

Communication BUS Varistor

GENERAL DESCRIPTION

The CAN BUS and FlexRay varistor is a zinc oxide (ZnO) based ceramic semiconductor device with non-linear voltage-current characteristics (bi-directional) similar to back-to-back Zener diodes and an EMC capacitor in parallel (see equivalent circuit model). They have the added advantage of greater current and energy handling capabilities as well as EMI/RFI attenuation. Devices are fabricated by a ceramic sintering process that yields a structure of conductive ZnO grains surrounded by electrically insulating barriers, creating varistor like behavior.

KYOCERA AVX Communication Bus Varistors offer the advantages of large in-rush current capability, low capacitance to minimize signal distortion, fast turn on time to conservatively clamp the energy before its maximum and off state EMI filtering through their bulk capacitance. These features coupled with an extremely low FIT rate and excellent process capability make an ideal device for today's automotive or general circuit protection.

GENERAL CHARACTERISTICS

- Operating Temperature: -55°C to +125°C
- Working Voltage: ≤18Vdc
- Case Size: 0402, 0603
0405 2xArray
0612 4xArray

FEATURES

- Compact footprint
- High ESD capability (25kV)
- High Inrush Current (8x20μs)
- EMI/RFI Attenuation
- Low Capacitance/Low Insertion Loss
- Very Fast Response Time
- High Reliability <0.1 FIT
- AEC-Q200 Qualified

APPLICATIONS

- Communication Bus:
CAN Bus, FlexRay, etc.
- General I/O Protocols
- Keyboard Interfaces
- Datalines
- Sensors
- Capacitance sensitive applications and more

HOW TO ORDER

CAN
Style
CAN = CAN BUS
FLX = FlexRay

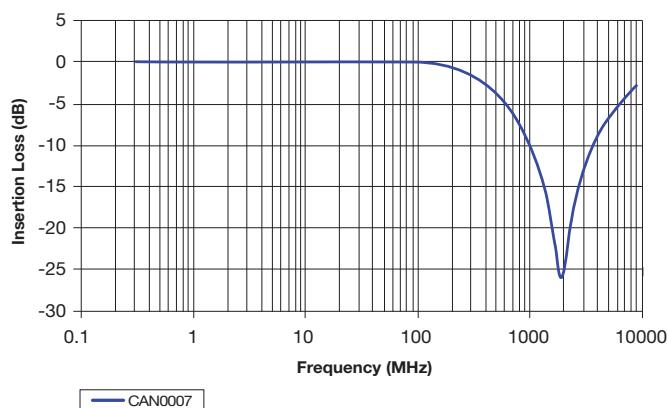
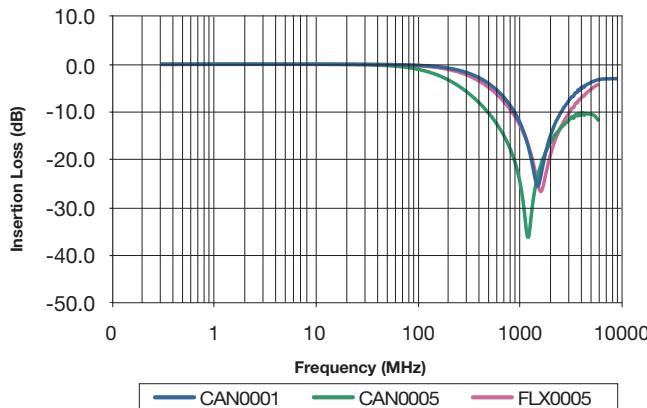
0001
Case Size
0001 = 0603 Discrete
0002 = 0405 2-Element
0003 = 0405 2-Element
0004 = 0612 4-Element
0005 = 0402 Discrete
0007 = 0603 Discrete

D
Packaging Code
(Reel Size)
D = 7" reel (1,000 pcs.)
R = 7" reel (4,000 pcs.)
T = 13" reel (10,000 pcs.)
W = 7" reel (10,000 pcs.) 0402 only

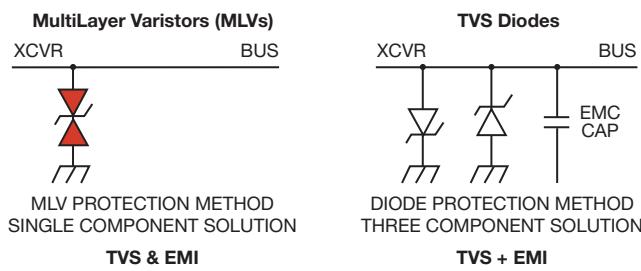
P
Termination
P = Ni/Sn (Plated)

