

MCP6546/7/8/9

Open-Drain Output Sub-Microamp Comparators

Features

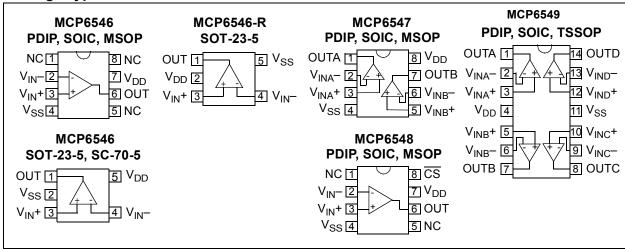
- · Low Quiescent Current: 600 nA/comparator (typ.)
- Rail-to-Rail Input: V_{SS} 0.3V to V_{DD} + 0.3V
- Open-Drain Output: V_{OUT} ≤10V
- Propagation Delay 4 μs (typ.)
- · Wide Supply Voltage Range: 1.6V to 5.5V
- · Single available in SOT-23-5, SC-70-5 packages
- · Available in Single, Dual and Quad
- Chip Select (CS) with MCP6548
- · Low Switching Current
- · Internal Hysteresis: 3.3 mV (typ.)
- Industrial Temperature: -40°C to +85°C

Typical Applications

- · Laptop Computers
- · Mobile Phones
- · Metering Systems
- · Hand-held Electronics
- RC Timers
- · Alarm and Monitoring Circuits
- · Windowed Comparators
- · Multi-vibrators

Related Devices

CMOS/TTL-Compatible Output: MCP6541/2/3/4


Description

The Microchip Technology Inc. MCP6546/7/8/9 family of comparators is offered in single (MCP6546), single with chip select (MCP6548), dual (MCP6547) and quad (MCP6549) configurations. The outputs are open-drain and are capable of driving heavy DC or capacitive loads.

These comparators are optimized for low power, single-supply application with greater than rail-to-rail input operation. The output limits supply current surges and dynamic power consumption while switching. The open-drain output of the MCP6546/7/8/9 family can be used as a level-shifter for up to 10V using a pull-up resistor. It can also be used as a wired-OR logic. The internal Input hysteresis eliminates output switching due to internal noise voltage, reducing current draw. These comparators operate with a single-supply voltage as low as 1.6V and draw less than 1 $\mu\text{A}/$ comparator of quiescent current.

The related MCP6541/2/3/4 family of comparators from Microchip has a push-pull output that supports rail-to-rail output swing and interfaces with CMOS/TTL logic.

Package Types

1.0 ELECTRICAL CHARACTERISTICS

1.1 Absolute Maximum Ratings †

7.0V
V _{SS} +10.5V
to V _{DD} +0.3V
V _{DD} - V _{SS}
continuous
±2 mA
±30 mA
5°C to +150°C
+150°C
4 kV;200V

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIN FUNCTION TABLE

NAME	FUNCTION
V_{IN} +, V_{INA} +, V_{INB} +, V_{INC} +, V_{IND} +	Non-Inverting Inputs
V_{IN} -, V_{INA} -, V_{INB} -, V_{INC} -, V_{IND} -	Inverting Inputs
V_{DD}	Positive Power Supply
V _{SS}	Negative Power Supply
OUT, OUTA, OUTB, OUTC, OUTD	Outputs
CS	Chip Select
NC	Not Connected

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $V_{DD} = +1.6V$ to +5.5V, $V_{SS} = GND$, $T_A = 25^{\circ}C$, $V_{IN} + = V_{DD}/2$, $V_{IN} - = V_{SS}$, $I_{RDL} = 2.74$ kQ to $V_{CL} = V_{DD}$ (Refer to Figure 1-3)

R_{PU} = 2.74 k Ω to V_{PU} = V_{DD} (Refe	r to Figure 1-3).				
Parameters	Sym	Min	Тур	Max	Units	Conditions
Power Supply						
Supply Voltage	V_{DD}	1.6	_	5.5	V	
Quiescent Current per comparator	ΙQ	0.3	0.6	1	μΑ	I _{OUT} = 0
Input						
Input Voltage Range	V_{CMR}	$V_{SS}-0.3$	1	V _{DD} + 0.3	٧	
Common Mode Rejection Ratio	CMRR	55	70	1	dB	V_{DD} = 5V, V_{CM} = -0.3V to 5.3V
Common Mode Rejection Ratio	CMRR	50	65	1	dB	V_{DD} = 5V, V_{CM} = 2.5V to 5.3V
Common Mode Rejection Ratio	CMRR	55	70		dB	V_{DD} = 5V, V_{CM} = -0.3V to 2.5V
Power Supply Rejection Ratio	PSRR	63	80	_	dB	$V_{CM} = V_{SS}$
Input Offset Voltage	Vos	-7.0	±1.5	+7.0	mV	V _{CM} = V _{SS} (Note 1)
Drift with Temperature	$\Delta V_{OS}/\Delta T_{A}$	_	±3	_	μV/°C	T_A = -40°C to +85°C, V_{CM} = V_{SS}
Input Hysteresis Voltage	V _{HYST}	1.5	3.3	6.5	mV	V _{CM} = V _{SS} (Note 1)
Drift with Temperature	$\Delta V_{HYST}/\Delta T_{A}$	-	10		μV/°C	T_A = -40°C to +25°C, V_{CM} = V_{SS}
Drift with Temperature	$\Delta V_{HYST}/\Delta T_{A}$		5	-	μV/°C	$T_A = +25$ °C to +85°C, $V_{CM} = V_{SS}$
Input Bias Current	Ι _Β	_	1	_	pA	$V_{CM} = V_{SS}$
Over Temperature	Ι _Β	1		100	pА	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C, V_{CM} = V_{SS} \text{ (Note 3)}$
Input Offset Current	I _{OS}	1	±1	1	pА	$V_{CM} = V_{SS}$
Common Mode Input Impedance	Z _{CM}	1	10 ¹³ 4	1	ΩpF	
Differential Input Impedance	Z_{DIFF}	1	10 ¹³ 2	1	ΩpF	
Open-Drain Output						
Output Pull-Up Voltage	V_{PU}	V_{DD}		10	٧	(Note 2)
High-Level Output Current	I _{OH}	-100	_	_	nA	V_{DD} = 1.6V to 5.5V, V_{PU} = 10V (Note 2)
Low-Level Output Voltage	V_{OL}	V_{SS}	_	V _{SS} + 0.2	V	$I_{OUT} = 2 \text{ mA}, V_{PU} = V_{DD} = 5V$
Short-Circuit Current	I _{SC}		±50	_	mA	$V_{PU} = V_{DD} = 5.0V$ (Note 2)
Output Pin Capacitance	C _{OUT}	_	8	_	pF	

Note 1: The input offset voltage is the center of the input-referred trip points. The input hysteresis is the difference between the input-referred trip points.

