instructing Reybourd controller to run cent rest (FeZ only)                 |
| 0x98h                | A                 | OFF      | OFF     | R       | Resetting the mouse                                                         |
| 0x99h                | A                 | OFF      | OFF     | A       | Detecting the mouse                                                         |
| 0x9Ah                | A                 | OFF      | G       | R       | Detecting the mouse  Detecting the presence of mouse                        |
| 0x9Bh                | A                 | OFF      | G       | A       | Enabling the mouse                                                          |
|                      | ^                 | OFF      | G       |         | Litabiling the mouse                                                        |
| Fixed Media          | Ь                 | ЮГГ      | Ь       | Ь       | Describes fixed modic device                                                |
| 0xB0h                | R                 | OFF      | R       | R       | Resetting fixed media device                                                |
| 0xB1h                | R                 | OFF      | R       | A       | Disabling fixed media device                                                |
| 0xB2h                | R                 | OFF      | Α       | R       | Detecting presence of a fixed media device (IDE hard drive detection, etc.) |
| 0xB3h                | R                 | OFF      | Α       | Α       | Enabling/configuring a fixed media device                                   |
| Removable Med        | lia               |          |         |         |                                                                             |
| 0xB8h                | А                 | OFF      | R       | R       | Resetting removable media device                                            |
| 0xB9h                | А                 | OFF      | R       | Α       | Disabling removable media device                                            |
| 0xBAh                | ۸                 | OFF      | ^       | D       | Detecting presence of a removable media device (IDE CDROM                   |
| 0.00:                | A                 | OFF      | A       | R       | detection, etc.)                                                            |
| 0xBCh                | A                 | G        | R       | R       | Enabling/configuring a removable media device                               |
| Boot Device Sel      | ection            |          | _       | _       |                                                                             |
| 0xD0                 | R                 | R        | OFF     | R       | Trying boot device selection                                                |
| 0xD1                 | R                 | R        | OFF     | А       | Trying boot device selection                                                |
| 0xD2                 | R                 | R        | G       | R       | Trying boot device selection                                                |
| 0xD3                 | R                 | R        | G       | А       | Trying boot device selection                                                |

| Checkpoint         |                 |                         |         | der          | Description                                                        |  |
|--------------------|-----------------|-------------------------|---------|--------------|--------------------------------------------------------------------|--|
|                    | G=G             | G=Green, R=Red, A=Amber |         | mber         |                                                                    |  |
|                    | MSB             |                         |         | LSB          |                                                                    |  |
| 0xD4               | R               | Α                       | OFF     | R            | Trying boot device selection                                       |  |
| 0xD5               | R               | Α                       | OFF     | Α            | Trying boot device selection                                       |  |
| 0xD6               | R               | Α                       | G       | R            | Trying boot device selection                                       |  |
| 0xD7               | R               | Α                       | G       | Α            | Trying boot device selection                                       |  |
| 0xD8               | A               | R                       | OFF     | R            | Trying boot device selection                                       |  |
| 0xD9               | A               | R                       | OFF     | Α            | Trying boot device selection                                       |  |
| 0XDA               | A               | R                       | G       | R            | Trying boot device selection                                       |  |
| 0xDB               | Α               | R                       | G       | Α            | Trying boot device selection                                       |  |
| 0xDC               | Α               | Α                       | OFF     | R            | Trying boot device selection                                       |  |
| 0xDE               | А               | Α                       | G       | R            | Trying boot device selection                                       |  |
| 0xDF               | A               | Α                       | G       | А            | Trying boot device selection                                       |  |
| Pre-EFI Initializa | tion (PEI)      | Core                    | •       | •            |                                                                    |  |
| 0xE0h              | R               | R                       | R       | OFF          | Started dispatching early initialization modules (PEIM)            |  |
| 0xE2h              | R               | R                       | Α       | OFF          | Initial memory found, configured, and installed correctly          |  |
| 0xE1h              | R               | R                       | R       | G            | Reserved for initialization module use (PEIM)                      |  |
| 0xE3h              | R               | R                       | Α       | G            | Reserved for initialization module use (PEIM)                      |  |
| Driver Execution   | n Environn      | nent (DX                | E) Core | 1            |                                                                    |  |
| 0xE4h              | R               | Α                       | R       | OFF          | Entered EFI driver execution phase (DXE)                           |  |
| 0xE5h              | R               | Α                       | R       | G            | Started dispatching drivers                                        |  |
| 0xE6h              | R               | Α                       | Α       | OFF          | Started connecting drivers                                         |  |
| DXE Drivers        |                 |                         |         | 1            |                                                                    |  |
| 0xE7h              | R               | Α                       | Α       | G            | Waiting for user input                                             |  |
| 0xE8h              | Α               | R                       | R       | OFF          | Checking password                                                  |  |
| 0xE9h              | Α               | R                       | R       | G            | Entering BIOS setup                                                |  |
| 0xEAh              | Α               | R                       | Α       | OFF          | Flash Update                                                       |  |
| 0xEEh              | Α               | Α                       | Α       | OFF          | Calling Int 19. One beep unless silent boot is enabled.            |  |
| 0xEFh              | Α               | Α                       | Α       | G            | Unrecoverable boot failure/S3 resume failure                       |  |
| Runtime Phase/     | ı<br>'EFI Opera | tina Svst               | em Boot | Į.           |                                                                    |  |
|                    |                 | A                       | R       | R            | Entering Sleep state                                               |  |
| 0xF5h              | R               | Α                       | R       | Α            | Exiting Sleep state                                                |  |
| 0xF8h              |                 |                         |         |              | Operating system has requested EFI to close boot services          |  |
|                    | A               | R                       | R       | R            | (ExitBootServices ( ) has been called)                             |  |
| 0xF9h              |                 |                         | _       |              | Operating system has switched to virtual address mode              |  |
|                    | A               | R                       | R       | Α            | (SetVirtualAddressMap ( ) has been called)                         |  |
| 0xFAh              | Α               | R                       | Α       | R            | Operating system has requested the system to reset (ResetSystem () |  |
|                    |                 |                         |         |              | has been called)                                                   |  |
| Pre-EFI Initializa |                 |                         |         | <del>-</del> | Crisis recovery has been initiated because of a way required       |  |
| 0x30h              | OFF             | OFF                     | R       | R            | Crisis recovery has been initiated because of a user request       |  |
| 0x31h              | OFF             | OFF                     | R       | A            | Crisis recovery has been initiated by software (corrupt flash)     |  |
| 0x34h              | OFF             | G                       | R       | R            | Loading crisis recovery capsule                                    |  |
| 0x35h              | OFF             | G                       | R       | A            | Handing off control to the crisis recovery capsule                 |  |
| 0x3Fh              | G               | G                       | Α       | A            | Unable to complete crisis recovery.                                |  |

