

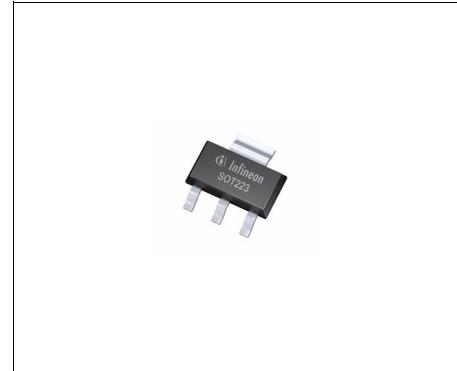
TLE42364G

Low Dropout Linear Voltage Regulator

TLE42364G

Data Sheet

Rev. 1.0, 2010-02-08


Automotive Power

1 Overview

Features

- Output voltage 5 V
- Output voltage tolerance $\leq \pm 2\%$
- 100 mA current capability
- Very low current consumption
- Low dropout voltage
- Overtemperature shutdown
- Reverse polarity protection
- Output current limitation
- Wide temperature range
- Suitable for use in automotive electronics
- Enable
- Green Product (RoHS compliant)
- AEC Qualified

PG-SOT223-4

Functional Description

TLE42364G is a low dropout voltage regulator for 5 V supply in a PG-SOT223-4 SMD package. The IC regulates an input voltage V_I in the range of $5.5 \text{ V} < V_I < 45 \text{ V}$ to $V_{Q,\text{nom}} = 5 \text{ V}$. The maximum output current is more than 100 mA. The IC can be switched off via the enable input, which causes the current consumption to drop below 10 μA . The IC is protected against shortcircuit and overheat by the incorporated output current limitation and the overtemperature shutdown.

Choosing External Components

The input capacitor C_I is necessary for compensating line influences. The output capacitor C_Q is necessary for the stability of the regulating circuit. Stability is guaranteed at values $C_Q \geq 10 \mu\text{F}$ and an ESR $\leq 10 \Omega$ within the whole operating temperature range.

Circuit Description

The device includes a precise reference voltage, which is very accurate due to resistor adjustment. A control amplifier compares the divided output voltage to this reference voltage and drives the base of the PNP series transistor through a buffer. Saturation control as a function of the load current prevents any oversaturation of the power element.