^{2:} Do not short the output above V_{SS} + 10V. Limit the output current to Absolute Maximum Rating of 30 mA. The comparator does not function properly when V_{PU} < V_{DD}.

^{3:} Input bias current overtemperature is not tested for the SC-70-5 package.

AC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, V_{DD} = +1.6V to +5.5V, V_{SS} = GND, T_A = 25°C, V_{IN} + = V_{DD} /2, Step = 200 mV, Overdrive = 100 mV, R_{PU} = 2.74 k Ω to V_{PU} = V_{DD} , and C_L = 36 pF (Refer to Figure 1-2 and Figure 1-3).

Parameters	Sym	Min	Тур	Max	Units	Conditions
Fall Time	t _F		0.7	١	μs	(Note 1)
Propagation Delay (High-to-Low)	t _{PHL}	_	4.0	8.0	μs	
Propagation Delay (Low-to-High)	t _{PLH}	_	3.0	8.0	μs	(Note 1)
Propagation Delay Skew	t _{PDS}		-1.0	1	μs	(Notes 1 and 2)
Maximum Toggle Frequency	f_{MAX}	_	225		kHz	V _{DD} = 1.6V
	f _{MAX}	_	165	_	kHz	V _{DD} = 5.5V
Input Noise Voltage	E _N	_	200	_	μV _{P-P}	10 Hz to 100 kHz

Note 1: t_R and t_{PLH} depend on the load (R_L and C_L); these specifications are valid for the indicated load only.

2: Propagation Delay Skew is defined as: t_{PDS} = t_{PLH} - t_{PHL}.

SPECIFICATIONS FOR MCP6548 CHIP SELECT

Electrical Specifications: Unless otherwise indicated, V_{DD} = +1.6V to +5.5V, V_{SS} = GND, T_A = 25°C, V_{IN} + = V_{DD} /2, V_{IN} - = V_{SS} , V_{PL} = 2.74 k Ω to V_{PL} = V_{DD} , and C_{I} = 36 pF (Refer to Figures 1-1 and 1-3).

$\chi_{\text{PU}} = 2.74 \text{ kg/s}$ to $V_{\text{PU}} = V_{\text{DD}}$, and $C_{\text{L}} = 30 \text{ pr}$ (Refer to Figures 1-1 and 1-3).								
Parameters	Sym	Min	Тур	Max	Units	Conditions		
CS Low Specifications								
CS Logic Threshold, Low	V_{IL}	V_{SS}	_	0.2V _{DD}	V			
CS Input Current, Low	I _{CSL}	_	5	_	pА	CS = V _{SS}		
CS High Specifications								
CS Logic Threshold, High	V _{IH}	0.8V _{DD}	_	V_{DD}	V			
CS Input Current, High	I _{CSH}	_	1	_	рА	CS = V _{DD}		
CS Input High, V _{DD} Current	I _{DD}	_	18	_	pА	$\overline{\text{CS}} = V_{\text{DD}}$		
CS Input High, GND Current	I _{SS}	_	-20	_	рА	CS = V _{DD}		
Comparator Output Leakage	I _{O(LEAK)}	_	1	_	pА	V _{OUT} = V _{SS} +10V		
CS Dynamic Specifications					•			
CS Low to Comparator Output Low Turn-on Time	t _{ON}	_	2	50	ms	$\overline{\text{CS}} = 0.2\text{V}_{\text{DD}}$ to $\text{V}_{\text{OUT}} = \text{V}_{\text{DD}}/2$, $\text{V}_{\text{IN}} = \text{V}_{\text{DD}}$		
CS High to Comparator Output High Z Turn-off Time	t _{OFF}	_	10	_	μs	$\overline{\overline{CS}}$ = 0.8V _{DD} to V _{OUT} = V _{DD} /2, V _{IN} -= V _{DD}		
CS Hysteresis	V _{CS_HYST}	_	0.6	_	V	V _{DD} = 5V		

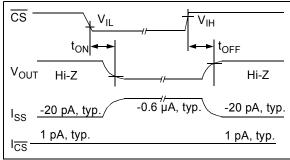
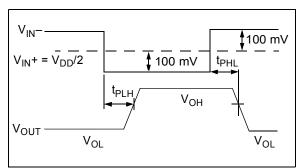
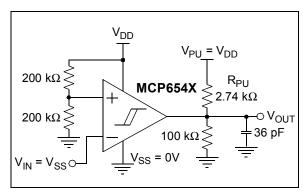



FIGURE 1-1: Timing Diagram for the $\overline{\text{CS}}$ pin on the MCP6548.

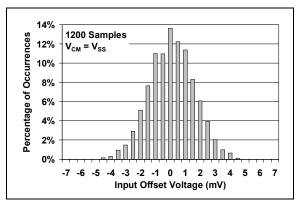
FIGURE 1-2: Propagation Delay Timing Diagram.

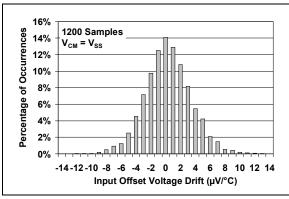

TEMPERATURE SPECIFICATIONS

Electrical Specifications: Unless otherwise indicated, V_{DD} = +1.6V to +5.5V and V_{SS} = GND.									
Parameters	Sym	Min	Тур	Max	Units	Conditions			
Temperature Ranges									
Specified Temperature Range	T_A	-40	_	+85	°C				
Operating Temperature Range	T _A	-40	_	+125	°C	Note			
Storage Temperature Range	T _A	-65	_	+150	°C				
Thermal Package Resistances									
Thermal Resistance, 5L-SC-70	θ_{JA}	_	331	_	°C/W				
Thermal Resistance, 5L-SOT-23	θ_{JA}	_	256	_	°C/W				
Thermal Resistance, 8L-PDIP	θ_{JA}	_	85	_	°C/W				
Thermal Resistance, 8L-SOIC	θ_{JA}	_	163	_	°C/W				
Thermal Resistance, 8L-MSOP	θ_{JA}	_	206	_	°C/W				
Thermal Resistance, 14L-PDIP	θ_{JA}	_	70	_	°C/W				
Thermal Resistance, 14L-SOIC	θ_{JA}	_	120	_	°C/W				
Thermal Resistance, 14L-TSSOP	θ_{JA}	_	100	_	°C/W				

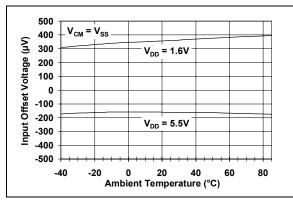
Note: The MCP6546/7/8/9 operates over this extended temperature range, but with reduced performance. In any case, the Junction Temperature (T_J) must not exceed the absolute maximum specification of +150°C.

