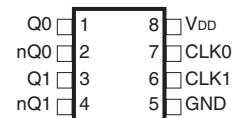

### GENERAL DESCRIPTION

The 85222-01 is a Dual LVC MOS / LVTTL-to-Differential HSTL translator. The 85222-01 has two single ended clock inputs. The single ended clock input accepts LVC MOS or LVTTL input levels and translates them to HSTL levels. The small outline 8-pin SOIC package makes this device ideal for applications where space, high performance and low power are important.


### FEATURES

- Two differential HSTL outputs
- CLK0, CLK1 LVC MOS/LVTTL clock inputs
- CLK0 and CLK1 can accept the following input levels: LVC MOS or LVTTL
- Maximum output frequency: 350MHz
- Part-to-part skew: 375ps (maximum)
- Propagation delay: 1075ps (maximum)
- $V_{OH}$ : 1.4V (maximum)
- Full 3.3V and 2.5V operating supply voltage
- 0°C to 70°C ambient operating temperature
- Industrial temperature information available upon request
- Available in lead-free RoHS-compliant package

### BLOCK DIAGRAM



### PIN ASSIGNMENT



**85222-01**  
**8-Lead SOIC**  
3.90mm x 4.92mm x 1.37mm body package  
**M Package**  
Top View

**TABLE 1. PIN DESCRIPTIONS**

| Number | Name            | Type   | Description                                      |                               |
|--------|-----------------|--------|--------------------------------------------------|-------------------------------|
| 1, 2   | Q0, nQ0         | Output | Differential output pair. HSTL interface levels. |                               |
| 3, 4   | Q1, nQ1         | Output | Differential output pair. HSTL interface levels. |                               |
| 5      | GND             | Power  | Power supply ground.                             |                               |
| 6      | CLK1            | Input  | Pullup                                           | LVC MOS / LV TTL clock input. |
| 7      | CLK0            | Input  | Pullup                                           | LVC MOS / LV TTL clock input. |
| 8      | V <sub>DD</sub> | Power  |                                                  | Positive supply pin.          |

NOTE: *Pullup* refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

NOTE: Unused output pairs must be terminated.

**TABLE 2. PIN CHARACTERISTICS**

| Symbol                | Parameter               | Test Conditions | Minimum | Typical | Maximum | Units |
|-----------------------|-------------------------|-----------------|---------|---------|---------|-------|
| C <sub>IN</sub>       | Input Capacitance       |                 |         | 4       |         | pF    |
| R <sub>PULLUP</sub>   | Input Pullup Resistor   |                 |         | 51      |         | kΩ    |
| R <sub>PULLDOWN</sub> | Input Pulldown Resistor |                 |         | 51      |         | kΩ    |

## ABSOLUTE MAXIMUM RATINGS

|                                          |                          |
|------------------------------------------|--------------------------|
| Supply Voltage, $V_{DD}$                 | 4.6V                     |
| Inputs, $V_I$                            | -0.5V to $V_{DD} + 0.5V$ |
| Outputs, $I_O$                           |                          |
| Continuous Current                       | 50mA                     |
| Surge Current                            | 100mA                    |
| Package Thermal Impedance, $\theta_{JA}$ | 112.7°C/W (0 lfpm)       |
| Storage Temperature, $T_{STG}$           | -65°C to 150°C           |

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

TABLE 3A. POWER SUPPLY DC CHARACTERISTICS,  $V_{DD} = 3.3V \pm 5\%$  OR  $V_{DD} = 2.5V \pm 5\%$ ,  $T_A = 0^\circ C$  TO  $70^\circ C$ 

| Symbol   | Parameter               | Test Conditions | Minimum | Typical | Maximum | Units |
|----------|-------------------------|-----------------|---------|---------|---------|-------|
| $V_{DD}$ | Positive Supply Voltage |                 | 3.135   | 3.3     | 3.465   | V     |
| $V_{DD}$ | Positive Supply Voltage |                 | 2.375   | 2.5     | 2.625   | V     |
| $I_{DD}$ | Power Supply Current    |                 |         |         | 35      | mA    |