# Glossary

This appendix contains important terms used in the preceding chapters. For ease of use, numeric entries are listed first (for example, "82460GX") with alpha entries following (for example, "AGP 4x"). Acronyms are then entered in their respective place, with non-acronyms following:

| Term        | Definition                                                                                                                                                   |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACPI        | Advanced Configuration and Power Interface                                                                                                                   |
| AP          | Application Processor                                                                                                                                        |
| APIC        | Advanced Programmable Interrupt Control                                                                                                                      |
| ASIC        | Application Specific Integrated Circuit                                                                                                                      |
| BIOS        | Basic Input/Output System                                                                                                                                    |
| BIST        | Built-In Self Test                                                                                                                                           |
| BMC         | Baseboard Management Controller                                                                                                                              |
| Bridge      | Circuitry connecting one computer bus to another, allowing an agent on one to access the other                                                               |
| BSP         | Bootstrap Processor                                                                                                                                          |
|             | 8-bit quantity                                                                                                                                               |
| byte<br>CBC | Chassis Bridge Controller (A microcontroller connected to one or more other CBCs, together they bridge                                                       |
| СВС         | the IPMB buses of multiple chassis.)                                                                                                                         |
| CEK         | Common Enabling Kit                                                                                                                                          |
| CHAP        | Challenge Handshake Authentication Protocol                                                                                                                  |
| CMOS        | In terms of this specification, this describes the PC-AT compatible region of battery-backed 128 bytes of memory, which normally resides on the server board |
| DPC         | Direct Platform Control                                                                                                                                      |
| EEPROM      | Electrically Erasable Programmable Read-Only Memory                                                                                                          |
| EHCI        | Enhanced Host Controller Interface                                                                                                                           |
| EMP         | Emergency Management Port                                                                                                                                    |
| EPS         | External Product Specification                                                                                                                               |
| FMB         | Flexible Mother Board                                                                                                                                        |
| FMC         | Flex Management Connector                                                                                                                                    |
| FMM         | Flex Management Module                                                                                                                                       |
| FRB         | Fault Resilient Booting                                                                                                                                      |
| FRU         | Field Replaceable Unit                                                                                                                                       |
| FSB         | Front Side Bus                                                                                                                                               |
| GB          | 1024MB                                                                                                                                                       |
| GPIO        | General Purpose I/O                                                                                                                                          |
| GTL         | Gunning Transceiver Logic                                                                                                                                    |
| HSC         | Hot-Swap Controller                                                                                                                                          |
| Hz          | Hertz (1 cycle/second)                                                                                                                                       |
| I2C         | Inter-Integrated Circuit Bus                                                                                                                                 |
| IA          | Intel® Architecture                                                                                                                                          |
| IBF         | Input Buffer                                                                                                                                                 |
| ICH         | I/O Controller Hub                                                                                                                                           |
| ICMB        | Intelligent Chassis Management Bus                                                                                                                           |
| IERR        | Internal Error                                                                                                                                               |
| L           | l                                                                                                                                                            |