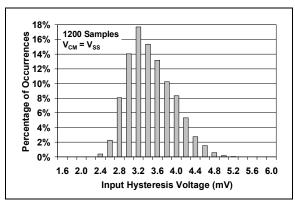
1.2 Test Circuit Configuration

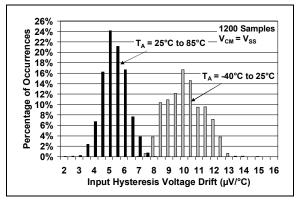

This test circuit configuration is used to determine the ${\sf AC}$ and ${\sf DC}$ specifications.

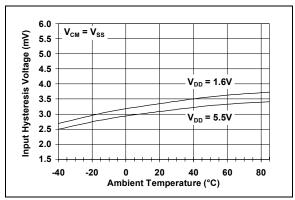

FIGURE 1-3: AC and DC Test circuit for the open- drain output comparators.

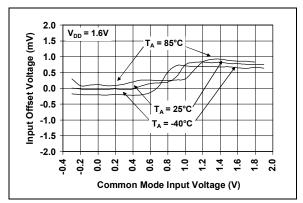
2.0 TYPICAL PERFORMANCE CURVES

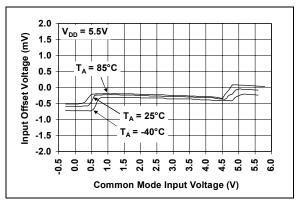

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

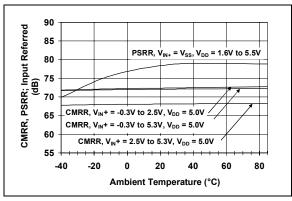

FIGURE 2-1: Input Offset Voltage Histogram at $V_{CM} = V_{SS}$.

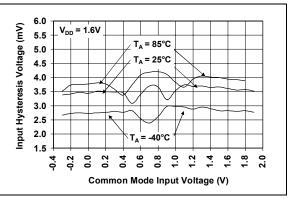

FIGURE 2-2: Input Offset Voltage Drift Histogram at $V_{CM} = V_{SS}$.


FIGURE 2-3: Input Offset Voltage vs. Ambient Temperature at $V_{CM} = V_{SS}$.


FIGURE 2-4: Input Hysteresis Voltage Histogram at $V_{CM} = V_{SS}$.


FIGURE 2-5: Input Hysteresis Voltage Drift Histogram.


FIGURE 2-6: Input Hysteresis Voltage vs. Ambient Temperature at $V_{CM} = V_{SS}$.


FIGURE 2-7: Input Offset Voltage vs. Common Mode Input Voltage at $V_{DD} = 1.6V$.

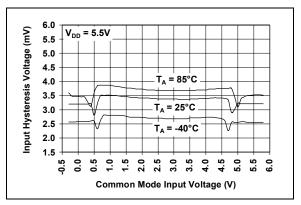

FIGURE 2-8: Input Offset Voltage vs. Common Mode Input Voltage at $V_{DD} = 5.5V$.

FIGURE 2-9: CMRR, PSRR vs. Ambient Temperature at $V_{CM} = V_{SS}$.

FIGURE 2-10: Input Hysteresis Voltage vs. Common Mode Input Voltage at $V_{DD} = 1.6V$.

FIGURE 2-11: Input Hysteresis Voltage vs. Common Mode Input Voltage at $V_{DD} = 5.5V$.

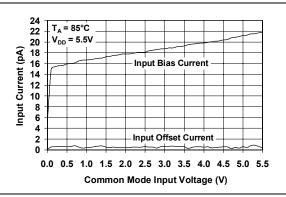
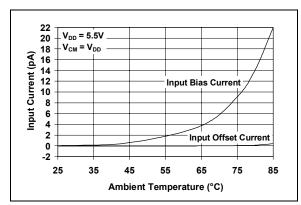
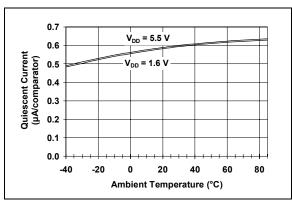
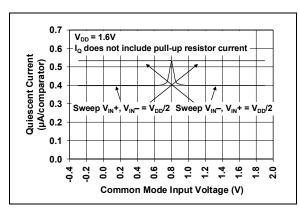
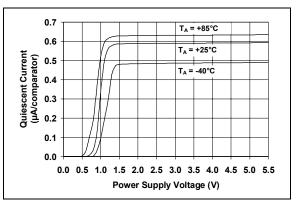
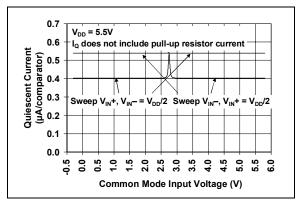
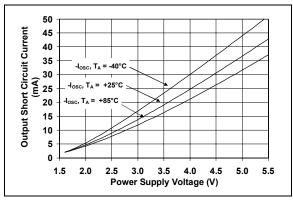



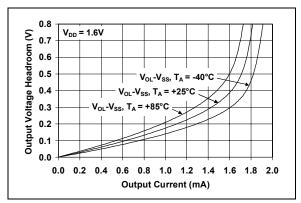
FIGURE 2-12: Input Bias Current, Input Offset Current vs. Common Mode Input Voltage at +85°C.

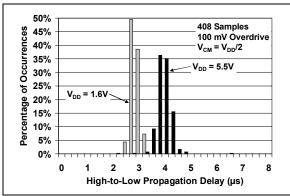
FIGURE 2-13: Input Bias Current, Input Offset Current vs. Ambient Temperature.

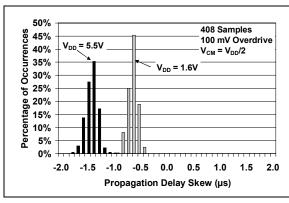





FIGURE 2-14: Quiescent Current vs.
Ambient Temperature vs. Power Supply Voltage.


FIGURE 2-15: Quiescent Current vs. Common Mode Input Voltage at $V_{DD} = 1.6V$.


FIGURE 2-16: Quiescent Current vs. Power Supply Voltage.


FIGURE 2-17: Quiescent Current vs. Common Mode Input Voltage at $V_{DD} = 5V$.


FIGURE 2-18: Output Short-Circuit Current vs. Power Supply Voltage.