PERFORMANCE CHARACTERISTICS

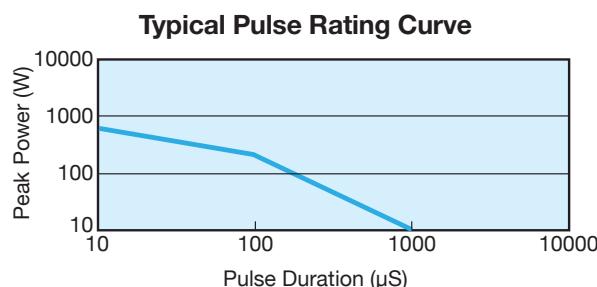
Part Number	V _w (DC)	V _w (AC)	V _b	V _c	I _{vc}	I _L	E _T	I _P	Cap	Freq	VJump	PDiss Max	Case	Elements
CAN0001 __	≤ 18	≤ 14	120	225	1	2	0.015	4	22 Max	M	27.5	0.003	0603	1
CAN0002 __	≤ 18	≤ 14	70	145	1	2	0.015	4	22 Max	M	27.5	0.003	0405	2
CAN0003 __	≤ 18	≤ 14	28.5	50	1	5	0.02	15	50 Max	M	27.5	0.0008	0405	2
CAN0004 __	≤ 18	≤ 14	100	180	1	2	0.015	4	22 Max	M	27.5	0.003	0612	4
CAN0005 __	≤ 18	≤ 14	33	55	1	2	0.05	10	37 Max	M	27.5	0.01	0402	1
CAN0007 __	≤ 32.0	≤ 25.0	61	120	1	5	0.05	5	15 Max	M	27.5	0.003	0603	1
FLX0005 __	≤ 18	≤ 14	26	45	1	5	0.02	4	17 Max	M	27.5	0.004	0402	1



Termination Finish Code
Packaging Code

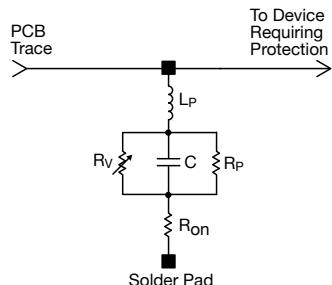
V_w (DC) DC Working Voltage (V)
V_w (AC) AC Working Voltage (V)
V_b Typical Breakdown Voltage (V @ 1mA DC)
V_c Clamping Voltage (V @ IVC)
I_{vc} Test Current for VC (A, 8x20μs)


I_L Maximum Leakage Current at the Working Voltage (μA)
E_T Transient Energy Rating (J, 10x1000μs)
I_P Peak Current Rating (A, 8x20μs)
Cap Maximum Capacitance (pF) @ 1 MHz and 0.5Vrms
Temp Range -55°C to +125°C