Type	Package	Marking
TLE42364G	PG-SOT223-4	42364

2 Block Diagram

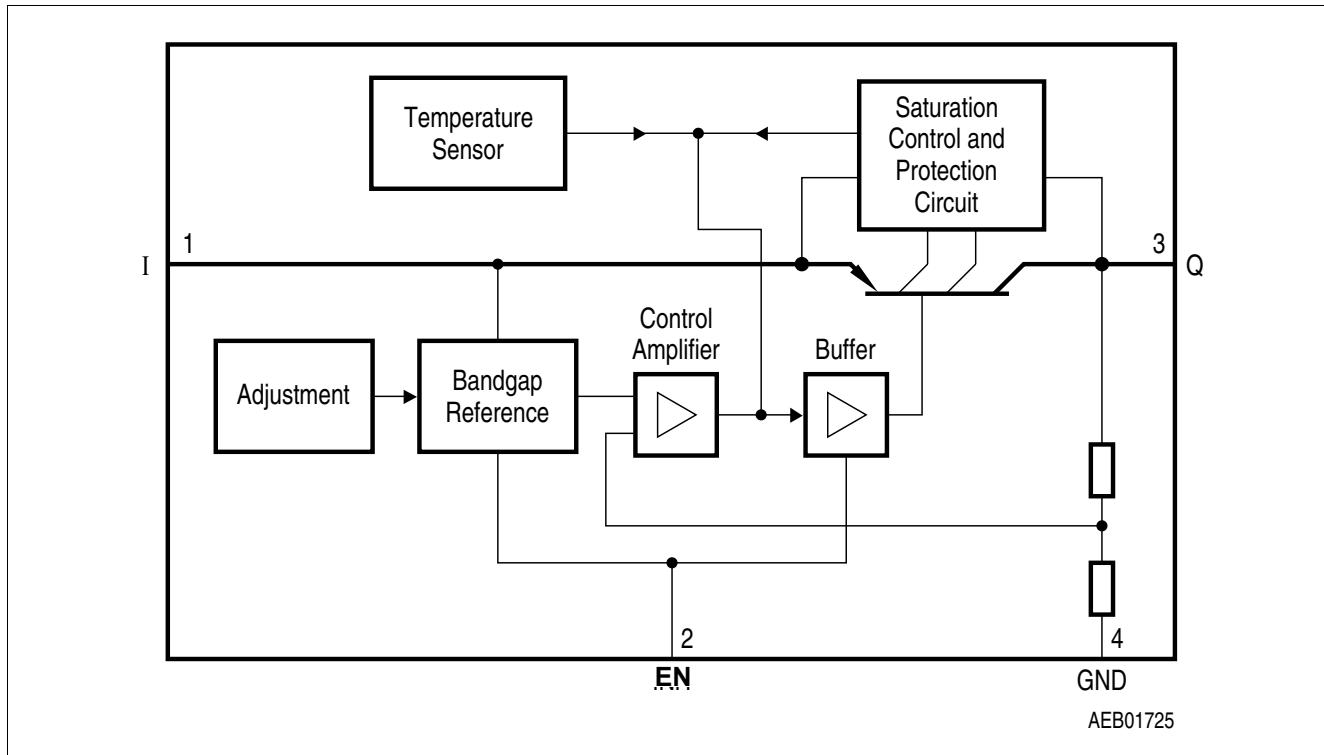


Figure 1 Block Diagram

3 Pin Configuration

3.1 Pin Assignment

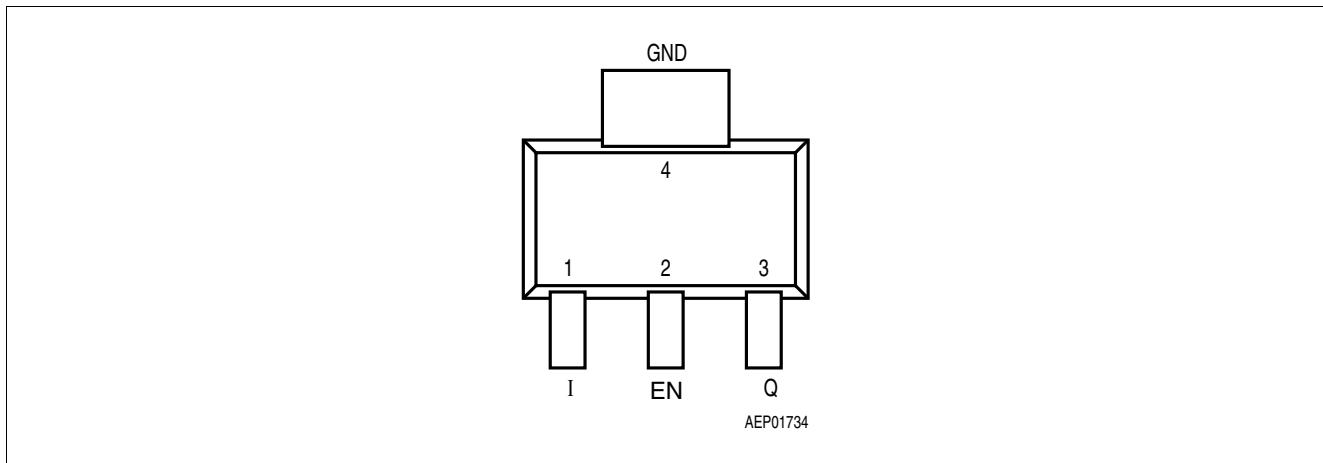


Figure 2 Pin Configuration

3.2 Pin Definitions and Functions

Pin	Symbol	Function
1	I	Input voltage ; block to ground directly at the IC with a ceramic capacitor.
2	EN	Enable ; connect to V_{batt} to enable the IC, connect to GND to disable the IC.
3	Q	Output voltage ; block to ground with a capacitor $C_Q \geq 10 \mu F$.
4	GND	Ground