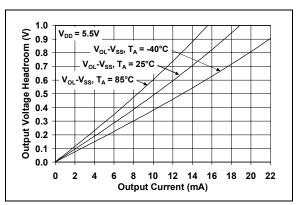
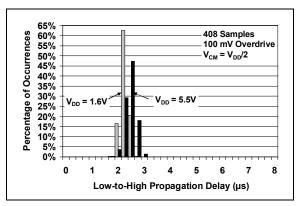
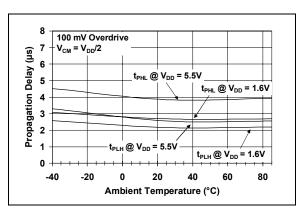
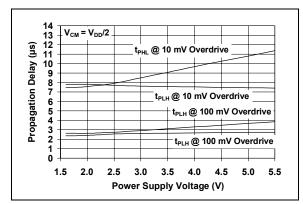

FIGURE 2-19: Output Voltage Headroom vs. Output Current at $V_{DD} = 1.6V$.

FIGURE 2-20: High-to-Low Propagation Delay Histogram.

FIGURE 2-21: Propagation Delay Skew Histogram.

FIGURE 2-22: Output Voltage Headroom vs. Output Current at $V_{DD} = 5.5V$.

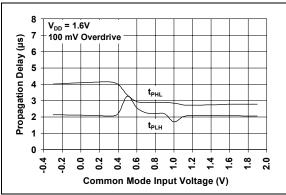
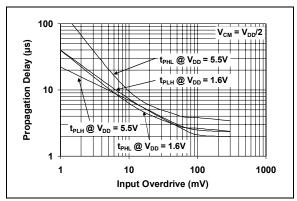

FIGURE 2-23: Low-to-High Propagation Delay Histogram.

FIGURE 2-24: Propagation Delay vs. Ambient Temperature.


FIGURE 2-25: Propagation Delay vs. Power Supply Voltage.

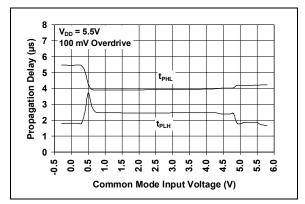

FIGURE 2-26: Propagation Delay vs. Common Mode Input Voltage at $V_{DD} = 1.6V$.

FIGURE 2-27: Propagation Delay vs. Load Capacitance.

FIGURE 2-28: Propagation Delay vs. Input Overdrive.

FIGURE 2-29: Propagation Delay vs. Common Mode Input Voltage at $V_{DD} = 5.5V$.

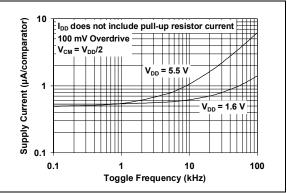


FIGURE 2-30: Supply Current vs. Toggle Frequency.

MCP6546/7/8/9

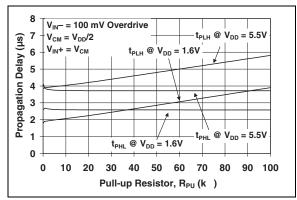
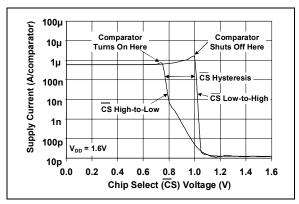
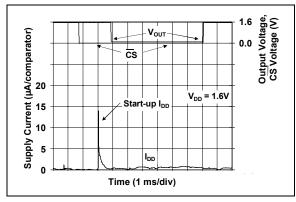




FIGURE 2-31: Propagation Delay vs. Pull-up Resistor.

FIGURE 2-32: Supply Current (shoot through current) vs. Chip Select ($\overline{\text{CS}}$) Voltage at $V_{DD} = 1.6V$ (MCP6548 only).

FIGURE 2-33: Supply Current (charging current) vs. Chip Select (CS) pulse at $V_{DD} = 1.6V$ (MCP6548 only).

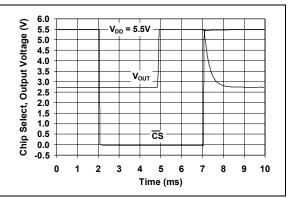
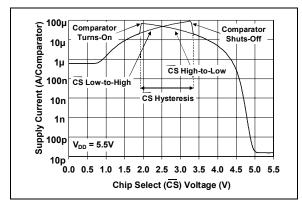
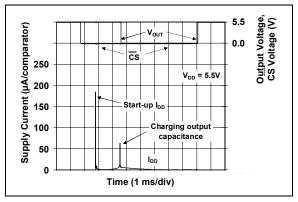




FIGURE 2-34: Chip Select (CS) Step Response (MCP6548 only).

FIGURE 2-35: Supply Current (shoot through current) vs. Chip Select (CS) Voltage at $V_{DD} = 5.5V$ (MCP6548 only).

FIGURE 2-36: Supply Current (charging current) vs. Chip Select (CS) pulse at $V_{DD} = 5.5V$ (MCP6548 only).

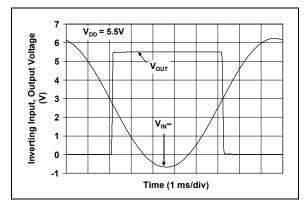
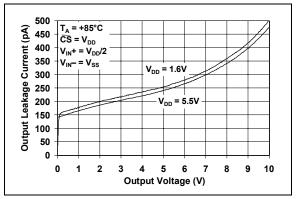
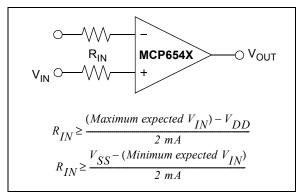



FIGURE 2-37: The MCP6546/7/8/9 comparators show no phase reversal.

FIGURE 2-38: Output Leakage Current $(\overline{CS} = V_{DD})$ vs. Output Voltage (MCP6548 only)

3.0 APPLICATIONS INFORMATION


The MCP6546/7/8/9 family of push-pull output comparators are fabricated on Microchip's state-of-the-art CMOS process. They are suitable for a wide range of applications requiring very low power consumption.

3.1 Comparator Inputs

The MCP6546/7/8/9 comparator family uses CMOS transistors at the input. They are designed to prevent phase inversion when the input pins exceed the supply voltages. Figure 2-37 shows an input voltage exceeding both supplies with no resulting phase inversion.

The input stage of this family of devices uses two differential input stages in parallel: one operates at low input voltages and the other at high input voltages. With this topology, the input voltage is 0.3V above V_{DD} and 0.3V below $V_{SS}.$ Therefore, the input offset voltage is measured at both V_{SS} -0.3V and V_{DD} +0.3V to ensure proper operation.

The maximum operating input voltages that can be applied are V_{SS} - 0.3V and V_{DD} + 0.3V. Voltages on the inputs that exceed this absolute maximum rating can cause excessive current to flow and permanently damage the device. In applications where the input pin exceeds the specified range, external resistors can be used to limit the current below ± 2 mA, as shown in Figure 3-1.

