

Product Preview

155Mb/s / 622Mb/s Transmitter (Multiplexer) with Clock Generation

The MC10SX1405 transmitter (Tx) chip is an integrated serialization SONET OC-3 (155.52Mb/s) and OC-12 (622.08 Mb/s) interface device. It generates the line rate clock and performs parallel-to-serial conversion in conformance with SONET/SDH transmission standards. High performance and low power is achieved with MOSAIC VTM, Motorola's most advanced high-performance silicon Bipolar process. A companion de-serialization (Rx) chip, the SX1401, is also available.

- Selectable eight or four bit parallel interface
- Performs parallel-to-serial conversion of four 38.88 Mbit/s or eight 19.44 Mbit/s inputs to a 155.52 Mbit/s OC3 serial data output
- Performs parallel-to-serial conversion of eight 77.76 Mbit/s inputs to a 622.08 Mbit/s OC12 serial data output
- Integrated PLL and VCO to generate the line-rate clock from a sub-rate reference clock
- Multiple configurations for parallel interface timing provide system design versatility
- Provides PLL Frequency Control Monitor and Out-of-Lock Indicator
- Provides parity verification of the OC3/OC12 serial output stream
- Single supply operation (+5V)

APPLICATIONS

- SONET/SDH-based transmission systems, modules, test equipment
- ATM using SONET
- Add drop multiplexers
- Other (non-SONET) data rate transmission systems