Communication BUS Varistor

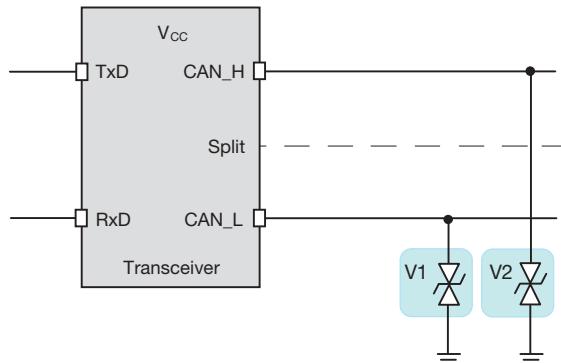

S21 CHARACTERISTICS

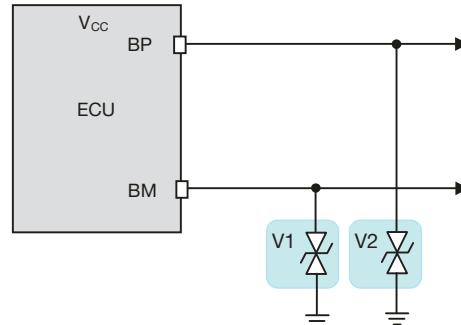
TYPICAL MLV IMPLEMENTATION



TYPICAL PULSE RATING CURVE

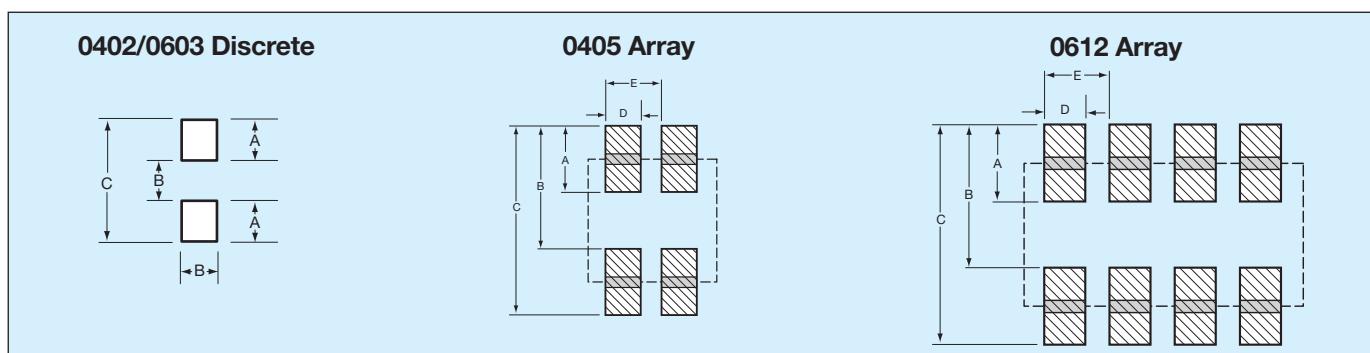
EQUIVALENT CIRCUIT MODEL

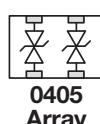

Discrete MLV Model


Where:
 R_v = Voltage Variable resistance (per VI curve)
 $R_p \geq 1012 \Omega$
 C = defined by voltage rating and energy level
 R_{on} = turn on resistance
 L_p = parallel body inductance