FIGURE 3-1: An input resistor (R_{IN}) should be used to limit excessive input current if either of the inputs exceeds the absolute maximum specification.

3.2 Open-Drain Output

The open-drain output is designed to make level-shifting and wired-OR logic easy to implement. The output can go as high as 10V for 9V battery-powered applications. The output stage minimizes switching current (shoot-through current from supply-to-supply) when the output changes state. See Figures 2-15, 2-17 and 2-32 through 2-36, for more information.

3.3 MCP6548 Chip Select (CS)

<u>The MCP6548</u> is a <u>single</u> comparator with a chip select (CS) option. When \overline{CS} is pulled high, the total current consumption drops to 20 pA (typ). 1 pA (typ) flows through the \overline{CS} pin, 1 pA (typ) flows through the output pin and 18 pA (typ) flows through the V_{DD} pin, as shown in Figure 1-1. When this happens, the comparator output is put into a high-impedance state. By pulling \overline{CS} low, the comparator is enabled. If the \overline{CS} pin is left floating, the comparator will not operate properly. Figure 1-1 shows the output voltage and supply current response to a \overline{CS} pulse.

The internal \overline{CS} circuitry is designed to minimize glitches when cycling the \overline{CS} pin. This helps conserve power, which is especially important in battery-powered applications.

3.4 Externally Set Hysteresis

Greater flexibility in selecting hysteresis, or input trip points, is achieved by using external resistors.

Input offset voltage (V_{OS}) is the center (average) of the (input-referred) low-high and high-low trip points. Input hysteresis voltage (V_{HYST}) is the difference between the same trip points. Hysteresis reduces output chattering when one input is slowly moving past the other, thus reducing dynamic supply current. It also helps in systems where it is best not to cycle between states too frequently (e.g., air conditioner thermostatic control). The MCP6546/7/8/9 family has internally-set hysteresis that is small enough to maintain input offset accuracy (<7 mV), and large enough to eliminate output chattering caused by the comparator's own input noise voltage (200 μ Vp-p).

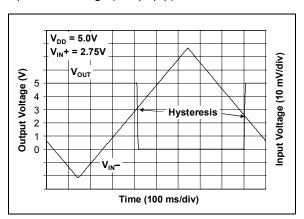


FIGURE 3-2: The MCP6546/7/8/9 comparators' internal hysteresis eliminates output chatter caused by input noise voltage.

3.4.1 INVERTING CIRCUIT

Figure 3-3 shows an inverting circuit for a single-supply application using three resistors, besides the pull-up resistor. The resulting hysteresis diagram is shown in Figure 3-4.

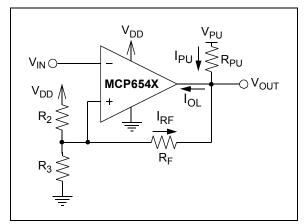
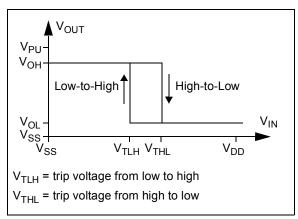



FIGURE 3-3: Inverting circuit with hysteresis.

FIGURE 3-4: Hysteresis diagram for the inverting circuit.

In order to determine the trip voltages (V_{THL} and V_{TLH}) for the circuit shown in Figure 3-3, R_2 and R_3 can be simplified to the Thevenin equivalent circuit with respect to V_{DD} , as shown in Figure 3-5.

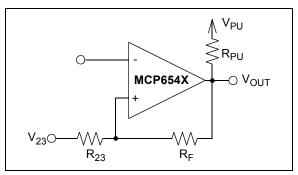


FIGURE 3-5: Thevenin Equivalent Circuit.

Where:

$$R_{23} = \frac{R_2 R_3}{R_2 + R_3}$$

$$V_{23} = \frac{R_3}{R_2 + R_3} \times V_{DD}$$

Using this simplified circuit, the trip voltage can be calculated using the following equation:

EQUATION

$$V_{THL} = V_{PU} \left(\frac{R_{23}}{R_{23} + R_F + R_{PU}} \right) + V_{23} \left(\frac{R_F + R_{PU}}{R_{23} + R_F + R_{PU}} \right)$$

$$V_{TLH} = V_{OL} \left(\frac{R_{23}}{R_{23} + R_F} \right) + V_{23} \left(\frac{R_F}{R_{23} + R_F} \right)$$

 V_{TLH} = trip voltage from low to high

 V_{THI} = trip voltage from high to low

Figure 2-19 and Figure 2-22 can be used to determine typical values for V_{OL} . This voltage is dependent on the output current I_{OL} as shown in Figure 3-3. This current can be determined using the equation below:

EQUATION

$$\begin{split} I_{OL} &= I_{PU} + I_{RF} \\ I_{OL} &= \left(\frac{V_{PU} - V_{OL}}{R_{PU}}\right) + \left(\frac{V_{23} - V_{OL}}{R_{23} + R_F}\right) \end{split}$$

V_{OH} can be calculated using the equation below:

EQUATION

$$V_{OH} = (V_{PU} - V_{23}) \times \left(\frac{R_{23} + R_F}{R_{23} + R_F + R_{PU}}\right)$$

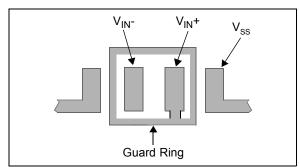
As explained in Section 3.1, "Comparator Inputs", it is important to keep the non-inverting input below V_{DD} +0.3V when V_{PU} > V_{DD} .

3.5 Supply Bypass

With this family of comparators, the power supply pin (V_{DD} for single supply) should have a local bypass capacitor (i.e., 0.01 μ F to 0.1 μ F) within 2 mm for good edge rate performance.

3.6 Capacitive Loads

Reasonable capacitive loads (e.g., logic gates) have little impact on propagation delay (see Figure 2-27). The supply current increases with increasing toggle frequency (Figure 2-30), especially with higher capacitive loads.


3.7 Battery Life

In order to maximize battery life in portable applications, use large resistors and small capacitive loads. Also, avoid toggling the output more than necessary and do not use chip select (CS) to conserve power for short periods of time. Capacitive loads will draw additional power at start-up.

3.8 PCB Surface Leakage

In applications where low input bias current is critical, PCB (Printed Circuit Board) surface leakage effects need to be considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low-humidity conditions, a typical resistance between nearby traces is $10^{12}\Omega$. A 5V difference would cause 5 pA. If current-to-flow, this is greater than the MCP6546/7/8/9 family's bias current at 25°C (1 pA, typ).

The easiest way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 3-6.

FIGURE 3-6: Example Guard Ring Layout for Inverting Circuit.