TABLE 3B. LVCMOS / LVTTL DC CHARACTERISTICS,  $V_{DD} = 3.3V \pm 5\%$  OR  $V_{DD} = 2.5V \pm 5\%$ ,  $T_A = 0^\circ C$  TO  $70^\circ C$ 

| Symbol   | Parameter          | Test Conditions | Minimum                       | Typical | Maximum        | Units   |
|----------|--------------------|-----------------|-------------------------------|---------|----------------|---------|
| $V_{IH}$ | Input High Voltage | CLK0, CLK1      | 2                             |         | $V_{DD} + 0.3$ | V       |
| $V_{IL}$ | Input Low Voltage  | CLK0, CLK1      | -0.3                          |         | 1.3            | V       |
| $I_{IH}$ | Input High Current | CLK0, CLK1      | $V_{DD} = V_{IN} = 3.465V$    |         | 5              | $\mu A$ |
|          |                    |                 | $V_{DD} = V_{IN} = 2.625V$    |         |                |         |
| $I_{IL}$ | Input Low Current  | CLK0, CLK1      | $V_{DD} = 3.465, V_{IN} = 0V$ | -150    |                | $\mu A$ |
|          |                    |                 | $V_{DD} = 2.625, V_{IN} = 0V$ |         |                |         |

TABLE 3C. HSTL DC CHARACTERISTICS,  $V_{DD} = 3.3V \pm 5\%$  OR  $V_{DD} = 2.5V \pm 5\%$ ,  $T_A = 0^\circ C$  TO  $70^\circ C$ 

| Symbol      | Parameter                         | Test Conditions         | Minimum | Typical | Maximum | Units |
|-------------|-----------------------------------|-------------------------|---------|---------|---------|-------|
| $V_{OH}$    | Output High Voltage; NOTE 1       |                         | 1       |         | 1.4     | V     |
| $V_{OL}$    | Output Low Voltage; NOTE 1        | $V_{DD} = 3.3V \pm 5\%$ | 0       |         | 0.4     | V     |
|             |                                   | $V_{DD} = 2.5V \pm 5\%$ | 0       |         | 0.55    | V     |
| $V_{SWING}$ | Peak-to-Peak Output Voltage Swing | $V_{DD} = 3.3V \pm 5\%$ | 0.6     |         | 1.4     | V     |
|             |                                   | $V_{DD} = 2.5V \pm 5\%$ | 0.45    |         | 1.4     | V     |

NOTE 1: Outputs terminated with  $50\Omega$  to GND.

**TABLE 4A. AC CHARACTERISTICS,  $V_{DD} = 3.3V \pm 5\%$ ,  $T_A = 0^\circ C$  TO  $70^\circ C$** 

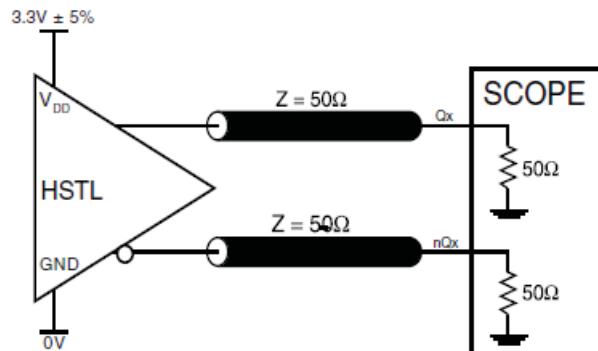
| Symbol      | Parameter                    | Test Conditions       | Minimum | Typical | Maximum | Units |
|-------------|------------------------------|-----------------------|---------|---------|---------|-------|
| $f_{MAX}$   | Output Frequency             |                       |         |         | 350     | MHz   |
| $t_{PD}$    | Propagation Delay; NOTE 1    |                       | 700     |         | 1075    | ps    |
| $tsk(pp)$   | Part-to-Part Skew; NOTE 2, 3 |                       |         |         | 375     | ps    |
| $t_R / t_F$ | Output Rise/Fall Time        | 20% to 80%            | 150     |         | 800     | ps    |
| odc         | Output Duty Cycle            | $f \leq 150MHz$       | 48      |         | 52      | %     |
|             |                              | $150 < f \leq 250MHz$ | 46      |         | 54      | %     |
|             |                              | $250 < f \leq 350MHz$ | 45      |         | 55      | %     |