4 General Product Characteristics

4.1 Absolute Maximum Ratings

Absolute Maximum Ratings ¹⁾

T_j = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Pos.	Parameter	Symbol	Limit Values		Unit	Conditions
			Min.	Max.		
Input, Enable						
4.1.1	Voltage	V_i, V_{EN}	-30	45	V	-
Output						
4.1.2	Voltage	V_Q	-1	32	V	-
Temperatures						
4.1.3	Junction Temperature	T_j	-40	150	°C	-
4.1.4	Storage Temperature	T_{stg}	-50	150	°C	-
ESD Susceptibility						
4.1.5	ESD Resistivity to GND	V_{ESD}	-4	4	kV	HBM ²⁾
4.1.6	ESD Resistivity to GND	V_{ESD}	-1.5	1.5	kV	CDM ³⁾

1) Not subject to production test, specified by design.

2) ESD susceptibility, HBM according to EIA/JESD 22-A114B

3) ESD susceptibility, Charged Device Model "CDM" EIA/JESD22-C101 or ESDA STM5.3.1

Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

4.2 Functional Range

Table 1 Functional Range

Pos.	Parameter	Symbol	Limit Values		Unit	Conditions
			Min.	Max.		
4.2.1	Input voltage	V_i	5.5	45	V	-
4.2.2	Junction temperature	T_j	-40	150	°C	-

Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics table.

General Product Characteristics

4.3 Thermal Resistance

Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org.

Pos.	Parameter	Symbol	Limit Values			Unit	Conditions
			Min.	Typ.	Max.		
4.3.1	Junction to Case ¹⁾	R_{thJC}	—	17	—	K/W	measured to heat slug
4.3.2	Junction to Ambient ¹⁾	R_{thJA}	—	54	—	K/W	²⁾
4.3.3			—	139	—	K/W	footprint only ³⁾
4.3.4			—	73	—	K/W	300 mm ² heatsink area ³⁾
4.3.5			—	64	—	K/W	600 mm ² heatsink area ³⁾

1) Not subject to production test, specified by design.

2) Specified R_{thJA} value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper layers (2 x 70 μ m Cu, 2 x 35 μ m Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.

3) Specified R_{thJA} value is according to Jedec JESD 51-3 at natural convection on FR4 1s0p board; The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 1 copper layer (1 x 70 μ m Cu).