- 1. Inverting Configuration (Figures 3-3 and 3-6):
 - a. Connect the guard ring to the non-inverting input pin (V_{IN}+). This biases the guard ring to the same reference voltage as the comparator (e.g., V_{DD}/2 or ground).
 - b. Connect the inverting pin $(V_{IN}-)$ to the input pad without touching the guard ring.

3.9 Typical Applications

3.9.1 PRECISE COMPARATOR

Some applications require higher DC precision. An easy way to solve this problem is to use an amplifier (such as the MCP6041) to gain-up the input signal before it reaches the comparator. Figure 3-7 shows an example of this approach.

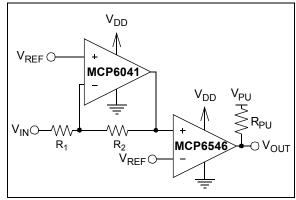


FIGURE 3-7: Precise Inverting Comparator.

3.9.2 WINDOWED COMPARATOR

Figure 3-8 shows one approach to designing a windowed comparator. The wired-OR connection produces a high output (logic 1) when the input voltage is between V_{RB} and V_{RT} (where $V_{RT} > V_{RB}$).

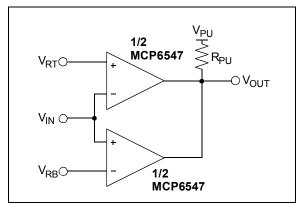
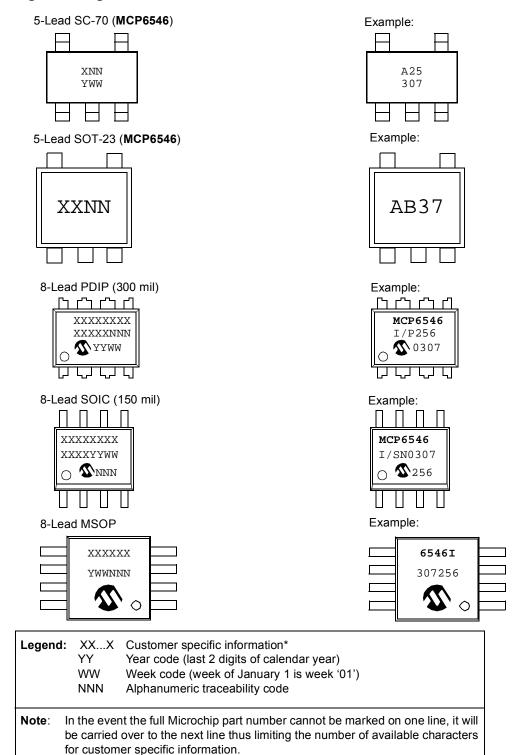
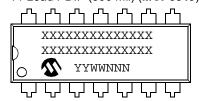



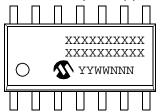
FIGURE 3-8: Windowed comparator.

4.0 PACKAGING INFORMATION

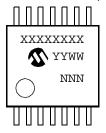
4.1 Package Marking Information

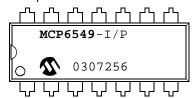


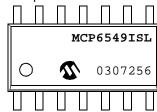
Standard marking consists of Microchip part number, year code, week code, traceability code (facility code, mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please check with your Microchip Sales Office.

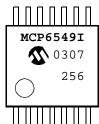

MCP6546/7/8/9

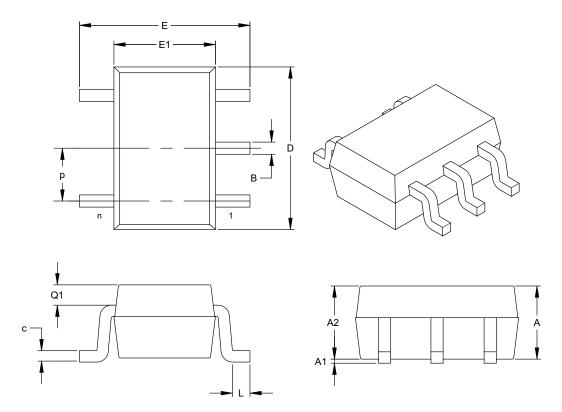
Package Marking Information (Continued)


14-Lead PDIP (300 mil) (MCP6549)


14-Lead SOIC (150 mil) (MCP6549)


14-Lead TSSOP (MCP6549)


Example:


Example:

Example:

5-Lead Plastic Package (LT) (SC-70)

	Units		INCHES		MILLIMETERS*		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		5			5	
Pitch	р		.026 (BSC)			0.65 (BSC)	
Overall Height	Α	.031		.043	0.80		1.10
Molded Package Thickness	A2	.031		.039	0.80		1.00
Standoff	A1	.000		.004	0.00		0.10
Overall Width	E	.071		.094	1.80		2.40
Molded Package Width	E1	.045		.053	1.15		1.35
Overall Length	D	.071		.087	1.80		2.20
Foot Length	L	.004		.012	0.10		0.30
Top of Molded Pkg to Lead Shoulder	Q1	.004		.016	0.10		0.40
Lead Thickness	С	.004		.007	0.10		0.18
Lead Width	В	.006		.012	0.15		0.30

*Controlling Parameter

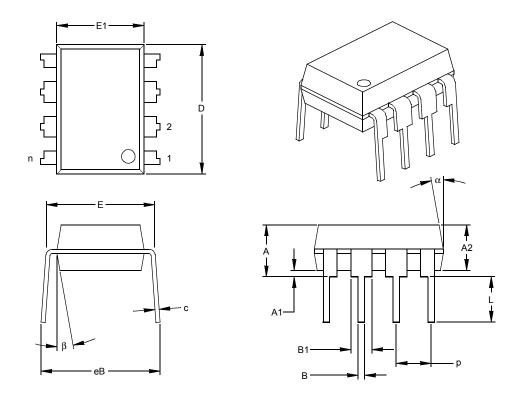
Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.