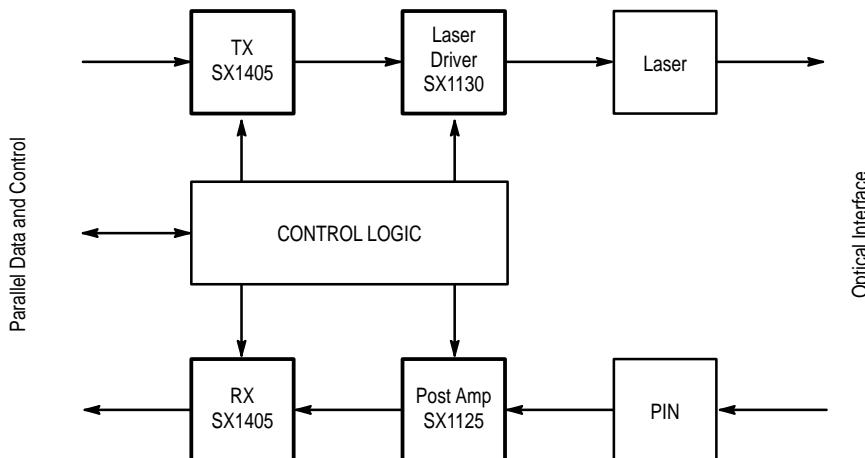



Figure 1. Typical OC3/OC12 Electro-Optical Interface

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MC10SX1405

**TRANSMITTER
(MULTIPLEXER)
WITH CLOCK GENERATION**

FJ SUFFIX
52-LEAD CLCC PACKAGE
CASE 778B-01

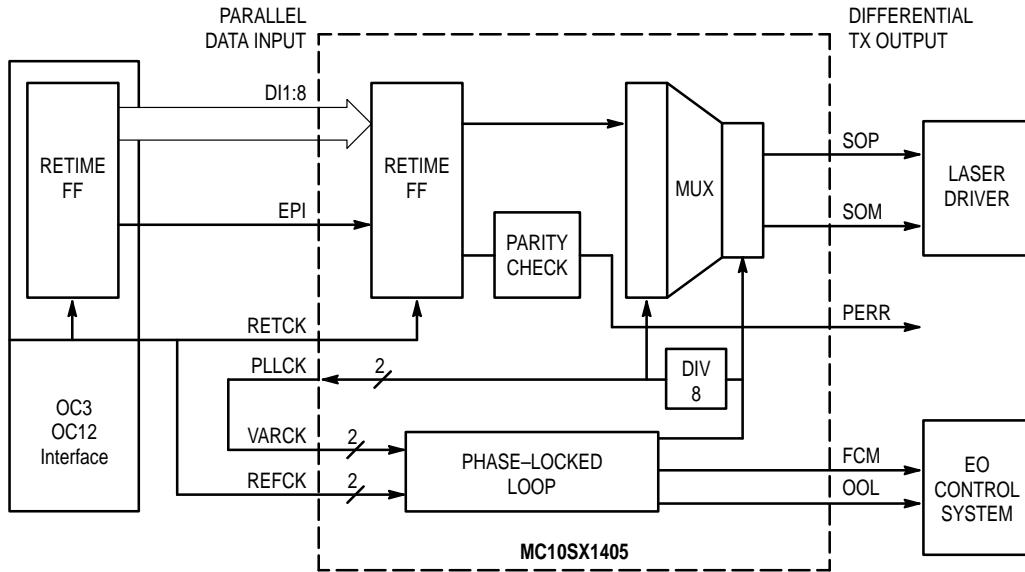


Figure 2. MC10SX1405 Simplified Block Diagram

SX1405 Theory of Operation

Operation of the SX1405 is straightforward. Parallel data is input to the device. Serial-to-parallel conversion is performed. Then the serial data is output at the selected line rate clock. The 78 MByte/s or 19 MByte/s parallel data is converted into a bit-serial 622 Mbit/s or 155 Mbit/s data stream.

The on-chip PLL generates the 622 MHz or 155 MHz line rate clock from a substrate clock. For testing and applications which provide an external high-frequency bit clock, the internal clock generation PLL may be bypassed.

SX1405 Block Diagram Functional Description

Phase Locked Loop

The on-chip Phase Locked Loop (PLL) synthesizes the internal bit rate clock from the 19.44 / 38.66 / 77.78 MHz input reference clock. The PLL consists of a phase / frequency detector, loop filter, and Voltage Controlled Oscillator (VCO) nominally operating at 1.2 GHz. Dividers provide the internal clocks and a sub-rate clock output PLLCKP/PLLCKM (differential PECL) for phase comparison.

REFCK/REFCKM is the differential input PLL reference clock. The feedback, to close the loop of the PLL, is VARCK/VARCKM, the differential input variable clock. Both the REFCK and VARCK inputs can be driven by TTL levels if the "minus" input (REFCKM and VARCKM) are left open.

An Out Of Lock indicator (OOL) is driven HIGH if the PLL is not frequency locked with the input reference clock.

Parallel to Serial Conversion

In OC3 mode, converts a 4-bit (Nibble) 38.88 Mb/s or 8-bit (Byte) 19.44 Mb/s input to a differential 155.52 Mb/s serial data output. In OC12 mode, converts an 8-bit 77.76 Mb/s input to a differential 622.08 Mb/s serial data output. The input data is loaded into the Retiming FF's by the Retiming Clock RETCK. Then the data is loaded into a shift register by PLLCK. The data shifted out is ordered MSB (DI1) first and LSB (DI8 or DI4) last.

Parity Check

The parity check provides a means of verifying the integrity of the parallel to serial converter with minimal overhead. The parity of the serial output data stream is compared to the value of the Even Parity Input (EPI). If a parity error is detected, the Parity Error (PERR) output is set HIGH. The PERR pin has an Open Collector TTL Output and must be given a falling edge to reset the parity error detector.

SX1405 Control Signals

Reset (RSTN) – Used for testing and verification, the TTL outputs are set to Tri-State and all divider flip-flops and the parity generator are reset when RSTN = LOW. This also sets PERR HIGH and PERR must be given a falling edge to reset the parity error detector for normal operation. An internal pull-up is provided on RSTN allowing the device to operate normally if RSTN is not used.

Low Speed Select (LSS) – Selects data rate. LOW = OC-12 (622.08 Mb/s), HIGH = OC-3 (155.52 Mb/s). An

internal pull-up is provided on LSS allowing the device to operate in OC-3 mode if LSS is not used.