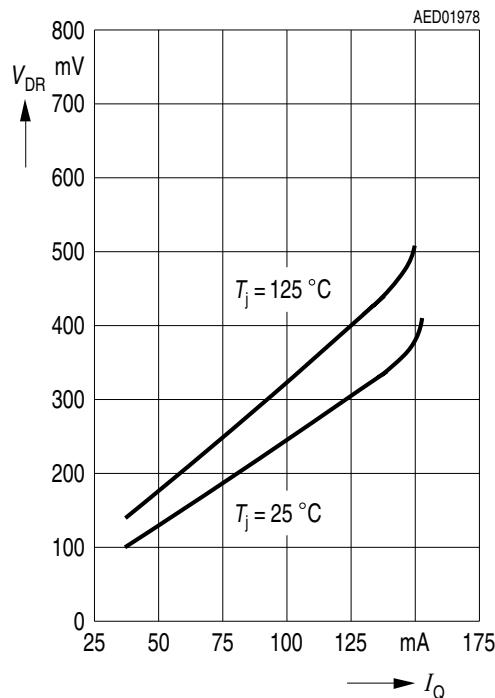
5 Electrical Characteristics

5.1 Electrical Characteristics Voltage Regulator

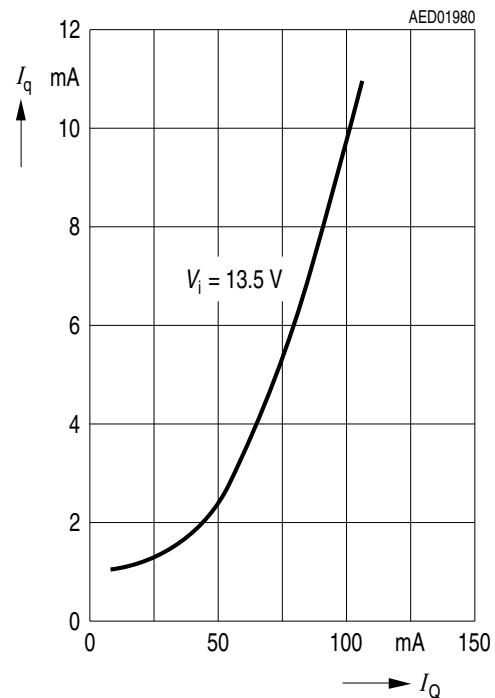
Electrical Characteristics:

$V_I = 13.5 \text{ V}$, $T_j = -40 \text{ }^\circ\text{C}$ to $+150 \text{ }^\circ\text{C}$, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

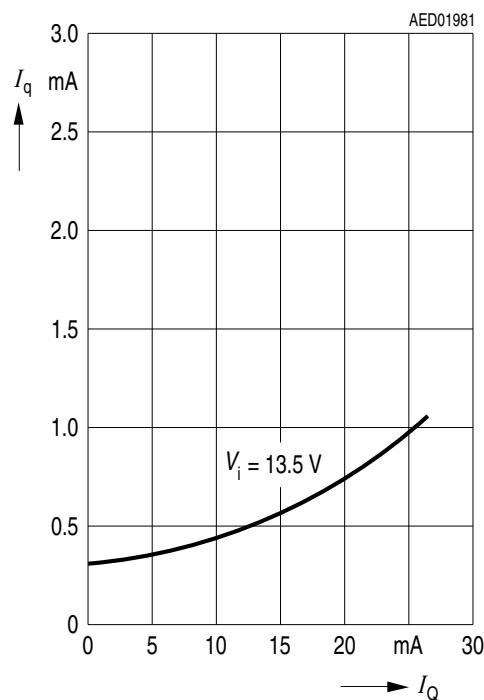
Pos.	Parameter	Symbol	Limit Values			Unit	Conditions
			Min.	Typ.	Max.		
5.1.1	Output voltage	V_Q	4.9	5.0	5.1	V	$5 \text{ mA} \leq I_Q \leq 100 \text{ mA}$ $6 \text{ V} \leq V_I \leq 28 \text{ V}$
5.1.2	Output current limitation	I_Q	120	150	—	mA	—
5.1.3	Current consumption $I_q = I_I - I_Q$	I_q	—	—	10	µA	$V_{EN} = 0 \text{ V}$; $T_j \leq 100 \text{ }^\circ\text{C}$
5.1.4	Current consumption $I_q = I_I - I_Q$	I_q	—	—	400	µA	$I_Q = 1 \text{ mA}$ Enable ON
5.1.5	Current consumption $I_q = I_I - I_Q$	I_q	—	10	15	mA	$I_Q = 100 \text{ mA}$ Enable ON
5.1.6	Dropout voltage	V_{dr}	—	0.25	0.5	V	$I_Q = 100 \text{ mA}^1)$
5.1.7	Load regulation	ΔV_{Q_load}	—	—	40	mV	$I_Q = 5 \text{ to } 100 \text{ mA}$ $V_I = 6 \text{ V}$
5.1.8	Line regulation	ΔV_{Q_line}	—	15	30	mV	$V_I = 6 \text{ to } 28 \text{ V}$ $I_Q = 5 \text{ mA}$
5.1.9	Power Supply ripple rejection	$PSRR$	—	54	—	dB	$f_r = 100 \text{ Hz}$ $V_r = 0.5 \text{ Vpp}$