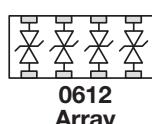
Communication BUS Varistor

TYPICAL CAN BUS IMPLEMENTATION SCHEME


TYPICAL FLEX RAY IMPLEMENTATION SCHEME


PHYSICAL DIMENSIONS

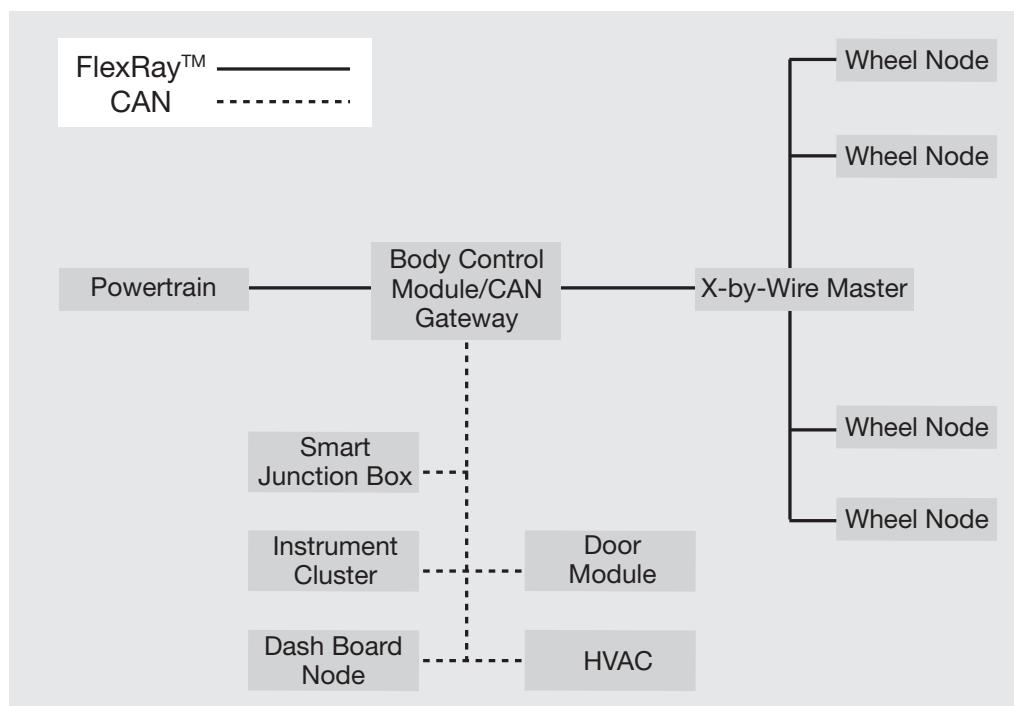
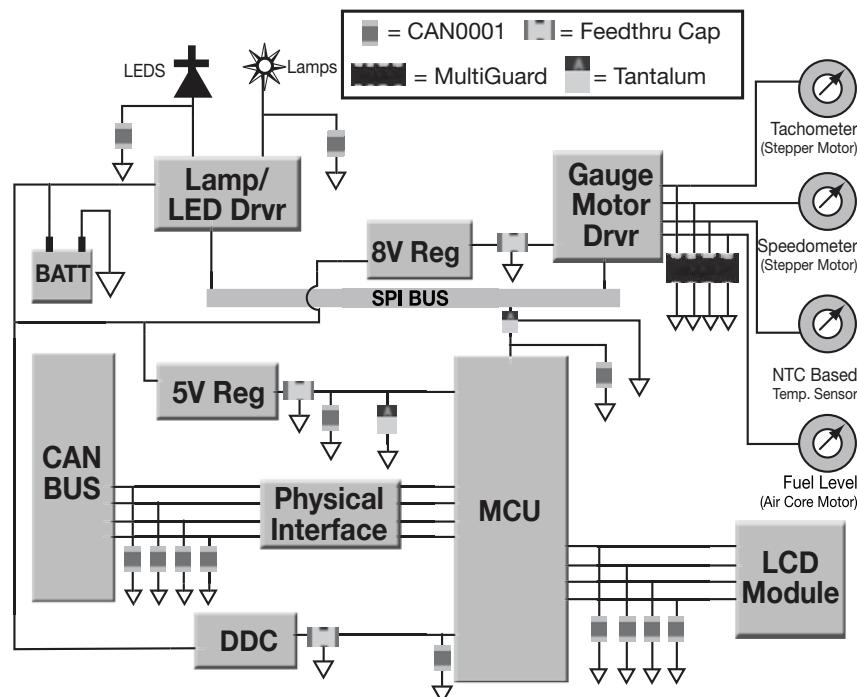
	mm (inches)			
	0402 D discrete	0603 Discrete	0405 Array	0612 Array
Length	1.00 \pm 0.10 (0.040 \pm 0.004)	1.60 \pm 0.15 (0.063 \pm 0.006)	1.00 \pm 0.15 (0.039 \pm 0.006)	1.60 \pm 0.20 (0.063 \pm 0.008)
Width	0.50 \pm 0.10 (0.020 \pm 0.004)	0.80 \pm 0.15 (0.032 \pm 0.006)	1.37 \pm 0.15 (0.054 \pm 0.006)	3.20 \pm 0.20 (0.126 \pm 0.008)
Thickness	0.60 Max. (0.024 Max.)	0.90 Max. (0.035 Max.)	0.66 Max. (0.026 Max.)	1.22 Max. (0.048 Max.)
Term Band Width	0.25 \pm 0.15 (0.010 \pm 0.006)	0.35 \pm 0.15 (0.014 \pm 0.006)	0.36 \pm 0.10 (0.014 \pm 0.004)	0.41 \pm 0.10 (0.016 \pm 0.010)


SOLDER PAD DIMENSIONS

0402, 0603
Discrete

0405
Array

0612
Array



	A	B	C	D	E
0402 Discrete	0.61 (0.024)	0.51 (0.020)	1.70 (0.067)	-	-
0603 Discrete	0.89 (0.035)	0.76 (0.030)	2.54 (0.100)	-	-
0405 Array	0.46 (0.018)	0.74 (0.029)	0.12 (0.047)	0.38 (0.015)	0.64 (0.025)
0612 Array	0.89 (0.035)	1.65 (0.065)	2.54 (0.100)	0.46 (0.018)	0.76 (0.030)

Communication BUS Varistor

APPLICATION

KYOCERA AVX CAN BUS and FlexRay varistors offer significant advantages in general areas of a typical CAN or FlexRay network as shown on the right. Some of the advantages over diodes include:

- space savings
- higher ESD capability @ 25kV contact
- higher in rush current (4A) 8 x 20 μ S
- FIT rate ≤ 0.1 failures (per billion hours)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Kyocera AVX:

[CAN0002DP](#) [CAN0001DP](#) [CAN0005WP](#) [FLX0005DP](#) [FLX0005RP](#) [FLX0005WP](#) [CAN0004DP](#) [CAN0002TP](#)
[CAN0004RP](#) [CAN0001RP](#) [CAN0004TP](#) [CAN0002RP](#) [CAN0001TP](#)