NOTE 1: Measured from  $V_{DD}/2$  of the input to the differential output crossing point.

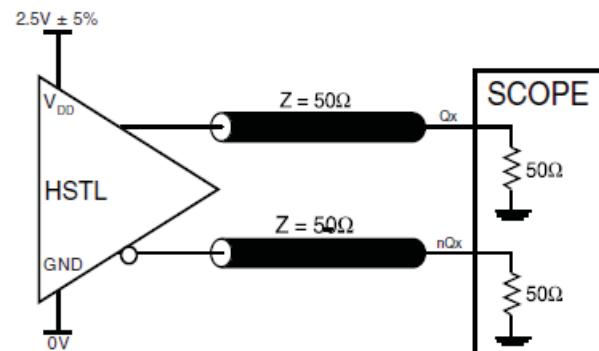
NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

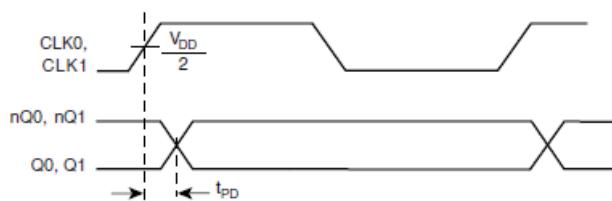
**TABLE 4B. AC CHARACTERISTICS,  $V_{DD} = 2.5V \pm 5\%$ ,  $T_A = 0^\circ C$  TO  $70^\circ C$** 


| Symbol      | Parameter                    | Test Conditions       | Minimum | Typical | Maximum | Units |
|-------------|------------------------------|-----------------------|---------|---------|---------|-------|
| $f_{MAX}$   | Output Frequency             |                       |         |         | 350     | MHz   |
| $t_{PD}$    | Propagation Delay; NOTE 1    |                       | 700     |         | 1200    | ps    |
| $tsk(pp)$   | Part-to-Part Skew; NOTE 2, 3 |                       |         |         | 475     | ps    |
| $t_R / t_F$ | Output Rise/Fall Time        | 20% to 80%            | 150     |         | 800     | ps    |
| odc         | Output Duty Cycle            | $f \leq 150MHz$       | 48      |         | 52      | %     |
|             |                              | $150 < f \leq 350MHz$ | 46      |         | 54      | %     |

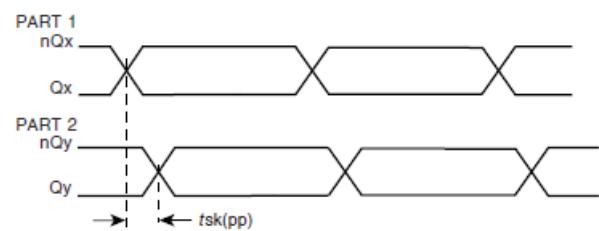
NOTE 1: Measured from  $V_{DD}/2$  of the input to the differential output crossing point.


NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

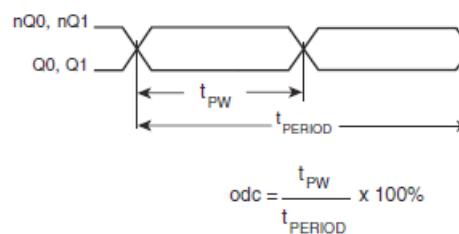
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.