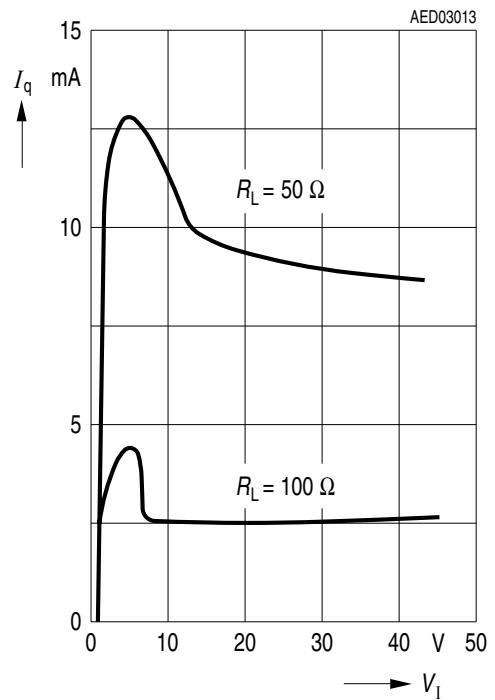

Enable

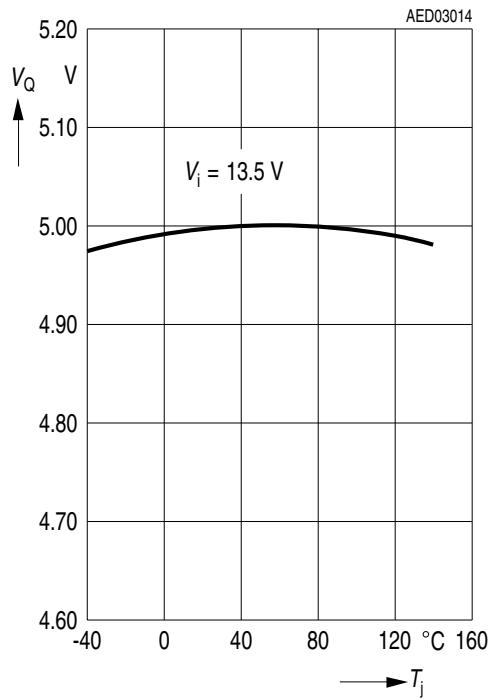
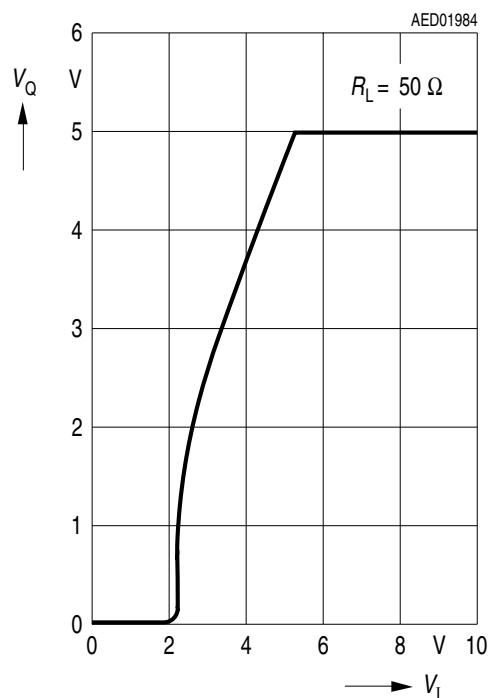
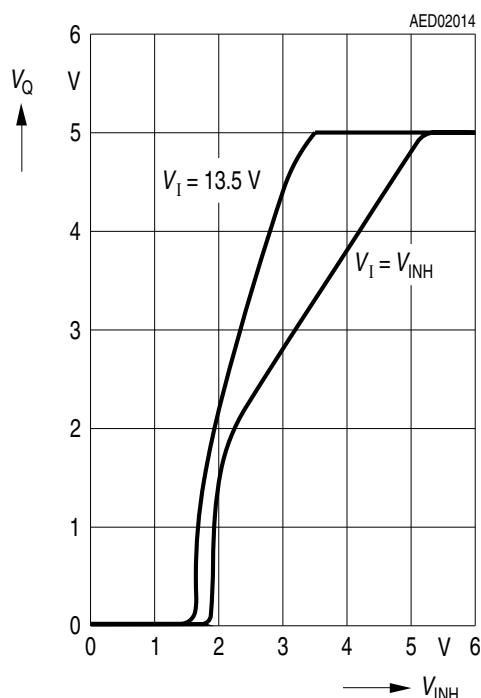
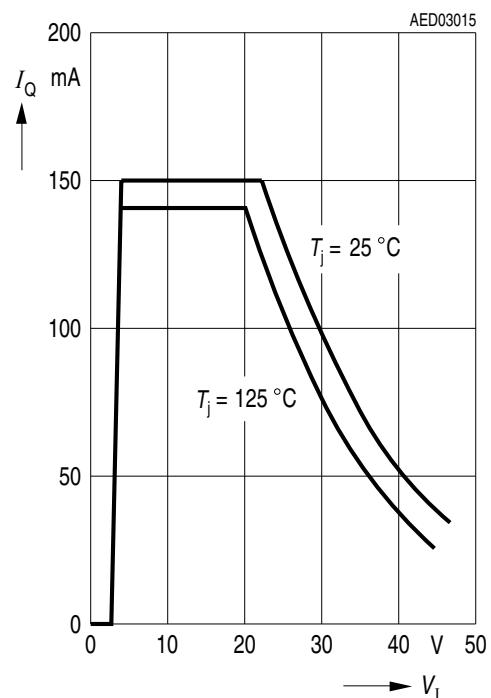
5.1.10	Enable on voltage	$V_{EN, on}$	3.5	—	—	V	—
5.1.11	Enable off voltage	$V_{EN, off}$	—	—	0.8	V	—
5.1.12	Enable current	I_{EN}	5	15	25	µA	$V_{EN} = 5 \text{ V}$