| Term    | Definition                                                                                  |
|---------|---------------------------------------------------------------------------------------------|
| IFB     | I/O and Firmware Bridge                                                                     |
| INTR    | Interrupt                                                                                   |
| IP      | Internet Protocol                                                                           |
| IPMB    | Intelligent Platform Management Bus                                                         |
| IPMI    | Intelligent Platform Management Interface                                                   |
| IR      | Infrared                                                                                    |
| ITP     | In-Target Probe                                                                             |
| KB      | 1024 bytes                                                                                  |
| KCS     | Keyboard Controller Style                                                                   |
| LAN     | Local Area Network                                                                          |
| LCD     | Liquid Crystal Display                                                                      |
| LED     | Light Emitting Diode                                                                        |
| LPC     | Low Pin Count                                                                               |
| LUN     | Logical Unit Number                                                                         |
| MAC     | Media Access Control                                                                        |
| MB      | 1024KB                                                                                      |
| mBMC    | National Semiconductor© PC87431x mini BMC                                                   |
| мсн     | Memory Controller Hub                                                                       |
| MD2     | Message Digest 2 – Hashing Algorithm                                                        |
| MD5     | Message Digest 5 – Hashing Algorithm – Higher Security                                      |
| ms      | milliseconds                                                                                |
| MTTR    | Memory Type Range Register                                                                  |
| Mux     | Multiplexor                                                                                 |
| NIC     | Network Interface Controller                                                                |
| NMI     | Nonmaskable Interrupt                                                                       |
| OBF     | Output Buffer                                                                               |
| OEM     | Original Equipment Manufacturer                                                             |
| Ohm     | Unit of electrical resistance                                                               |
| PEF     | Platform Event Filtering                                                                    |
| PEP     | Platform Event Paging                                                                       |
| PIA     | Platform Information Area (This feature configures the firmware for the platform hardware.) |
| PLD     | Programmable Logic Device                                                                   |
| PMI     | Platform Management Interrupt                                                               |
| POST    | Power-On Self Test                                                                          |
| PSMI    | Power Supply Management Interface                                                           |
| PWM     | Pulse-Width Modulation                                                                      |
| RAM     | Random Access Memory                                                                        |
| RASUM   | Reliability, Availability, Serviceability, Usability, and Manageability                     |
| RISC    | Reduced Instruction Set Computing                                                           |
| ROM     | Read Only Memory                                                                            |
| RTC     | Real-Time Clock (Component of ICH peripheral chip on the server board.)                     |
| SDR     | Sensor Data Record                                                                          |
| SECC    | Single Edge Connector Cartridge                                                             |
| SEEPROM | Serial Electrically Erasable Programmable Read-Only Memory                                  |

| Term | Definition                                                                       |
|------|----------------------------------------------------------------------------------|
| SEL  | System Event Log                                                                 |
| Term | Definition                                                                       |
| SIO  | Server Input/Output                                                              |
| SMI  | System Management Interrupt (SMI is the highest priority nonmaskable interrupt.) |
| SMM  | System Management Mode                                                           |
| SMS  | System Management Software                                                       |
| SNMP | Simple Network Management Protocol                                               |
| TBD  | To Be Determined                                                                 |
| TIM  | Thermal Interface Material                                                       |
| UART | Universal Asynchronous Receiver/Transmitter                                      |
| UDP  | User Datagram Protocol                                                           |
| UHCI | Universal Host Controller Interface                                              |
| UTC  | Universal time coordinate                                                        |
| VID  | Voltage Identification                                                           |
| VRD  | Voltage Regulator Down                                                           |
| Word | 16-bit quantity                                                                  |
| ZIF  | Zero Insertion Force                                                             |

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

## Intel:

S5000VSA4DIMMR BSA2VBBR BSA2BBR BSA2SASBBR S5000VSASCSIR