## PARAMETER MEASUREMENT INFORMATION

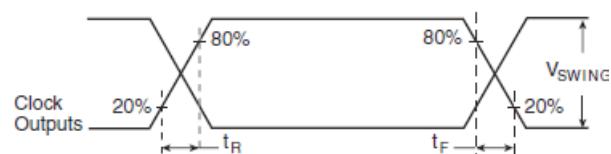



3.3V CORE/3.3V OUTPUT LOAD AC TEST CIRCUIT




2.5V CORE/2.5V OUTPUT LOAD AC TEST CIRCUIT




PROPAGATION DELAY

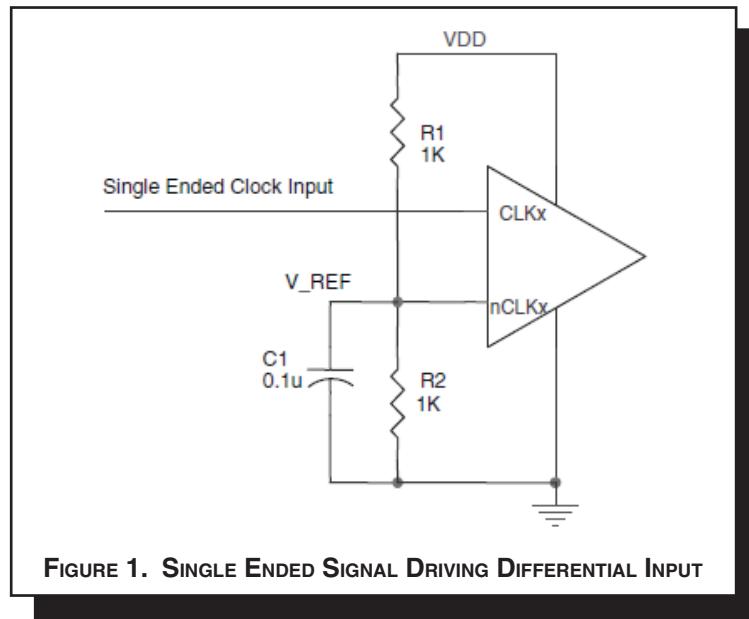


PART-TO-PART SKEW



OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD




OUTPUT RISE/FALL TIME

## APPLICATION INFORMATION

### WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage  $V_{REF} = V_{DD}/2$  is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio

of R1 and R2 might need to be adjusted to position the  $V_{REF}$  in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and  $V_{CC} = 3.3V$ ,  $V_{REF}$  should be 1.25V and  $R2/R1 = 0.609$ .



### RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS

#### INPUTS:

##### CLK INPUT:

For applications not requiring the use of a clock input, it can be left floating. Though not required, but for additional protection, a  $1k\Omega$  resistor can be tied from the CLK input to ground.

#### OUTPUTS:

##### HSTL OUTPUT

All unused LVHSTL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

## SCHEMATIC EXAMPLE

Figure 2 shows a schematic example of 85222-01. In this example, the inputs are driven by  $7\Omega$  output LVCMOS drivers with series terminations. The decoupling capacitors should be

physically located near the power pin. For 85222-01, the unused output need to be terminated.