JEITA (EIAJ) Standard: SC-70

Drawing No. C04-061

5-Lead Plastic Small Outline Transistor (OT) (SOT23)


	Units				N	IILLIMETERS	3
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		5			5	
Pitch	р		.038			0.95	
Outside lead pitch (basic)	p1		.075			1.90	
Overall Height	Α	.035	.046	.057	0.90	1.18	1.45
Molded Package Thickness	A2	.035	.043	.051	0.90	1.10	1.30
Standoff §	A1	.000	.003	.006	0.00	0.08	0.15
Overall Width	E	.102	.110	.118	2.60	2.80	3.00
Molded Package Width	E1	.059	.064	.069	1.50	1.63	1.75
Overall Length	D	.110	.116	.122	2.80	2.95	3.10
Foot Length	L	.014	.018	.022	0.35	0.45	0.55
Foot Angle	ф	0	5	10	0	5	10
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20
Lead Width	В	.014	.017	.020	0.35	0.43	0.50
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

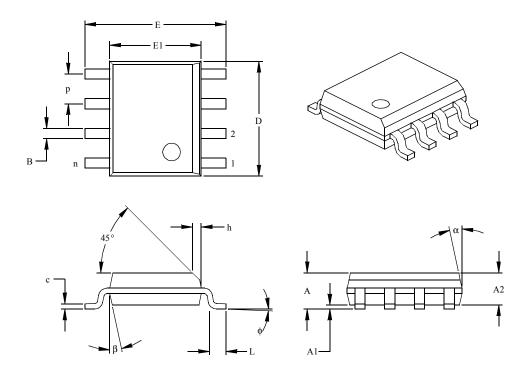
^{*} Controlling Parameter § Significant Characteristic

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-178
Drawing No. C04-091

8-Lead Plastic Dual In-line (P) - 300 mil (PDIP)

	Units INCHES*				N	IILLIMETERS	3
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.360	.373	.385	9.14	9.46	9.78
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eВ	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	а	5	10	15	5	10	15
Mold Draft Angle Bottom	b	5	10	15	5	10	15

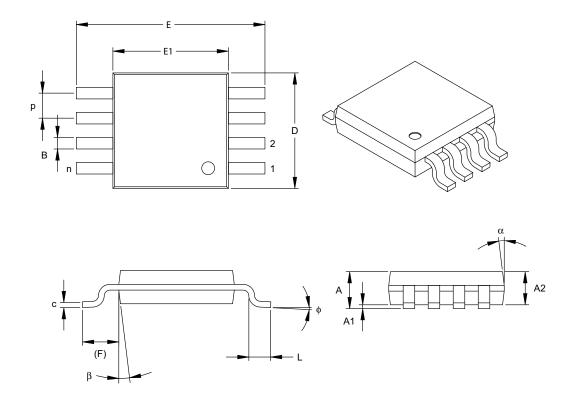

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-001

Drawing No. C04-018

^{*} Controlling Parameter § Significant Characteristic

8-Lead Plastic Small Outline (SN) - Narrow, 150 mil (SOIC)


	Units		INCHES*		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	p		.050			1.27	
Overall Height	Α	.053	.061	.069	1.35	1.55	1.75
Molded Package Thickness	A2	.052	.056	.061	1.32	1.42	1.55
Standoff §	A1	.004	.007	.010	0.10	0.18	0.25
Overall Width	E	.228	.237	.244	5.79	6.02	6.20
Molded Package Width	E1	.146	.154	.157	3.71	3.91	3.99
Overall Length	D	.189	.193	.197	4.80	4.90	5.00
Chamfer Distance	h	.010	.015	.020	0.25	0.38	0.51
Foot Length	L	.019	.025	.030	0.48	0.62	0.76
Foot Angle	ф	0	4	8	0	4	8
Lead Thickness	С	.008	.009	.010	0.20	0.23	0.25
Lead Width	В	.013	.017	.020	0.33	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

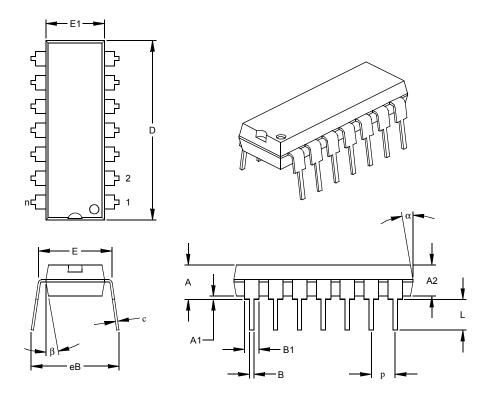
JEDEC Equivalent: MS-012 Drawing No. C04-057

^{*} Controlling Parameter § Significant Characteristic

8-Lead Plastic Micro Small Outline Package (MS) (MSOP)

	Units		INCHES		М	ILLIMETERS	*
Dimension L	imits	MIN	MIN NOM MAX			NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.026 BSC			0.65 BSC	
Overall Height	Α	-	-	.043	-	-	1.10
Molded Package Thickness	A2	.030	.033	.037	0.75	0.85	0.95
Standoff	A1	.000	-	.006	0.00	-	0.15
Overall Width	E		.193 TYP.			4.90 BSC	
Molded Package Width	E1		.118 BSC		3.00 BSC		
Overall Length	D		.118 BSC		3.00 BSC		
Foot Length	L	.016	.024	.031	0.40	0.60	0.80
Footprint (Reference)	F		.037 REF			0.95 REF	
Foot Angle	ф	0°	-	8°	0°	-	8°
Lead Thickness	С	.003	.006	.009	0.08	-	0.23
Lead Width	В	.009	.012	.016	0.22	-	0.40
Mold Draft Angle Top	α	5°	-	15°	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°	5°	-	15°

^{*}Controlling Parameter

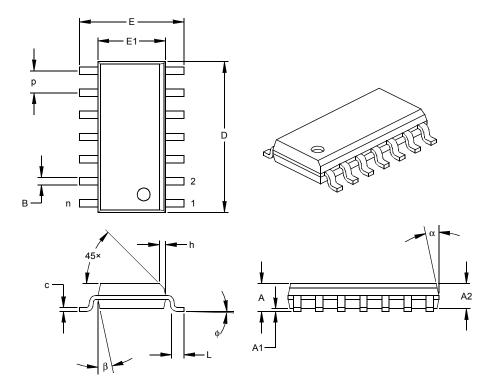

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-187

Drawing No. C04-111

14-Lead Plastic Dual In-line (P) – 300 mil (PDIP)


	Units				N	IILLIMETERS	3
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		14			14	
Pitch	p		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.740	.750	.760	18.80	19.05	19.30
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	c	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

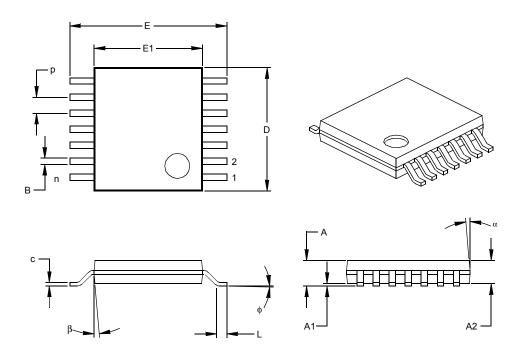
.010" (0.254mm) per side.
JEDEC Equivalent: MS-001
Drawing No. C04-005

^{*} Controlling Parameter § Significant Characteristic

14-Lead Plastic Small Outline (SL) - Narrow, 150 mil (SOIC)