Nibble / Byte Select (NBB) – In OC-3 mode, selects between 4-bit (Nibble) and 8-bit (Byte) parallel data input format. LOW = Byte, HIGH = Nibble. An internal pull-up is provided on NBB allowing the device to operate in Nibble mode if NBB is not used.

External Clock Select (ECSN) – Allows external high-frequency bit clock to be applied and bypasses the internal clock generation circuit. LOW = External bit

clock. An internal pull-up is provided on ECSN allowing the device to operate normally if ECSN is not used.

VCO Frequency Control Monitor (FCM) – Single ended reference voltage output generated from the VCO control voltage. Typically 1.25V and varying from 0.25V to 2.25V.

Out of Lock Indicator (OOL) – Is set HIGH if the PLL is not frequency-locked to the input reference clock.

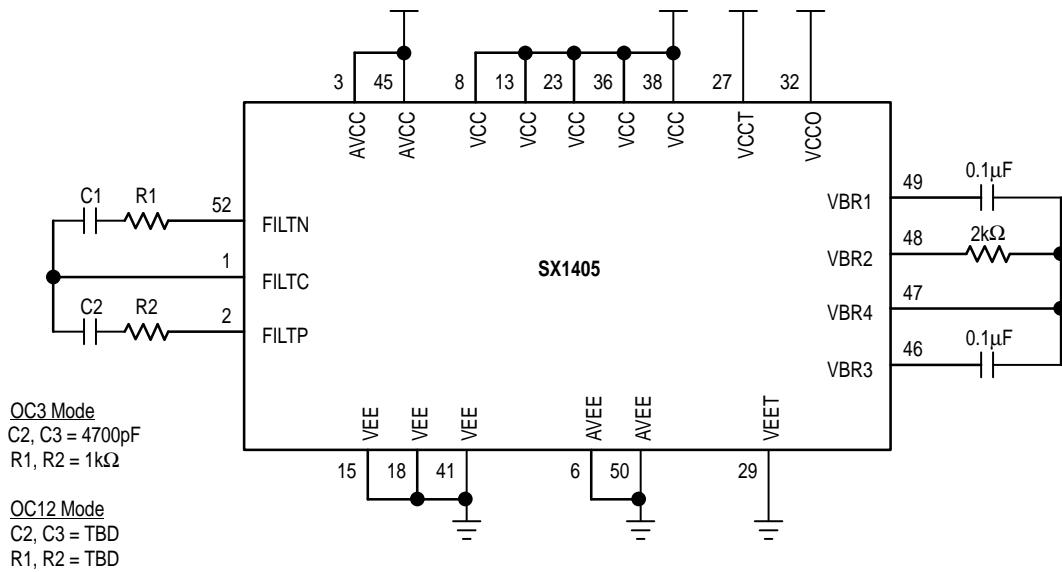
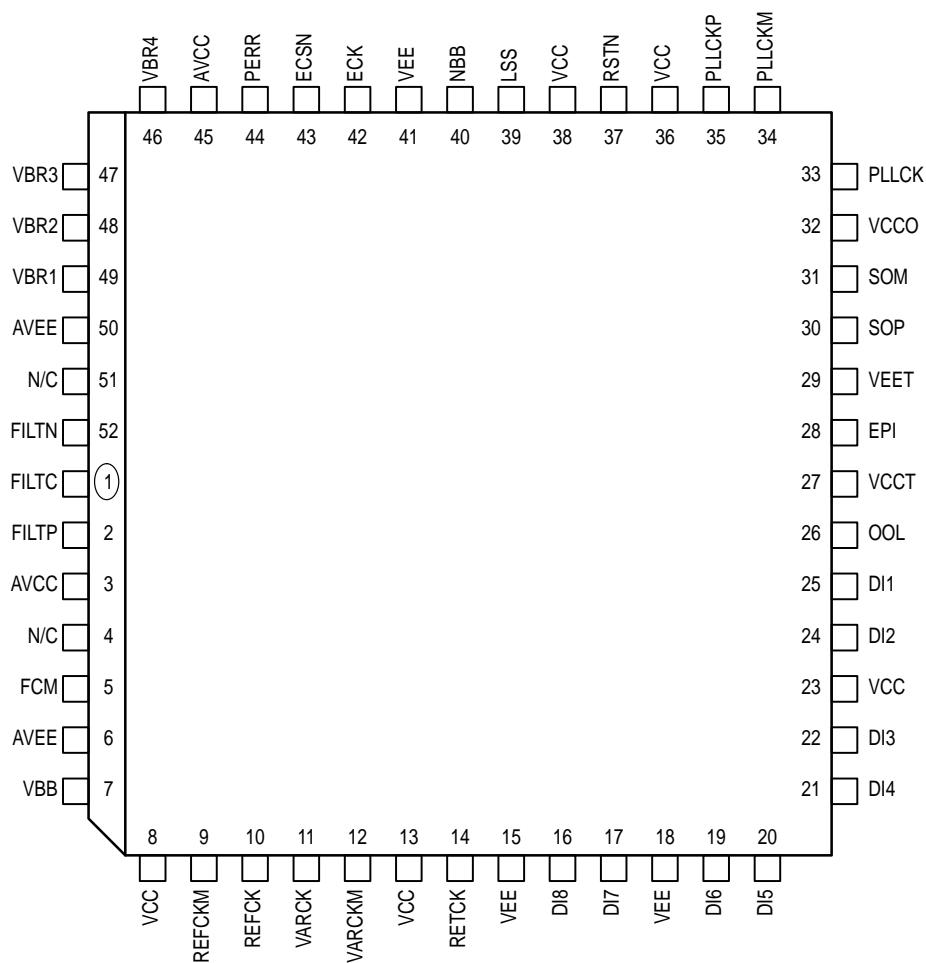