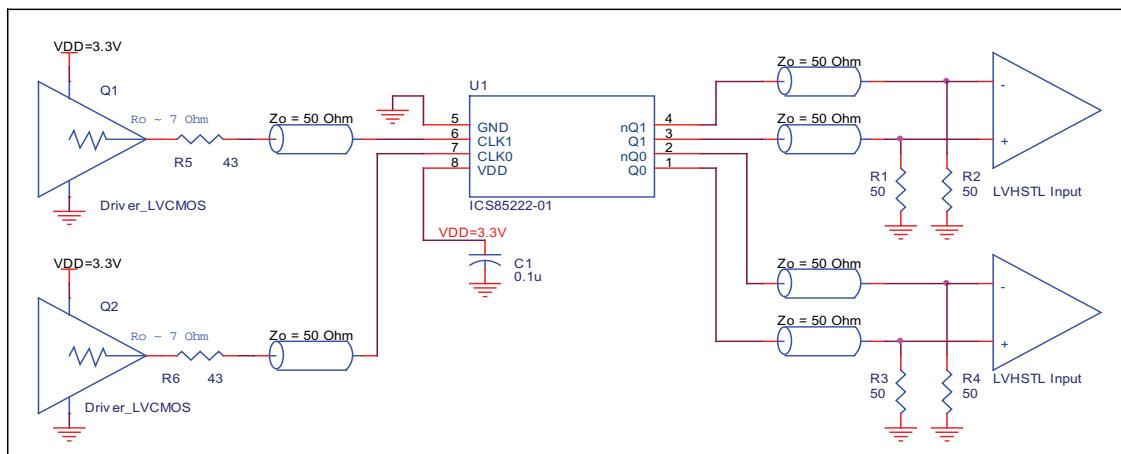



FIGURE 2. 85222-01 HSTL BUFFER SCHEMATIC EXAMPLE

## POWER CONSIDERATIONS

This section provides information on power dissipation and junction temperature for the 85222-01. Equations and example calculations are also provided.

### 1. Power Dissipation.

The total power dissipation for the 85222-01 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for  $V_{DD} = 3.3V + 5\% = 3.465V$ , which gives worst case results.

**NOTE:** Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)<sub>MAX</sub> =  $V_{DD\_MAX} * I_{DD\_MAX} = 3.465V * 35mA = 121.3mW$
- Power (outputs)<sub>MAX</sub> = **82.34mW/Loaded Output pair**  
If all outputs are loaded, the total power is  $2 * 82.34mW = 164.68mW$

**Total Power<sub>MAX</sub>** (3.465V, with all outputs switching) =  $121.3mW + 164.68mW = 285.98mW$

### 2. Junction Temperature.

Junction temperature,  $T_j$ , is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for the devices is 125°C.

The equation for  $T_j$  is as follows:  $T_j = \theta_{JA} * P_{d\_total} + T_A$

$T_j$  = Junction Temperature

$\theta_{JA}$  = Junction-to-Ambient Thermal Resistance

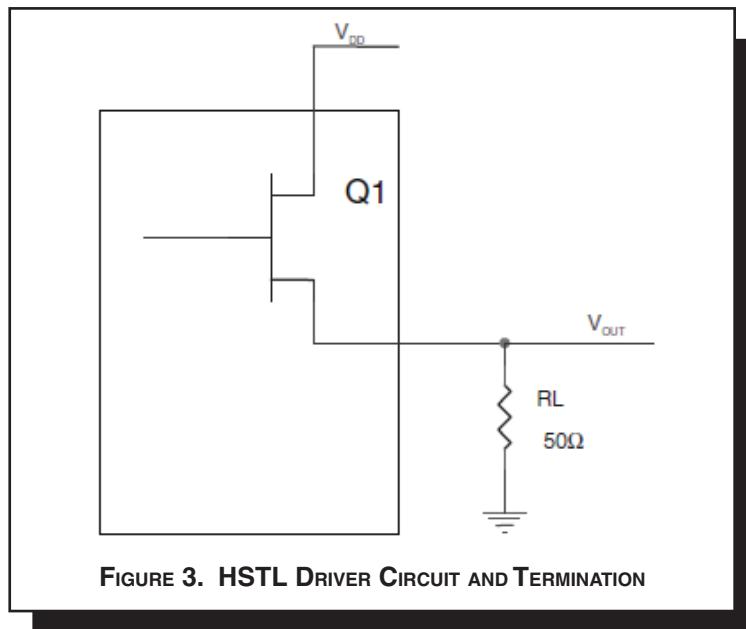
$P_{d\_total}$  = Total device power dissipation (example calculation is in Section 1 above)

$T_A$  = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance  $\theta_{JA}$  must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 103.3°C/W per Table 5 below. Therefore,  $T_j$  for an ambient temperature of 70°C with all outputs switching is:

$70^\circ C + 0.286W * 103.3^\circ C/W = 99.5^\circ C$ . This is well below the limit of 125°C.