	Units	INCHES*			MILLIMETERS		
Dimension	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		14			14	
Pitch	p		.050			1.27	
Overall Height	A	.053	.061	.069	1.35	1.55	1.75
Molded Package Thickness	A2	.052	.056	.061	1.32	1.42	1.55
Standoff §	A1	.004	.007	.010	0.10	0.18	0.25
Overall Width	E	.228	.236	.244	5.79	5.99	6.20
Molded Package Width	E1	.150	.154	.157	3.81	3.90	3.99
Overall Length	D	.337	.342	.347	8.56	8.69	8.81
Chamfer Distance	h	.010	.015	.020	0.25	0.38	0.51
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	ф	0	4	8	0	4	8
Lead Thickness	с	.008	.009	.010	0.20	0.23	0.25
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-012

Drawing No. C04-065

^{*} Controlling Parameter § Significant Characteristic

14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)

	Units	INCHES			MILLIMETERS*		
Dimension	Limits	MIN	MOM	MAX	MIN	NOM	MAX
Number of Pins	n		14			14	
Pitch	p		.026			0.65	
Overall Height	Α			.043			1.10
Molded Package Thickness	A2	.033	.035	.037	0.85	0.90	0.95
Standoff §	A1	.002	.004	.006	0.05	0.10	0.15
Overall Width	E	.246	.251	.256	6.25	6.38	6.50
Molded Package Width	E1	.169	.173	.177	4.30	4.40	4.50
Molded Package Length	D	.193	.197	.201	4.90	5.00	5.10
Foot Length	L	.020	.024	.028	0.50	0.60	0.70
Foot Angle	ф	0	4	8	0	4	8
Lead Thickness	с	.004	.006	.008	0.09	0.15	0.20
Lead Width	B1	.007	.010	.012	0.19	0.25	0.30
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.
JEDEC Equivalent: MO-153
Drawing No. C04-087

^{*} Controlling Parameter § Significant Characteristic

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>-x</u>	/XX		Examples:			
Device	Temperature Range	 Package	a)	MCP6546T-I/LT:	Tape and Reel, Industrial Temperature, 5LD SC-70.		
Device:		Single Comparator Single Comparator (Tape and Reel)	b)	MCP6546T-I/OT:	Tape and Reel, Industrial Temperature, 5LD SOT-23.		
	MCP6546RT:	(SC-70, SOT-23, SOIC, MSOP) Single Comparator (Rotated - Tape and	c)	MCP6546-I/P:	Industrial Temperature, 8LD PDIP.		
	MCP6547: MCP6547T:	Reel) (SOT-23 only) Dual Comparator Dual Comparator (Tape and Reel for SOIC and MSOP)	d)	MCP6546RT-I/OT	: Tape and Reel, Industrial Temperature, 5LD SOT23.		
	MCP6548T:	Single Comparator with <u>CS</u> Single Comparator with CS (Tape and Reel for SOIC and MSOP)	a)	MCP6547-I/MS:	Industrial Temperature, 8LD MSOP.		
	MCP6549T:	Quad Comparator Quad Comparator (Tape and Reel for SOIC and TSSOP)	b)	MCP6547T-I/MS:	Tape and Reel, Industrial Temperature, 8LD MSOP.		
Temperature Range:	I = -40°C	C to +85°C	c)	MCP6547-I/P:	Industrial Temperature, 8LD PDIP.		
Package:	LT = Plastic Package (SC-70), 5-lead			MCP6548-I/SN:	Industrial Temperature, 8LD SOIC.		
	MS = Plasti P = Plasti	c Small Outline Transistor (SOT-23), 5-lead c MSOP, 8-lead c DIP (300 mil Body), 8-lead, 14-lead c SOIC (150 mil Body), 8-lead	b)	MCP6548T-I/SN:	Tape and Reel, Industrial Temperature, 8LD SOIC.		
	SL = Plasti	SOIC (150 mil Body), 14-lead (MCP6549) TSSOP (4.4mm Body), 14-lead (MCP6549)	c)	MCP6548-I/P:	Industrial Temperature, 8LD PDIP.		
			a)	MCP6549T-I/SL:	Tape and Reel, Industrial Temperature, 14LD SOIC.		
			b)	MCP6549T-I/SL:	Tape and Reel, Industrial Temperature, 14LD SOIC.		
			c)	MCP6549-I/P:	Industrial Temperature, 14LD PDIP.		

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

MCP6546/7/8/9

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, Keeloq, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Application Maestro, dsPICDEM, dsPICDEM.net, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Atlanta

3780 Mansell Road, Suite 130 Alpharetta, GA 30022 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334

Tel: 248-538-2250 Fax: 248-538-2260 Kokomo

2767 S. Albright Road Kokomo, IN 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

Phoenix

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966

San Jose

2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950

Fax: 408-436-7955

Fax: 480-792-4338

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733

Fax: 61-2-9868-6755 China - Beijing

Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104 China - Chengdu

Rm. 2401-2402, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200

Fax: 86-28-86766599 China - Fuzhou

Unit 28F. World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR

Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Rm. 1812, 18/F, Building A, United Plaza No. 5022 Binhe Road, Futian District Shenzhen 518033, China

Tel: 86-755-82901380 Fax: 86-755-8295-1393 China - Shunde

Room 401, Hongjian Building

No. 2 Fengxiangnan Road, Ronggui Town Shunde City, Guangdong 528303, China Tel: 86-765-8395507 Fax: 86-765-8395571

China - Qingdao

Rm. B505A, Fullhope Plaza, No. 12 Hong Kong Central Rd. Qingdao 266071, China

Tel: 86-532-5027355 Fax: 86-532-5027205

India

Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea

168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5932 or

82-2-558-5934

Singapore 200 Middle Road #07-02 Prime Centre Singapore, 188980

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan

Kaohsiung Branch 30F - 1 No. 8 Min Chuan 2nd Road Kaohsiung 806, Taiwan Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan

Taiwan Branch 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

FUROPE

Austria

Durisolstrasse 2 A-4600 Wels Austria

Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark

Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark

Tel: 45-4420-9895 Fax: 45-4420-9910

France

Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France Tel: 33-1-69-53-63-20

Germany

Steinheilstrasse 10 D-85737 Ismaning, Germany Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy

Via Quasimodo, 12 20025 Legnano (MI) Milan, Italy Tel: 39-0331-742611 Fax: 39-0331-466781

Fax: 33-1-69-30-90-79

Netherlands

P. A. De Biesbosch 14 NL-5152 SC Drunen, Netherlands

Tel: 31-416-690399 Fax: 31-416-690340 United Kingdom

505 Eskdale Road Winnersh Triangle Wokingham

Berkshire, England RG41 5TU Tel: 44-118-921-5869 Fax: 44-118-921-5820

07/28/03