
μA79M05QB
3-Terminal Negative
Voltage RegulatorAerospace and Defense Data Sheet
Linear Products**Description**

The μA79M05QB 3-Terminal Medium Current Negative Voltage Regulator is constructed using the Fairchild Planar Epitaxial process. This regulator employs internal current-limiting, thermal shutdown and safe-area compensation, making it essentially indestructible. If adequate heat sinking is provided, it can deliver up to 500 mA output current. It is intended as a fixed voltage regulator in a wide range of applications including local, on-card regulation for elimination of noise and distribution problems associated with single point regulation. In addition to use as a fixed voltage regulator, this device can be used with external components to obtain adjustable output voltages and currents.⁶

- Output Current In Excess Of 0.5 A
- Internal Thermal Overload Protection
- Internal Short Circuit Current-Limiting
- Output Transistor Safe-Area Compensation

Connection Diagram
3-Lead TO-39 Can
(Top View)

Lead 3 connected to case.

Connection Diagram
20-Terminal CCP
(Top View)

13

Order Information

Part No.	Case/ Finish	Package Code
μA79M05HMQB	XC	Mil-M-38510, Appendix C
μA79M05LMQB	2C	3-Lead Can

JAN Product Available

11501	BXC	3-Lead Can
-------	-----	------------

Absolute Maximum Ratings

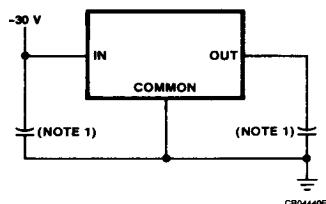
Storage Temperature Range	-65°C to +175°C
Operating Temperature Range	-55°C to +125°C
Lead Temperature (soldering, 60 s)	300°C
Internal Power Dissipation ¹⁰	
Can Without Heat Sink ¹¹	0.18 W
Can With Heat Sink ¹²	0.5 W
CCP Without Heat Sink ¹³	0.4 W
Input Voltage	-35 V

Processing: MIL-STD-883, Method 5004**Burn-In:** Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1**Quality Conformance Inspection:** MIL-STD-883, Method 5005**Group A Electrical Tests Subgroups:**

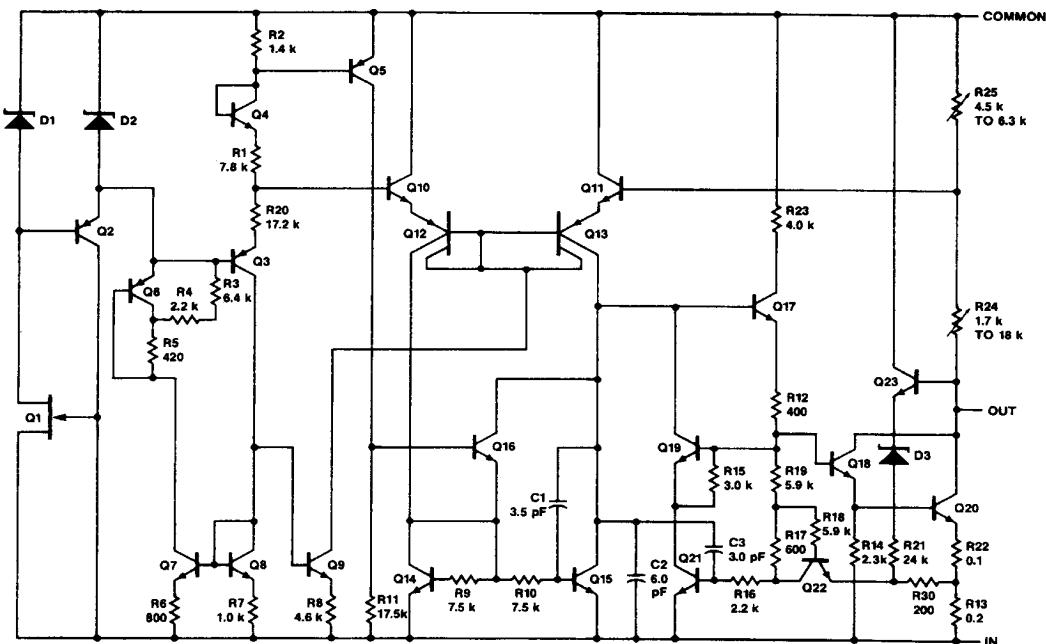
1. Static tests at 25°C
2. Static tests at 125°C
3. Static tests at -55°C
4. Dynamic tests at 25°C
5. Dynamic tests at 125°C
6. Dynamic tests at -55°C
9. AC tests at 25°C