Figure 3. SX1405 Typical Operating Circuit

MC10SX1405

Figure 4. MC10SX1405 52-Lead Pinout (Top View)

Table 1. SX1405 Pin Descriptions

Name	Pin No	Description
TTL Compatible I/O		
RETCK	14	Re-Time Latch Clock
DI8	16	Parallel Data Input (Byte LSB)
DI7	17	Parallel Data Input
DI6	19	Parallel Data Input
DI5	20	Parallel Data Input
DI4	21	Parallel Data Input (Nibble LSB)
DI3	22	Parallel Data Input
DI2	24	Parallel Data Input
DI1	25	Parallel Data Input (Byte and Nibble MSB)
OOL	26	Out of Lock Indicator Output
EPI	28	Even Parity Input
PLLCK	33	PLL Clock Out (19.44 / 38.88 / 77.76MHz)
RSTN	37	Reset Input
LSS	39	Low Speed Select Input
NBB	40	Nibble / Byte Select Input
ECSN	43	External Clock Select Input
PERR	44	Parity Error Output and Reset, Open Collector
PECL Compatible I/O		
VBB	7	PECL Voltage Reference Output (3.7V Nominally)
REFCKM	9	Differential Input Reference Clock Minus
REFCK	10	Differential Input Reference Clock Plus
VARCK	11	Differential Input Variable Clock Plus
VARCKM	12	Differential Input Variable Clock Minus
SOP	30	Differential Serial Data Output Plus
SOM	31	Differential Serial Data Output Minus
PLLCKM	34	PLL Clock Out (19.44 / 38.88 / 77.76MHz) Minus
PLLCKP	35	PLL Clock Out (19.44 / 38.88 / 77.76MHz) Plus
ECK	42	External Clock Input
Analog I/O		
FCM	5	VCO Frequency Control Monitor
VBR4–VBR1	46–49	VCO Filter Pins
FILTN	52	Loop Filter Negative
FILTC	1	Loop Filter Common
FILTP	2	Loop Filter Positive
Power and Ground Pins		
AVCC	3, 45	Analog +5V Supply
AVEE	6, 50	Analog 0V Supply
VCC	8, 13, 23, 36, 38	PECL +5V Supply
VEE	15, 18, 41	PECL 0V Supply
VCCT	27	Output TTL +5V Supply
VEET	29	Output TTL 0V Supply
VCCO	32	Output PECL +5V Supply
Reserved		
N/C	4, 51	No Connection