1) Dropout voltage = $V_I - V_Q$ (measured when the output voltage V_Q has dropped 100 mV from the nominal value obtained at $V_I = 13.5 \text{ V}$).

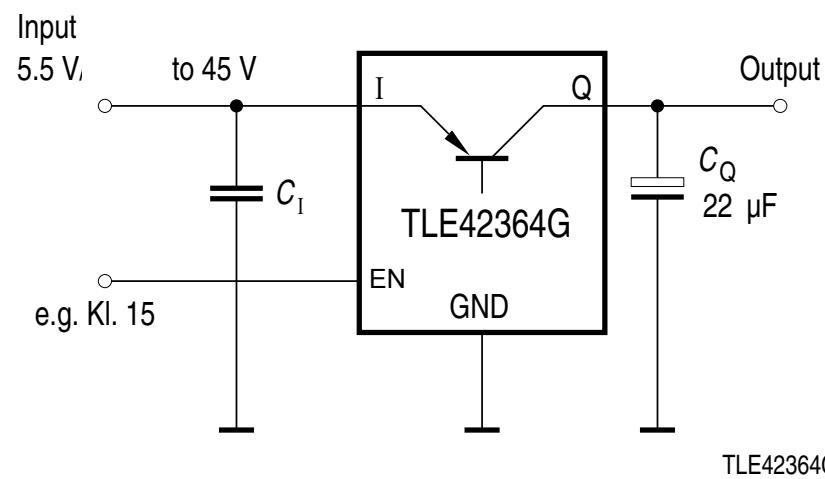
5.2 Typical Performance Characteristics Voltage Regulator


Dropout Voltage V_{DR} versus Output Current I_Q


Current Consumption I_q versus Output Current I_Q

Current Consumption I_q versus Output Current I_Q


Current Consumption I_q versus Input Voltage V_i

Electrical Characteristics
**Output Voltage V_Q versus
Temperature T_j**

**Output Voltage V_Q versus
Input Voltage V_i**

**Output Voltage V_Q versus
Enable Voltage V_{EN}**

**Output Current I_Q versus
Input Voltage V_i**

6 Application Information

Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

Figure 3 Application Diagram

Note: This is a very simplified example of an application circuit. The function must be verified in the real application.