Group C and D Endpoints: Group A, Subgroup 1**Notes**

1. 100% Test and Group A
2. Group A
3. Periodic tests, Group C
4. Guaranteed but not tested
5. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section.
7. All characteristics except line and load transient response and noise are measured using pulse techniques ($t_w \leq 10$ ms, duty cycle $\leq 5\%$). Output voltage changes due to changes in the internal temperature must be taken into account separately.
8. Conditions given will result in the following: $P_D \leq 4$ W.
9. Slowly ramp input voltage up to -8.0 V. When circuit starts, output voltage will be as specified.
10. Internally limited.
11. Rating applies to ambient temperatures up to 125°C. Above 125°C, derate linearly at 140°C/W.
12. Rating applies to ambient temperatures up to 125°C. Above 125°C, derate linearly at 50°C/W.
13. Rating applies to ambient temperatures up to 125°C. Above 125°C, derate linearly at 120°C/W.


μA79M05QB

Electrical Characteristics $V_I = -10$ V, $I_L = 350$ mA, $C_L = 2.0$ μ F, $C_O = 1.0$ μ F, unless otherwise specified.⁷


Symbol	Characteristic	Condition	Min	Max	Unit	Note	Subgrp	
V _O	Output Voltage ⁸		-5.2	-4.8	V	1	1	
		5.0 mA $\leq I_L \leq 350$ mA	V _I = -7.0 V	-5.25	-4.75	V	1	1,2,3
			V _I = -25 V	-5.25	-4.75	V	1	1,2,3
ΔV _O /ΔT	Average Temperature Coefficient of Output Voltage	$I_L = 5.0$ mA, 25° C $\leq T_A \leq 125^\circ$ C		1.5	mV/°C	4	2	
		$I_L = 5.0$ mA, -55° C $\leq T_A \leq 25^\circ$ C		1.5	mV/°C	4	3	
V _R LINE	Line Regulation	-25 V $\leq V_I \leq -7.0$ V		50	mV	1	1	
		-25 V $\leq V_I \leq -8$ V		50	mV	1	2,3	
		-18 V $\leq V_I \leq -8.0$ V		30	mV	1	1	
				60	mV	1	2,3	
V _R LOAD	Load Regulation	5.0 mA $\leq I_L \leq 500$ mA		100	mV	1	1,2,3	
I _{SCD}	Standby Current Drain			2.0	mA	1	1	
				3.0	mA	1	2,3	
ΔI _{SCD} (LINE)	Standby Current Drain Change (vs Line Voltage)	-25 V $\leq V_I \leq -8.0$ V		0.4	mA	1	1,2,3	
ΔI _{SCD} (LOAD)	Standby Current Drain Change (vs Load Current)	5.0 mA $\leq I_L \leq 350$ mA		0.4	mA	1	1,2,3	
V _{DO}	Dropout Voltage			2.3	V	1	1	
I _{OS}	Short Circuit Current	V _I = -35 V		1.0	A	1	1,2,3	
I _{pk}	Peak Output Current	V _I - V _O = -10 V	0.5	2.0	A	1	1,2,3	
V _{RTH}	Thermal Regulation	V _I = -15 V, I _L = 1.0 A		50	mV	3	1	
V _{START}	Voltage Start ⁹			-4.75	V	1	1,2,3	
ΔV _I /ΔV _O	Ripple Rejection	V _I = -10 V, I _L = 125 mA, e _i = 1.0 V _{rms} , f = 2400 Hz	50		dB	1	4,5,6	
N _O	Noise	V _I = -10 V, I _L = 50 mA, 10 Hz $\leq f \leq 10$ kHz		250	μV _{rms}	4	9	
ΔV _O /ΔV _I	Line Transient Response	V _I = -10 V, I _L = 5.0 mA, V _{pulse} = -3.0 V		30	mV/V	4	9	
ΔV _O /ΔI _L	Load Transient Response	V _I = -10 V, I _L = 50 mA, ΔI _L = 200 mA		2.5	mV/mA	4	9	

Primary Burn-In Circuit

(38510/11501 may be used by FSC as an alternate)

Equivalent Circuit (Note 2)

Notes

1. Capacitor value necessary to suppress oscillations.
2. All resistor values in ohms.

EQ00690F