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
VCC, VCCO, VCCT, AVCC	Power Supply (VEE, VEET, AVEE, GVEE = 0V)	-0.5 to +6.5	V
VIN	Input Voltage (VEE, VEET, AVEE, GVEE = 0V)	-0.5 to +6.5	V
IOUT	PECL Output Current	50 100	mA
IOUT-TTL	TTL Output Current	5	mA
TSTG	Storage Temperature	-50 to +175	°C

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
VCC, VCCO, VCCT, AVCC	Power Supply (VEE, VEET, AVEE, GVEE = 0V)	5V ±5%	V
ICC	Device Current Drain	100	mA
TA	Operating Temperature	-40 to +85	°C
TJ	Junction Temperature	125	°C

TTL DC CHARACTERISTICS (VCC = VCCT = VCCO = AVCC = 5.0V ±5%)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IIH	Input HIGH Current			20	µA	VIN = VCC
IIL	Input LOW Current			-0.6	mA	VIN = 0.5V
VOH	Output HIGH Voltage	REP, ROD EDO, OOL	2.5 2.5		V	IOH = -2mA IOH = -300µA
VOL	Output LOW Voltage			0.5	V	IOL = 5mA
VIH	Input HIGH Voltage	2.0			V	
VIL	Input LOW Voltage			0.8	V	
IOZ	Tri-State Current			±50	µA	

100E PECL DC CHARACTERISTICS (VCC = VCCT = VCCO = AVCC = 5.0V ±5%)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IIH	Input HIGH Current			200	mA	
IIL	Input LOW Current	0.5			mA	
VOH	Output HIGH Voltage	3.98		4.19	V	NOTE 1.
VOL	Output LOW Voltage	3.19		3.45	V	NOTE 1.
VIH	Input HIGH Voltage	3.93		4.19	V	NOTE 1.
VIL	Input LOW Voltage	3.19		3.43	V	NOTE 1.

1. PECL levels are referenced to VCC and will vary 1:1 with the Power Supply. The Outputs are loaded with an equivalent 50Ω termination to +3.0V. The values shown are for VCC = VCCT = VCCO = AVCC = 5.0V.

PLL COMPONENT CHARACTERISTICS (VCC = VCCT = VCCO = AVCC = 5.0V \pm 5%)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IFILT	Loop Filter Currents (FILTP–FILTN)	300 –500		500 –300	μ A	PD Up PD Down
Kdt	Combined Phase Detector TZA Gain	45		80	μ A/rad	
ADV	Loop Filter Amplifier Large Signal Differential Voltage Amplification	100	250		V/V	
ϕ_E	Phase Error	–0.45		0.45	radians	
VFCM	FCM Amplitude Range	0.3		2.2	V	
	FCM Locked PLL Range	0.65		1.85	V	
	FCM Shorted	1.1		1.4	V	FILTP, FILTN Shorted
EFCM	FCM Error	–100		100	mV	
KFCM	FCM Gain	0.45		0.55	gain	
RO	FCM Output Impedance		5000		Ω	
fVCO	VCO Frequency	700	1244	1800	MHz	2000 Ω (1%) – EXT. R
	VCO Frequency Shorted	1000		1450	MHz	FILTP, FILTN Shorted
KO	VCO Gain	120	220	260	MHz/V	2000 Ω (1%) – EXT. R
KOVCC	VCC Supply (AVCC) Sensitivity	–80		80	MHz/V	0 < fVCC < 10MHz
ϕ_{VCO}	VCO Phase Noise		–30		dBc/Hz	at f = 1kHz
			–90		dBc/Hz	at f = 1kHz

AC CHARACTERISTICS (VCC = VCCT = VCCO = AVCC = 5.0V +5%)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
tr, tf	PECL Rise/Fall Time			1.6	nS	20–80%, 50 Ω to VCC–2V
tr, tf	TTL Rise/Fall Time			5.0	nS	20–80%, 50 Ω to VCC–2V