This calculation is only an example.  $T_j$  will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).


**TABLE 5. THERMAL RESISTANCE  $\theta_{JA}$  FOR 8-PIN SOIC, FORCED CONVECTION**

| <b><math>\theta_{JA}</math> by Velocity (Linear Feet per Minute)</b>                                                |           |            |            |
|---------------------------------------------------------------------------------------------------------------------|-----------|------------|------------|
|                                                                                                                     | <b>0</b>  | <b>200</b> | <b>500</b> |
| Single-Layer PCB, JEDEC Standard Test Boards                                                                        | 153.3°C/W | 128.5°C/W  | 115.5°C/W  |
| Multi-Layer PCB, JEDEC Standard Test Boards                                                                         | 112.7°C/W | 103.3°C/W  | 97.1°C/W   |
| <b>NOTE:</b> Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. |           |            |            |

### 3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

HSTL output driver circuit and termination are shown in *Figure 3*.



To calculate worst case power dissipation into the load, use the following equations which assume a  $50\Omega$  load.

$P_{d\_H}$  is power dissipation when the output drives high.

$P_{d\_L}$  is the power dissipation when the output drives low.

$$P_{d\_H} = (V_{OH\_MAX}/R_L) * (V_{DD\_MAX} - V_{OH\_MAX})$$

$$P_{d\_L} = (V_{OL\_MAX}/R_L) * (V_{DD\_MAX} - V_{OL\_MAX})$$

$$P_{d\_H} = (1.4V/50\Omega) * (3.465V - 1.4V) = 57.82mW$$

$$P_{d\_L} = (0.4V/50\Omega) * (3.465V - 0.4V) = 24.52mW$$

$$\text{Total Power Dissipation per output pair} = P_{d\_H} + P_{d\_L} = 82.34mW$$

## RELIABILITY INFORMATION

**TABLE 6.  $\theta_{JA}$  vs. AIR FLOW TABLE 8 LEAD SOIC** **$\theta_{JA}$  by Velocity (Linear Feet per Minute)**

|                                              | <b>0</b>  | <b>200</b> | <b>500</b> |
|----------------------------------------------|-----------|------------|------------|
| Single-Layer PCB, JEDEC Standard Test Boards | 153.3°C/W | 128.5°C/W  | 115.5°C/W  |
| Multi-Layer PCB, JEDEC Standard Test Boards  | 112.7°C/W | 103.3°C/W  | 97.1°C/W   |