6.1 Further Application Information

- For further information you may contact <http://www.infineon.com/>

7 Package Outlines

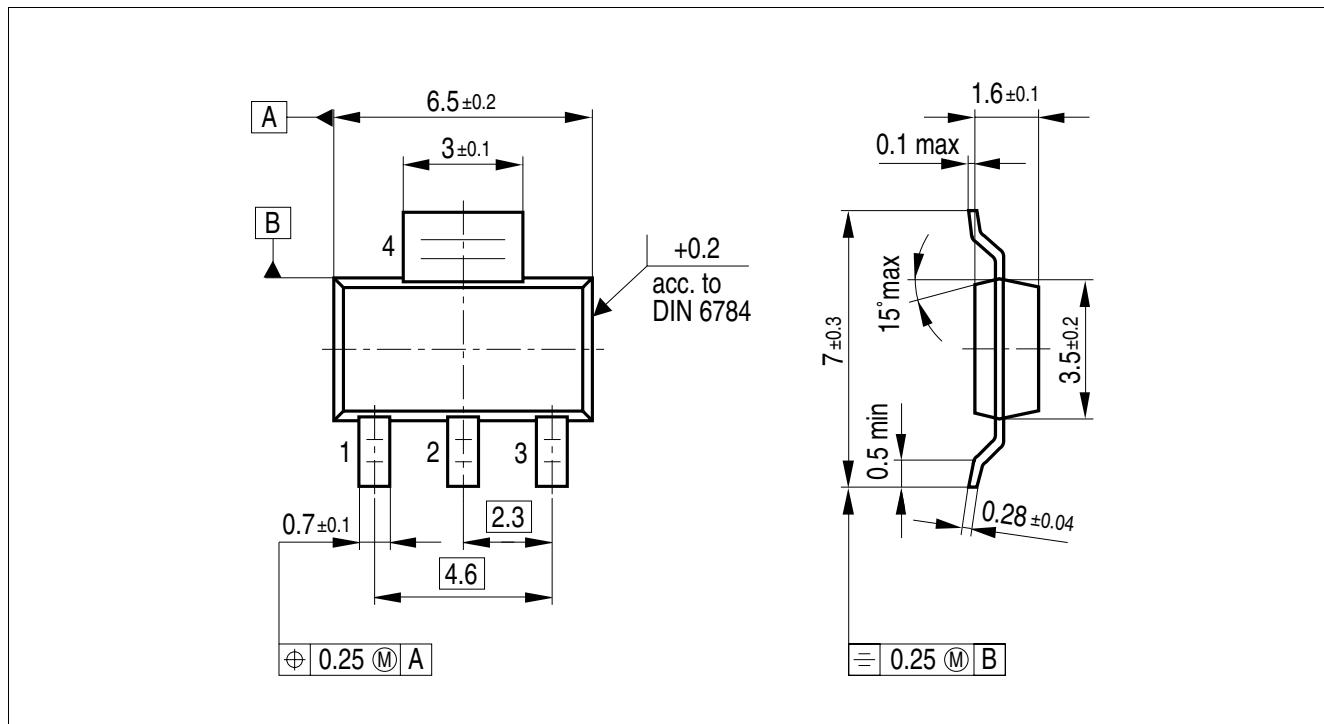


Figure 4 PG-SOT223-4 (Plastic Small Outline Transistor)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

For further information on alternative packages, please visit our website:
<http://www.infineon.com/packages>.

Dimensions in mm

8 Revision History

Revision	Date	Changes
1.0	2010-02-08	Initial data sheet

Edition 2010-02-08

Published by
Infineon Technologies AG
81726 Munich, Germany

© 2010 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.