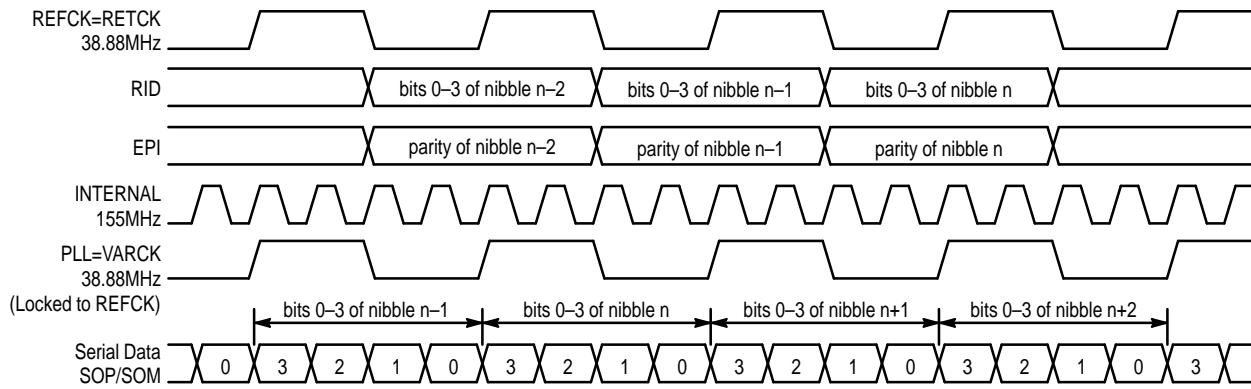


Figure 5. SX1405 Timing Diagram — OC-3, 4 Bits

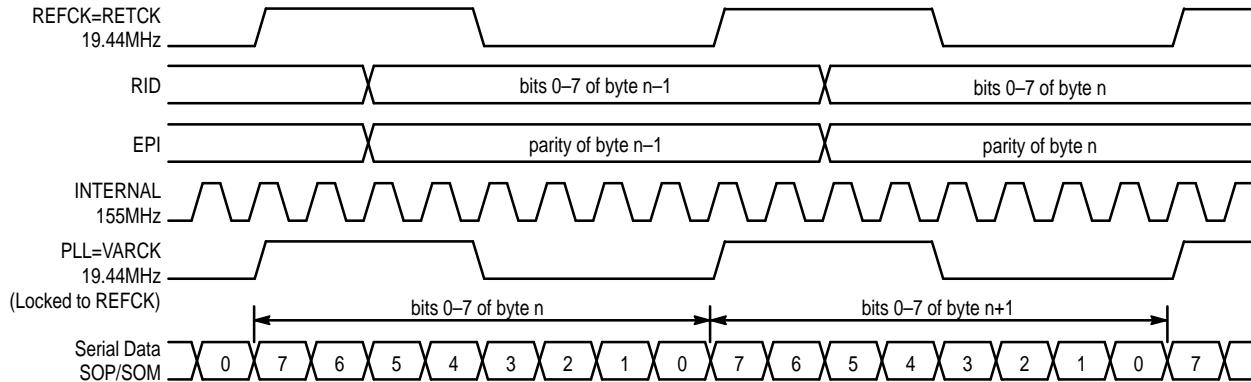


Figure 6. SX1405 Timing Diagram — OC-3, 8 Bits

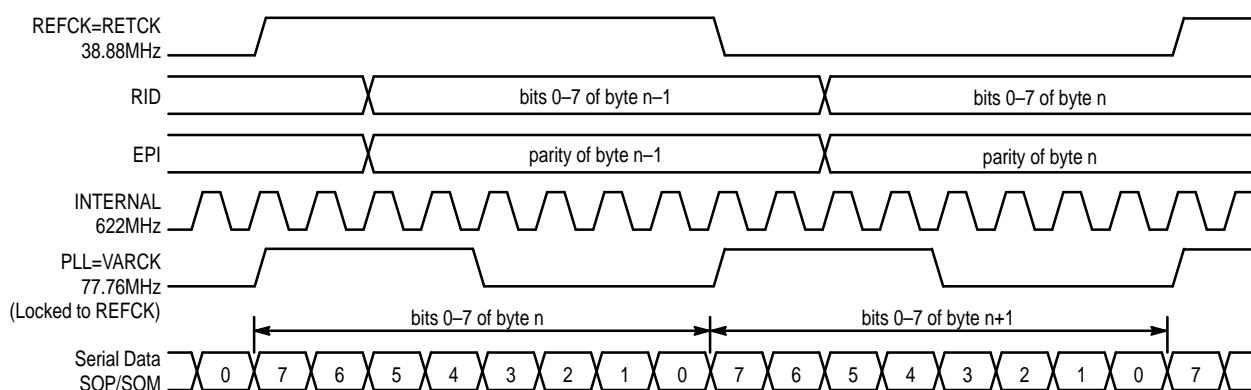
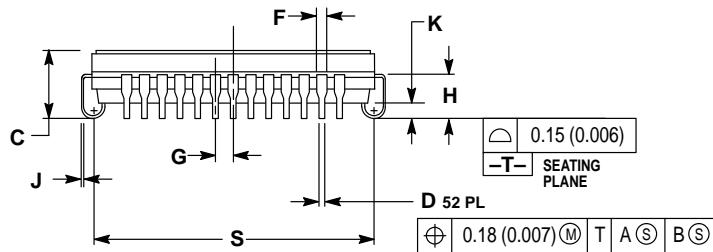
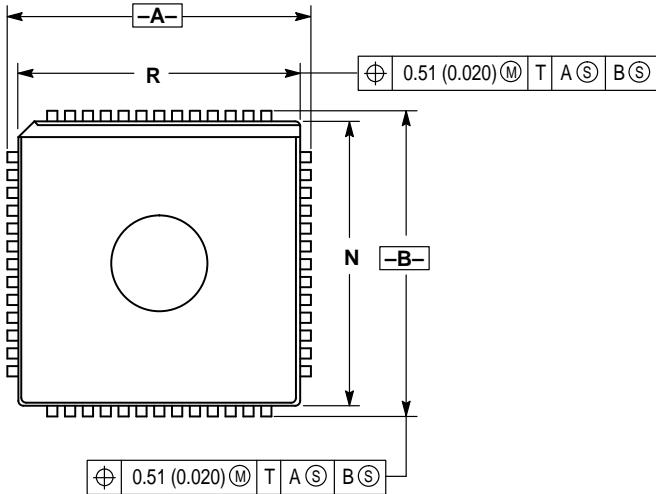




Figure 7. SX1405 Timing Diagram — OC-12, 8 Bits

OUTLINE DIMENSIONS

FJ SUFFIX
CLCC PACKAGE
CASE 778B-01
ISSUE O

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION R AND N DO NOT INCLUDE GLASS PROTRUSION. GLASS PROTRUSION TO BE 0.25 (0.010) MAXIMUM.
4. ALL DIMENSIONS AND TOLERANCES INCLUDE LEAD TRIM OFFSET AND LEAD FINISH.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.785	0.795	19.94	20.19
B	0.785	0.795	19.94	20.19
C	0.165	0.200	4.20	5.08
D	0.017	0.021	0.44	0.53
F	0.026	0.032	0.67	0.81
G	0.050 BSC		1.27 BSC	
H	0.090	0.130	2.29	3.30
J	0.006	0.010	0.16	0.25
K	0.035	0.045	0.89	1.14
N	0.735	0.756	18.67	19.20
R	0.735	0.756	18.67	19.20
S	0.690	0.730	17.53	18.54

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141,
4-32-1 Nishi-Gotanda, Shagawa-ku, Tokyo, Japan. 03-5487-8488

Customer Focus Center: 1-800-521-6274

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 1-602-244-6609
Motorola Fax Back System – US & Canada ONLY 1-800-774-1848
– <http://sps.motorola.com/mfax/>

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

HOME PAGE: <http://motorola.com/sps/>