**NOTE:** Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

**TRANSISTOR COUNT**

The transistor count for 85222-01 is: 443

## PACKAGE OUTLINE - M SUFFIX FOR 8 LEAD SOIC

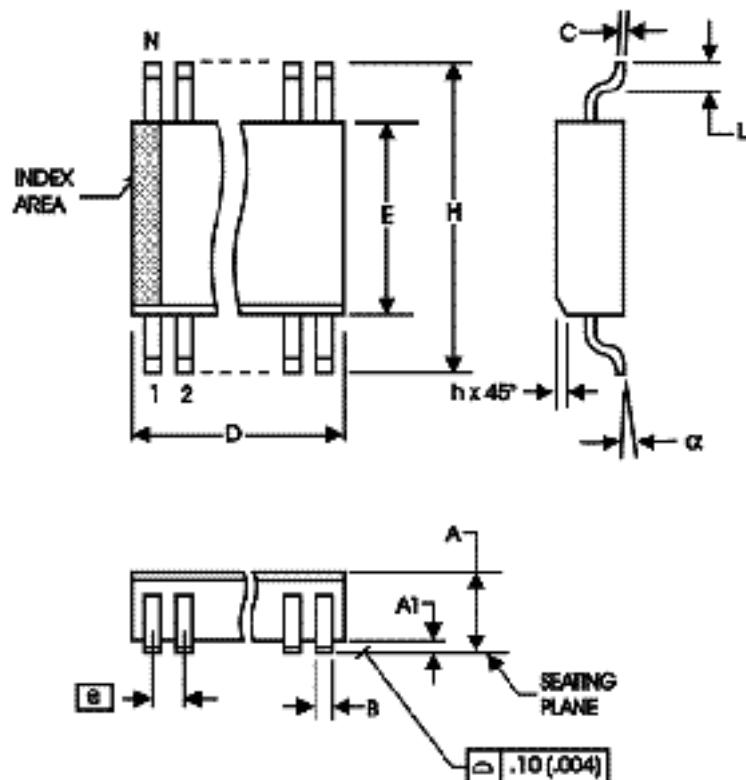
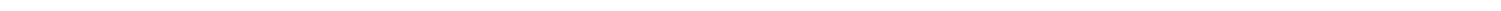



TABLE 7. PACKAGE DIMENSIONS

| SYMBOL | Millimeters |         |
|--------|-------------|---------|
|        | MINIMUM     | MAXIMUM |
| N      |             | 8       |
| A      | 1.35        | 1.75    |
| A1     | 0.10        | 0.25    |
| B      | 0.33        | 0.51    |
| C      | 0.19        | 0.25    |
| D      | 4.80        | 5.00    |
| E      | 3.80        | 4.00    |
| e      | 1.27 BASIC  |         |
| H      | 5.80        | 6.20    |
| h      | 0.25        | 0.50    |
| L      | 0.40        | 1.27    |
| α      | 0°          | 8°      |


Reference Document: JEDEC Publication 95, MS-012

**TABLE 8. ORDERING INFORMATION**

| Part/Order Number | Marking  | Package                 | Shipping Packaging | Temperature |
|-------------------|----------|-------------------------|--------------------|-------------|
| 85222AM-01LF      | 5222A01L | 8 Lead "Lead-Free" SOIC | tube               | 0°C to 70°C |
| 85222AM-01LFT     | 5222A01L | 8 Lead "Lead-Free" SOIC | tape & reel        | 0°C to 70°C |

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

| REVISION HISTORY SHEET |       |                     |                                                                                                                                                                                                                                     |          |
|------------------------|-------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Rev                    | Table | Page                | Description of Change                                                                                                                                                                                                               | Date     |
| A                      | T8    | 6<br>11             | Added Application Note, "Wiring the Differential Input to Accept Single Ended Levels".<br>Ordering Information Table - added Lead-Free part number.                                                                                 | 1/11/05  |
| A                      | T8    | 1<br>6<br>8-9<br>12 | Added lead-free bullet.<br>Added Recommendations for Unused Input and Output Pins.<br>Corrected Power Considerations, Power Dissipation calculation.<br>Ordering Information Table - added tape & reel quantity and lead-free note. | 11/15/05 |
| A                      | T8    | 12<br>14            | Updated datasheet's header/footer with IDT from ICS.<br>Removed ICS prefix from Part/Order Number column.<br>Added Contact Page.                                                                                                    | 8/4/10   |
| A                      | T8    | 12                  | Product Discontinuation Notice - PDN CQ-15-03.<br>Ordering Information - removed leaded devices.                                                                                                                                    | 5/7/15   |

**Corporate Headquarters**

6024 Silver Creek Valley Road  
San Jose, California 95138

**Sales**

800-345-7015 or +408-284-8200  
Fax: 408-284-2775  
[www.IDT.com](http://www.IDT.com)

**Technical Support**

**email:** [clocks@idt.com](mailto:clocks@idt.com)

**DISCLAIMER** Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright 2015. All rights reserved.

# Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[IDT \(Integrated Device Technology\):](#)

[85222AM-01LFT](#) [85222AM-01LF](#)